Invariant constituents and invariant blocks under coprime action

Ziqun Lu

School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China

Received 3 April 2002
Communicated by Gernot Stroth

Abstract

Let A and G be finite groups with $(|A|, |G|) = 1$. We assume that A acts on G via automorphism. Let N be an A-invariant normal subgroup of G. Let φ be an A-invariant irreducible Brauer character of N. If A is of prime power order, then the induced Brauer character φ^G contains an A-invariant irreducible constituent; If G/N is p-solvable, then φ^G contains an A-invariant irreducible constituent. Let B be an A-invariant block of G. Then under Glauberman–Isaacs correspondence, the set $\text{Irr}_A(B)$ is a union of blocks of $CG(A)$, say b_1, b_2, \ldots, b_s. Let Q_i be a defect group of b_i. Then there is a defect group D of B such that $Q_i \leq D$.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group. Let (K, R, F) be a p-modular system, where R is a complete discrete valuation ring with a unique maximal ideal (π) for $\pi \in R$, K is the quotient field of R with characteristic zero and $F = R/(\pi)$ is an algebraically closed field with characteristic $p > 0$. We fix a valuation ν of K such that R is its valuation ring and $\nu(\pi) = 1$. For an RG-module (or FG-module) V, we denote by $\text{hd}(V)$ (respectively $\text{soc}(V)$) the head (respectively the socle) of V.

Let A be a finite group such that A acts on G and $(|A|, |G|) = 1$, where $|A|$ and $|G|$ denote the orders of A and G, respectively. We denote by $\text{Irr}(G)$ (respectively $\text{Irr}_A(G)$) the set of irreducible ordinary characters (respectively the set of A-invariant irreducible ordinary characters) of G. When A is solvable, Glauberman defines a one-to-

E-mail address: lu@g.math.s.chiba-u.ac.jp.
one correspondence between $\text{Irr}_A(G)$ and $\text{Irr}(C_G(A))$. When $|G|$ is odd, Isaacs also defines a one-to-one correspondence between $\text{Irr}_A(G)$ and $\text{Irr}(C_G(A))$. Wolf [14] proves that these two correspondences are the same if $|G|$ is odd and A is solvable. We let \ast denote the Glauberman–Isaacs correspondence, thus $\chi \mapsto \chi^\ast$ is a one-to-one correspondence from $\text{Irr}_A(G)$ to $\text{Irr}(C_G(A))$. Let B be an A-invariant block of RG. Denote by $\text{Irr}_A(B)$ the set of A-invariant irreducible ordinary characters in B.

We assume in the rest of this paper that A and G are of coprime orders and A acts through automorphisms on G. In this paper, a module means a finitely generated right module. For a subgroup H of G, and for an FG-module X and an FH-module Y, we write X_H for the restriction of X to H and Y_G for the induction of Y to G. When $H \triangleleft G$ and Y is an FH-module, we denote $I_G(Y)$ the inertia subgroup of Y in G.

2. Stable constituents under coprime action

Let H be an A-invariant subgroup of G. Let ψ be an A-invariant irreducible Brauer character of H. In this section, we prove that there is an A-invariant irreducible Brauer character as a constituent in ψ^G under some assumption.

Proposition 1. Assume that A is of prime power order, say q^n ($q \neq p$). Let H be an A-invariant subgroup of G. Let $\psi \in \text{IBr}_A(H)$ with $q \mid \psi(1)$, then there exists an A-invariant irreducible constituent in ψ^G. Specially, if H is an A-invariant p-solvable subgroup of G and $\psi \in \text{IBr}_A(H)$, then there exists an A-invariant irreducible constituent in ψ^G.

Proof. Set $\psi^G = \sum_{\beta \in \text{IBr}(G)} m_\beta \beta$. Let $S = \{\beta \in \text{IBr}(G) \mid m_\beta \neq 0\}$. Then A permutes the elements in S. Let O_1, O_2, \ldots, O_n be all the A-orbits of A on S. Let $\beta_i \in O_i$. If irreducible Brauer characters β and η are in the same orbit, then $m_\beta = m_\eta$. Thus $\psi^G(1) = \sum_{i=1}^n |A : C_A(\beta_i)| m_\beta \beta_i(1)$. Since $q \mid \psi^G(1) = |G : H|\psi(1)$, there exists an i such that $A = C_A(\beta_i)$. So β_i is an A-invariant irreducible constituent of ψ^G, as desired. \square

Let N be a normal subgroup of G, and let W be an indecomposable FN-module. We assume that $I_G(W) = G$. Set $E = \text{End}_{FG}(W^G)$ and $\lambda = \text{End}_{FN}(W)$. We can write E in the form $E = \bigoplus_{\tilde{Y} \in Y} E_{\tilde{Y}}$ where $Y = G/N$ and $E_{\tilde{Y}}$ is the F-submodule of E mapping $W = W \otimes 1$ to $W \otimes Y$ inside W^G, and $E_{\tilde{Y}} \cong \text{Hom}_{FN}(W, W^X)$ as F-module by [10, 4.6.4]. Clearly $E_{\tilde{Y}} E_{\tilde{Y}} \subseteq E_{\tilde{Y}^\gamma}$, for $\tilde{X}, \tilde{Y} \in Y$. Also we can use the stability hypothesis to choose an element $\varphi_{\tilde{Y}} \in E_{\tilde{Y}}$ mapping $W \otimes 1$ isomorphically onto $W \otimes Y$: it follows that $\varphi_{\tilde{Y}}$ is a unit in E. Since $E_{\tilde{Y}}$ can be identified with A, we have $E_{\tilde{Y}} = A\varphi_{\tilde{Y}} = \varphi_{\tilde{Y}} A$. So E is a free right A-module. The module $E \otimes_A W$ is an E-FG-bimodule with actions $(e \otimes w) \cdot y := e\varphi_{\tilde{Y}} \otimes \varphi_{\tilde{Y}}^{-1}(w \otimes y)$, where $\tilde{Y} = yN$, and $e' \cdot (e \otimes w) := e' \otimes w$. Then we have the following proposition due to Cline, see [10, 4.6.6].

Proposition 2. There is an E-FG-bimodule isomorphism $E \otimes_A W \cong W^G$ given by $f : e \otimes w \mapsto e(w)$, for $e \in E$ and $w \in W$.

Proposition 3 [8, Corollary 1.2]. Keep the notations as above. Let \(E = \bigoplus U_i \) be a decomposition into indecomposable \(E \)-modules. Then \(W^G = \bigoplus U_i W \cong \bigoplus U_i \otimes_A W \) is a decomposition into indecomposable \(FG \)-modules. Moreover we have that \(\dim(U_i W) = \text{rank}_A(U_i) \dim(W) \), and that \(U_i = U_j \) as \(E \)-modules if and only if \(U_i W \cong U_j W \) as \(FG \)-modules.

The following result is essentially due to Harris (see [5, Theorem 7]), but we also give a proof here for convenience to readers.

Proposition 4. Let \(N \) be a normal subgroup of \(G \), and let \(W \) be an irreducible \(FN \)-module. Then for any indecomposable direct summand \(V \) of \(W^G \), \(\text{hd}(V) \) and \(\text{soc}(V) \) are irreducible. If \(P \) is a projective cover of \(W \), then \(PG \) is a projective cover of \(W^G \).

Proof. By induction on \(|G/N| \), we can assume that \(I_G(W) = G \). Since \(P \) is a projective cover of \(W \), then \(I_G(P) = I_G(W) = G \). We may assume that \(W = \text{soc}(P) \). Set \(E = \text{End}_{FG}(P^G) \) and \(A = \text{End}_{FN}(P) \). Set \(Y = G/N \). We can write \(E \) in the form \(E = \bigoplus_{Y \in Y} E \). We identify \(E \) with \(\Lambda \) and let \(\varphi \) be an invertible element in \(E \). Then \(E \Lambda = \Lambda \varphi \Lambda = \varphi \Lambda \). Thus \(E/J(\Lambda)E \cong \bigoplus_{Y \in Y} \varphi \Lambda F \) is a twisted group algebra of \(G/N \) over \(F \). We let \(\varphi \in \text{End}_G(W^G) \) be a unit in \(\text{End}_G(W^G) \) mapping \(W \otimes 1 \) isomorphically onto \(W \otimes y \). Thus \(\text{End}_{FG}(W^G) \cong \bigoplus_{Y \in Y} \varphi \Lambda F \) is a twisted group algebra of \(G/N \) over \(F \). It is easy to verify that \(\text{End}_{FG}(W^G) \) is isomorphic to \(E/J(\Lambda)E \).

Suppose that \(E = V_1 \oplus V_2 \oplus \cdots \oplus V_m \) (respectively \(\text{End}_{FG}(W^G) = V_1^G \oplus V_2^G \oplus \cdots \oplus V_m^G \) is a decomposition into indecomposable \(E \)- (respectively \(\text{End}_{FG}(W^G) \)-) modules. By Proposition 3, \(P^G = V_1 P \oplus \cdots \oplus V_m P \) (respectively \(W^G = V_1^G W \oplus \cdots \oplus V_m^G W \) is a decomposition into indecomposable \(FG \)-modules. Since \(E/J(\Lambda)E \cong \text{End}_{FG}(W^G) \) and \(J(\Lambda)E \leq J(E) \), we have \(m = n \). Since there is a surjective \(FG \)-module homomorphism from \(P^G \) to \(W^G \), we must that the head of \(V_i^G W \) is irreducible for \(i = 1, 2, \ldots, n \) and \(P^G \) is a projective cover of \(W^G \).

Let \(W^* \) be the dual of \(W \), thus each indecomposable direct summand of \((W^*)^G \) has irreducible head. Since \((W^*)^G \cong (W^G)^* \), each indecomposable direct summand of \(W^G \) has irreducible socle, as desired. \(\square \)

Theorem A. Assume that \(A \) is of prime power order. Let \(N \) be an \(A \)-invariant normal subgroup of \(G \), and let \(\varphi \) be an \(A \)-invariant irreducible Brauer character of \(N \). Then there exists some \(A \)-invariant irreducible constituent in \(\varphi^G \).

Proof. We can assume that \(\varphi \) is \(G \)-invariant by induction on \(|G/N| \). Let \(W \) be an irreducible \(FN \)-module such that \(W \) provides Brauer character \(\varphi \). We denote by \(NA \) the semidirect product of \(N \) and \(A \). Since \((|A|, |N|) = 1 \), \(W \) can be extended to an \(F(NA) \)-module. Thus we can view \(W \) as an \(FA \)-module. Thus \(E = \text{End}_{FA}(W^G) \) becomes an \(FA \)-module with the action defined by \((e \cdot a)(v) := e(va^{-1})a \) for \(e \in E \), \(a \in A \), and \(v \in W^G \).
Let L_1, \ldots, L_n be a complete set of non-isomorphic irreducible E-modules, and let P_i be the projective cover of L_i. Since E is an FA-module, A permutes the set $\{P_1, \ldots, P_n\}$. Since $E \cong \bigoplus_{i=1}^n (\dim L_i)P_i$ and $\dim E = |G/N|$ is coprime to $|A|$, we have that one of P_i must be A-invariant. Thus by Proposition 3, $P_i W \cong P_i \otimes_F W$ is an indecomposable direct summand of W^G and A-invariant. Let V be the head of $P_i W$. Then V is irreducible by Proposition 4. Thus V is an A-invariant irreducible constituent of W^G, as desired.

Theorem B. Let N be an A-invariant normal subgroup of G. Let $\psi \in \text{IBr}_A(N)$. If G/N is p-solvable, there exists an A-invariant irreducible constituent in ψ^G.

Proof. We denote by GA the semidirect product of G and A. Let W be an irreducible FN-module such that W provides Brauer character φ. By induction on $|G/N|$, we can assume that G/N is a principal factor of GA. Since G/N is p-solvable, G/N is a p'-group or a p'-group.

If G/N is a p'-group, then W^G is an indecomposable FG-module. Let V be the head of W^G. By Proposition 4, V is irreducible, and consequently V is A-invariant. Thus V is an A-invariant irreducible constituent of W^G, as desired.

We assume now that G/N is a p'-group. By induction on $|G/N|$ again, we may assume that ψ is G-invariant. Then $I_G(W) = G$. Set $E = \text{End}_{FG}(W^G)$ and $\Lambda = \text{End}_{FN}(W) = F$. Let X be a complete set of right coset representatives of N in G. Then $E \cong \bigoplus_{x \in X} \psi_x F$, where ψ_x is a unit in E mapping $W \otimes 1$ isomorphically onto $W \otimes x$ and $\psi_1 = 1$. Then E is isomorphic to a twisted group algebra of G/N over F with factor set α, write $F_{\alpha} G/N$. Since $H^2(G/N, F^\times)$ is a finite group of exponent which is a factor of $|G/N|$, we have $\alpha^{[G/N]} \sim 1$. Then there exists a map $\eta: G/N \rightarrow F^\times$ such that $\alpha(\bar{x}, \bar{y})^{[G/N]} = \eta(\bar{x}) \eta(\bar{y}) \eta(\bar{x} \bar{y})^{-1}$ for $\bar{x}, \bar{y} \in G/N$. Let $k(\bar{x})$ be a $|G/N|$th root of $\eta(\bar{x})$ in F^\times. Set $\varphi^* = k(\bar{x})^{-1} \varphi_x$ and $\varphi_x' = \alpha(\bar{x} \bar{y})^{-1} \varphi_x$ for $\alpha(\bar{x}, \bar{y})' = k(\bar{x})^{-1}k(\bar{y})^{-1}k(\bar{x} \bar{y})^{-1}$. It is easy to see that $\varphi_x' \in E_{\bar{x}}$, $\alpha(\bar{x} \bar{y})'$ is a factor set of G/N and $\alpha(\bar{x} \bar{y})' = k(\bar{x})^{-1}k(\bar{y})^{-1}k(\bar{x} \bar{y})^{-1}$. Thus $(\alpha(\bar{x} \bar{y})')^{[G/N]} = 1$. Since $E \cong \bigoplus_{x \in X} F \varphi_x = \bigoplus_{x \in X} F \varphi_x'$, we can assume that $\alpha(\bar{x} \bar{y})'^{[G/N]} = 1$. From now on, we assume that $\alpha^{[G/N]} = 1$.

We can view W as an FA-module. Then W^G and $E = \text{End}_{FG}(W^G)$ are FA-modules with actions defined respectively by

$$
(\sum_{x \in X} w_x \otimes x) \cdot a := \sum_{x \in X} (w_x) a \otimes x^a \quad \text{for } w_x \in W \text{ and } a \in A,
$$

and

$$(e \cdot a)(v) := e(va^{-1})a \quad \text{for } e \in E, \ a \in A, \text{ and } w \in W^G.
$$

Thus $E \otimes_F W$ is an FA-module with the action

$$(e \otimes w) \cdot a := e \cdot a \otimes wa \quad \text{for } e \in E, \ w \in W, \text{ and } a \in A.
$$

By Proposition 2, $f : e \otimes w \mapsto e(w)$ is an isomorphism from $E \otimes_F W$ to W^G. It is easy to see that f is also an FA-module isomorphism. For $a \in A$, we assume that
We claim that this action is a group action. Since \((\varphi \circ \varphi) \cdot a = (\varphi \cdot a) \cdot (\varphi \cdot a) \) and \((\varphi_1 \cdot a_1 \cdot a_2) = (\varphi_1 \cdot a_1) \cdot a_2 \) for \(a, a_1, a_2 \in A \), we have

\[
\alpha(x, y)k_1^a = \alpha(x', y')k_1^ak_1^a \quad \text{and} \quad k_1^{a_1a_2} = k_1^{a_1}k_1^{a_2}.
\]

Let \(\bar{x} \) be an element of \(G/N \) of order \(r \). For \(a \in A \), we have \((\varphi \circ \varphi)' \cdot a = (k_1^a)'(\varphi\varphi)' \). Since \((\varphi \circ \varphi)' \cdot a = \alpha(x, \bar{x})\alpha(x^2, \bar{x})\cdots\alpha(x^{r-1}, \bar{x})1_E \cdot a = \alpha(x, \bar{x})\alpha(x^2, \bar{x})\cdots\alpha(x^{r-1}, \bar{x})1_E \)

and \((k_1^a)'(\varphi\varphi)' = (k_1^a)'(\varphi\varphi)' \alpha(\varphi\varphi)' = \alpha(x, \bar{x})\alpha(x^2, \bar{x})\cdots\alpha(x^{r-1}, \bar{x})1_E \),

we have \((k_1^a)'(\varphi\varphi)' = \alpha(x, \bar{x})\alpha(x^2, \bar{x})\cdots\alpha(x^{r-1}, \bar{x}) \).

Then \(\alpha^{[G/N]} = 1 \) implies \((k_1^a)^{[G/N]}_r = 1 \). Thus \(k_1^a \) is of finite order and coprime to \(|A| \).

Let \(Z \) be a finite group generated by \(\alpha(x, \bar{y}), k_1^a | \bar{x}, \bar{y} \in \overline{G}, a \in A \). Thus the set \(G^* = Z \times \overline{G} = \{(z, \bar{x}) | z \in Z, \bar{x} \in \overline{G}\} \) is a group with the multiplication defined by

\[
(z, \bar{x})(z', \bar{y}) = (\alpha(x, \bar{y})zz', \bar{x}\bar{y}).
\]

We define an action of \(A \) on \(G^* \) by

\[
(z, \bar{x})^a = (zk_1^a, \bar{x}^a), \quad \text{for} \ a \in A, \ \bar{x} \in \overline{G}, \ \text{and} \ z \in Z.
\]

We claim that this action is a group action. Since

\[
((z_1, \bar{x}_1)(z_2, \bar{x}_2)) \cdot a = (\alpha(x_1, \bar{x}_1)z_1z_2, \bar{x}_1\bar{x}_2) \cdot a = (\alpha(x_1, \bar{x}_2)z_1z_2k_1^a, \bar{x}_1\bar{x}_2) \]

and

\[
((z_1, \bar{x}_1) \cdot a) = (z_1k_1^a, \bar{x}_1)(z_2k_1^a, \bar{x}_2) = (\alpha(x_1, \bar{x}_2)z_1z_2k_1^a, \bar{x}_1\bar{x}_2),
\]

we have \(((z, \bar{x}_1)(z_2, \bar{x}_2)) \cdot a = ((z_1, \bar{x}_1) \cdot a)((z_2, \bar{x}_2) \cdot a) \). By the same way, \((z, \bar{x}) \cdot a_1a_2 = ((z, \bar{x}) \cdot a_1) \cdot a_2 \). Thus the claim is correct.

Let \(\lambda : Z \to F^* \) \((z \mapsto z) \), a representation of \(Z \). The primitive idempotent \(e_\lambda \) of \(FZ \) corresponding to \(\lambda \) is a central idempotent of \(FG^* \). And the map

\[
\rho : E = \bigoplus_{\bar{x} \in \overline{G}} F\varphi_{\bar{x}} \to e_\lambda FG^* \quad (\varphi_{\bar{x}} \mapsto e_\lambda (1, \bar{x}))
\]

is an \(F \)-algebra isomorphism, and moreover \(\rho \) is an \(A \)-algebra isomorphism.

Since \(A \) acts trivially on \(Z \), \(e_\lambda FZ \) is an \(A \)-invariant irreducible \(FZ \)-module. Note that \(p \mid |G^*| \). Thus by [11, Theorem A], \((e_\lambda FZ)^{G^*} \cong e_\lambda FG^* \) has an \(A \)-invariant irreducible
Thus by Proposition 6, \(f^{-1}(U) \) is an \(A \)-invariant irreducible constituent of \(E \). Since \(E \cong F_aG/N \) is semisimple, \(f^{-1}(U) \) is a direct summand of \(E \). Set \(V = f^{-1}(U) \otimes_F W \). Then \(V \) is an \(A \)-invariant irreducible constituent of \(W^G \) by Proposition 3, as desired. \(\square \)

3. Invariant blocks under coprime action

\(G, A \) are as before.

Proposition 5 [7, Lemma 13.8 and Corollary 13.9]. Assume that both \(A \) and \(G \) act on a set \(\Omega \) and that \(G \) acts transitively on \(\Omega \). In addition, suppose that \((\omega g)a = (\omega a)g^d \) for all \(a \in A \), \(g \in G \), and \(\omega \in \Omega \). Then:

(a) \(A \) fixes a point in \(\Omega \); and

(b) \(C_G(A) \) acts transitively on the set of \(A \)-fixed points of \(\Omega \).

In [3], Dade defined the following important subgroup of \(G \).

Definition 1. Let \(G \) be a normal subgroup of a finite group \(\Gamma \), and let \(B \) be a block of \(RG \) with block idempotent \(1_B \). Following Dade [3, p. 212], we define a subgroup \(G[B] \) of \(\Gamma \). Set \(G[B] = \{ x \in \Gamma \mid (1_B C_x)(1_B C_x^{-1}) = 1_B C_1 \} \), where \(C_x = C_{RG}(G) \cap RGx \) for \(x \in \Gamma \). Let \(C[B] = \bigoplus_{x \in G[B],G} 1_B C_x \). Then \(C[B] \) is a \(G[B]/G \)-graded Clifford system with \(C[B]\bar{x} = 1_B C_\bar{x} \). Since \(C[B]\bar{x}/J(C[B]\bar{x}) \cong F \), \(C[B]/(J(C[B]\bar{x})C[B]) \) is a twisted group algebra of \(G[B]/G \) over \(F \).

Proposition 6 (Dade [3, Theorem 3.7]). There is a natural one-to-one correspondence between the blocks of \(\Gamma \) which cover \(B \) and the \(\Gamma/G \)-conjugacy classes of blocks of \(C[B]/(J(C[B]\bar{x})C[B]) \).

Proposition 7. Assume that \(A \) is a cyclic group of prime order \(q \). Let \(B \) be an \(A \)-invariant block of \(G \). Then \(B \) is covered by \(q \) blocks or one block of \(GA \). If \(B \) is covered by \(q \) blocks \(\widehat{B}_1, \ldots, \widehat{B}_q \) of \(GA \), then restriction is a one-to-one correspondence from \(\text{Irr}(\widehat{B}_i) \) to \(\text{Irr}(B) \).

Proof. Let \(\Gamma \) be the semi-direct product of \(G \) and \(A \). Then \(G[B]/G \) is of order \(q \) or 1. Thus by Proposition 6, \(B \) is covered by \(q \) blocks or 1 block of \(\Gamma = GA \).

If \(B \) is covered by \(q \) blocks, then each irreducible character in \(B \) is \(GA \)-invariant. Let \(\chi \in \text{Irr}(B) \). Since \(|\Gamma : G|, |G| = 1 \) and \(I_{GA}(\chi) = GA \), \(\chi \) can be extended to \(GA \). Let \(\hat{\chi} \) be the canonical extension of \(\chi \) to \(GA \). Then \(\chi^{GA} = \sum_{i \in \text{Irr}(GA/G)} \lambda_i \hat{\chi} \). Since each block \(\widehat{B}_i \) contains an irreducible constituent of \(\chi^{GA} \), \(\widehat{B}_i \) contains a unique irreducible constituent of \(\chi^{GA} \) for each \(i \). Thus restriction is a one-to-one correspondence from \(\text{Irr}(\widehat{B}_i) \) to \(\text{Irr}(B) \). \(\square \)

Remark. If \(B \) is covered by \(q \) blocks \(\widehat{B}_1, \ldots, \widehat{B}_q \) of \(GA \), then \(\widehat{B}_i \) and \(B \) are naturally Morita equivalent of degree 1 (cf. [6] or [9]). Thus \(B \) is isomorphic to \(\widehat{B}_i \) in the sense of Alperin [1] or Dade [4].
Theorem C. Assume that B is an A-invariant block of G and that $\text{Irr}_A(B)$ is not empty. Then, $\{\chi^* \mid \chi \in \text{Irr}_A(B)\} = \text{Irr}(b_1) \cup \cdots \cup \text{Irr}(b_t)$ for some blocks b_1, \ldots, b_t of $C_G(A)$.

Proof. When G is solvable, the result is proved by Wolf [13, Theorem 4.8]. Thus we can assume that A is solvable. By induction on $|A|$, we can assume that A is a cyclic group of prime order q. Let a be a generator of A. Let χ be an A-invariant character of B. Then there exists a unique extension $\hat{\chi}$ of χ to GA and a sign $\varepsilon_\chi = \pm 1$ such that

$$\hat{\chi}(xc) = \varepsilon_\chi \chi^*(c)$$

for any $c \in C$ and any $1 \neq x \in A$, see [7, Theorem 13.6]. By Proposition 7, we have the following two cases.

Case 1. The block B is covered by q blocks of GA. Thus each irreducible character in B is A-invariant. Let \tilde{B} be one of the q blocks over B. Then \tilde{B} contains the same number of irreducible characters as B. Thus,

$$\text{Irr}(\tilde{B}) = \{\lambda \hat{\chi} \mid \chi \in \text{Irr}(B) = \text{Irr}_A(B), \text{ for some } \lambda \hat{\chi} \in \text{Irr}(GA/G)\}.$$

For any p-regular element $c \in G$ and any p-singular element $d \in C$, we have

$$\sum_{\chi \in \text{Irr}_A(B)} \chi^*(c^{-1}) \chi^*(d) = \sum_{\chi \in \text{Irr}_A(B)} \hat{\chi}(a^{-1}c^{-1}) \hat{\chi}(ad)$$

$$= \sum_{\chi \in \text{Irr}_A(B)} (\lambda \hat{\chi})(a^{-1}c^{-1})(\lambda \hat{\chi})(ad)$$

$$= \sum_{\varphi \in \text{Irr}(\tilde{B})} \varphi(a^{-1}c^{-1}) \varphi(ad) = 0.$$

Thus by Osima [12, Theorem 3], $\{\chi^* \mid \chi \in \text{Irr}_A(B)\}$ is a union of blocks of C, as desired.

Case 2. The block B is covered by one block \tilde{B} of GA. Thus, $\text{Irr}(\tilde{B}) = \{\lambda \hat{\chi} \mid \chi \in \text{Irr}_A(B), \lambda \in \text{Irr}(GA/G)\} \cup \{\chi^A \mid \chi \in \text{Irr}(G) \setminus \text{Irr}_A(G)\}$. For any p-regular element $c \in C$ and any p-singular element $d \in C$, we have

$$\sum_{\chi \in \text{Irr}_A(B)} \chi^*(c^{-1}) \chi^*(d) = \sum_{\chi \in \text{Irr}_A(B)} \hat{\chi}(a^{-1}c^{-1}) \hat{\chi}(ad)$$

$$= \frac{1}{q} \sum_{\lambda \in \text{Irr}(GA/G) \setminus \text{Irr}_A(B)} \sum_{\chi \in \text{Irr}_A(B)} (\lambda \hat{\chi})(a^{-1}c^{-1})(\lambda \hat{\chi})(ad)$$

$$+ \frac{1}{q^2} \sum_{\chi \in \text{Irr}(\tilde{B}) \setminus \text{Irr}_A(B)} \chi^A(a^{-1}c^{-1}) \chi^A(ad)$$

$$= \frac{1}{q} \sum_{\varphi \in \text{Irr}(\tilde{B})} \varphi(a^{-1}c^{-1}) \varphi(ad) = 0.$$
Thus by Osima [12, Theorem 3] again, \(\{ \chi^* \mid \chi \in \text{Irr}_A(B) \} \) is a union of blocks of \(C \), as desired. □

Corollary to Theorem C. Let \(\chi_1, \chi_2 \in \text{Irr}_A(G) \). If \(\chi_1^* \) and \(\chi_2^* \) are in the same block of \(C \), then \(\chi_1 \) and \(\chi_2 \) are in the same block of \(G \).

Proposition 8 (Brauer [2, 3G]). Let \(B \) be a block of \(G \) of defect group \(D \). Let \(\chi \) be an irreducible character of \(B \) and let \(\sigma \) be an element of \(G \). If \(\nu(\chi(\sigma)) = \alpha \), there exists a conjugate \(Dt \) of \(D \) for some \(t \in G \) such that \(|Dt \cap CG(\sigma)| = p^\mu \) with \(\mu \geq \nu(|CG(\sigma)|) - \alpha \).

Theorem D. Let \(\chi \) be an \(A \)-invariant irreducible character of \(G \) contained in a block \(B \). Let \(b \) be the block of \(CG(A) \) containing \(\chi^* \) with a defect group \(Q \). Then there exists a defect group \(D \) of \(B \) such that \(Q \subseteq CG(A) \cap CG(A) \).

Proof. If \(G \) is \(p \)-solvable, it is proved by Wolf in [13, Theorem 4.9]. Thus we can assume that \(A \) is solvable. By induction on \(|A| \), we can assume that \(A \) is of prime order \(q \), and let \(a \) be a generator of \(A \). Choose a height zero character \(\chi_0 \) in \(b \). Then by the Corollary of Theorem C, \(\chi_0 \) also belongs to \(B \). Let \(C \) be a defect class of \(b \) and let \(x \in C \). Then \(\chi_0(x) \equiv 0 \pmod{\pi} \) by [10, Chapter 5 Theorem 1.11(ii)]. We can assume that \(Q \) is a Sylow \(p \)-subgroup of \(CG(A)(x) \) since \(Q \) is a defect group of \(b \). Let \(\tilde{\chi}_0 \) be the unique extension of \(\chi_0 \) to \(GA \), the semi-direct product of \(G \) and \(A \). Since \(\tilde{\chi}_0(ax) = \varepsilon \chi_0 \chi^*(x) \), we have \(\tilde{\chi}_0(ax) \not\equiv 0 \pmod{\pi} \). Assume \(\tilde{\chi}_0 \) belongs to a block \(\tilde{B} \) of \(GA \). By Proposition 8, there exists a defect group \(D \) of \(\tilde{B} \) containing a Sylow \(p \)-subgroup of \(CG(A)(x) \). Since \(Q \subseteq CG(A)(x) = CG(A) \cap CG(A) \subseteq CG(A)(ax) \), \(D \) contains a conjugate \(Q' \) of \(Q \) for some \(t \in CG(A) \). Since \(I_{GA}(B) = GA \), \(D = D \cap G \) is a defect group of \(B \). Thus \(Q \subseteq CG(A) \cap CG(A) \), as desired. □

Remark. Notations are as in Theorem D. By Proposition 5, \(B \) always has an \(A \)-invariant defect group. A further question is whether we can choose the defect group \(D \) of \(B \) in Theorem D to be \(A \)-invariant. It looks reasonable, but we do not find a way to prove it.

Acknowledgments

This work was supported by JSPS (Japan Society for Promotion of Science), Grant-in-Aid for Scientific Research (Tokubetsu Kenkyuin Shorei-hi) 01016, 2001. The author wants to pay his hearty thanks to the referee for his (her) valuable suggestion for simplifying the proof of Theorem A, and for pointing out many typing errors. The author is grateful to Prof. Koshitani for providing all kinds of help, and also to people around him such as N. Yoshida, K. Ishikawa, and F. Tasaka for their generous help.

References