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We present a picture of hard processes in a hot plasma in terms of the hard scale part of the process,
where perturbative QCD should be applicable, and the soft scale part of the process, where we look to
the A/ =4 SYM theory for guidance to possible strong effective coupling phenomena. In particular we
estimate g, the transport coefficient, supposing that at soft scales partons in the plasma all cascade to
small-x-values as indicated by strong coupling SYM theory.
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1. Introduction

In perturbative QCD the transverse momentum broadening and
energy loss of high energy jets in hot or cold matter [1-5] is gov-
erned by the transport coefficient, §. That is

dp3
e S 1
a4 (1)
and
dE  osNc .
- = L, 2
a = a1 2)

where Eq. (2) refers to the average energy loss of a high en-
ergy jet produced in the medium and then traversing a length
L of that medium. Traditional estimates [1] are that ¢ is about
(0.5-1) GeVZ/fm for hot matter and (0.02-0.04) GeVz/fm for cold
matter, for quark jets and a factor 2’—; = 2 larger for gluon jets.
It has been suggested that RHIC data favor a considerably larger
value of ¢ [6,7] and doubts have been cast on a purely perturba-
tive picture for ¢. In the context of the trailing string [8,9] pic-
ture in the AdS/CFT correspondence to SYM theory, it is natural to
have heavy quark energy loss and p -broadening which are con-
siderably larger than that given in perturbative QCD. Also, in this
picture, the concept of a local transport coefficient which governs
these quantities seems to be lost; Eqs. (1) and (2) are no longer
valid, but are replaced by equations which are more nonlocal in
the plasma [10].

On the other hand, one clearly cannot trust a strong coupling
SYM theory calculation for the energy loss of light quark and gluon
jets in hot matter since genuine jets, collimated jets of energy, do
not exist in such theories [11,12]. What we propose here is to sepa-
rate scales into hard and soft momentum regions [13]. In the hard
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momentum region, where the jets are produced and where their
evolution is on a hardness scale much greater than the tempera-
ture, T, we will trust perturbative QCD. Below some scale, Qg, we
suppose that perturbation theory may not be a good guide and we
look to the strong coupling SYM theory for guidance.

We shall first review the QCD calculation of § and then, after
isolating the soft scale contributions to g, we shall propose a pic-
ture of ¢ where the soft scale contributions are estimated using a
strong coupling SYM theory inspired picture.

2. Calculating g in perturbation theory and beyond

In using Eqgs. (1) and (2) in hot matter, one can use perturbation
theory to find, for gluon jets,

. 4aNcr?

= ———(NgxGg + NoXxGy),
dg N?—l(q g+ NgxGg)

3)
where Nq and Ng are the number densities of thermal quarks (and
antiquarks) and thermal gluons in the plasma and xGg is the gluon
distribution at the scale relevant for ¢, coming from a single ther-
mal quark and xGg is a similar quantity for a gluon. Using ideal
gas distributions

2(N2-1)
Ng=—5—¢(3)T?, (4)
bg
3N¢ 3
Ng=—7t®T°, (5)
and
2 Cr 2
XGq(x, Q%) = N—ng(x, Q?), (6)
c
where Q2 is the hard scale at which q is used, one has
3
(g = 8aN.L()T3 %G 14+ — ). 7
Qg aNcZ(3) Xg(+4Nc) (7)
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If aNc~1, T=1/4 GeV and xGgz ~ 1 in Eq. (7), one finds
4g =1 GeV?/fm. (8)

The weak part of the above discussion is the use of ideal gas
number densities in Egs. (4) and (5) and in the part of the evolu-
tion of xGg and xG4 which extends to low scales. One can more
confidently write

. 4aNcm?

Qg - N? _1 Xg(xs Qz)a (9)

where xg in Eq. (9) is the gluon distribution per unit volume of
the plasma. Eq. (9) follows from using perturbation theory at the
scale Q2 and this should surely be a good procedure so long as Q 2
is large. (In using ¢ in Egs. (1) and (2) Q should be taken to be
the saturation momentum of the length of material through which
the jet passes or, equivalently, the typical change in transverse mo-
mentum that jet experiences in passing through the matter.) The
fact that ¢ is meaningful and Eqgs. (1) and (2) apply follows from
the hard part of the process alone with no assumption on the dy-
namics relevant at the scale T.

3. Going beyond perturbation theory: A QCD-SYM theory
inspired picture

In the perturbative QCD picture presented above xg is deter-
mined using lowest order evolution from the thermal scale T to
the hard scale Q. The parts of the evolution near Q should be
reliable while the parts of the evolution near the scale T are, per-
haps, suspect. In order to get a ¢ larger than that coming from
perturbation theory one would need a faster evolution at the soft
momentum scales. Is there a physical reason why the actual evo-
lution may be stronger than that indicated in perturbation theory?
Strong coupling SYM theory points to a possible reason. In general
as the coupling gets stronger, evolution becomes faster as more
partons go to smaller x than at weak coupling. Strong coupling
SYM theory, as evaluated using the AdS/CFT correspondence, is an
extreme example of this. The structure function, Fo(x, Q2), of a
dilaton [14], or of the SYM plasma [15] is very close to zero for
x > x5(Q2) because essentially all of the partons in this x-regime
have disappeared by branching to lower values of x. This is the
idea we shall take over, namely, that the effective coupling in the
soft momentum regime may be strong enough that essentially all
partons cascade to small values of x. As in strong coupling SYM
theory we shall assume that the cascading stops when occupation
numbers are on the order of one. For a given Qg, this x-value is
what we have called xS(Qg). It is the x-value at which the sat-
uration momentum is equal to Qg [15]. Qo will represent the
transition point between weak coupling, for scales greater than Qy,
and our supposed strong coupling regime, for scales less than Qg.
The estimates we are about to present are admittedly crude and
should be taken only as indicative of what might be happening.

Now we are going to estimate the gluon density xg in Eq. (9)
compared to that of an ideal gas, the estimate depending on the
parameter Qg, the transition momentum between strong and weak
coupling. To use the idea of saturation at the scale Qg, we boost
the plasma to a velocity tanh#. Then for an ideal gas of gluons,
the energy density in the boosted frame is

w4 )
Eideal = No————T cosh“ ny, 10
ideal g 302(3) n (10)
or
Eigeal =~ 2.7NgT cosh? 1, (11)

with Ng, given in Eq. (4), the number density of gluons in the rest
frame of a gluonic plasma assuming weak coupling. (We suppress

quarks in this simple estimate.) Now in terms of the partons of the
boosted plasma the energy density of a general plasma is given in
terms of the gluon density xg as

E ~xgcoshnQy, (12)

where coshn is now chosen so that the partons longitudinal and
transverse momentum are equal to Qg and the x-value of the glu-
ons is Xs(Q). There is a factor of coshn in Eq. (12) because xg is
expressed as a density in the rest frame of the plasma. Equating
Egs. (11) and (12), that is, supposing that the energy densities of
an ideal gas and our plasma are the same gives
2.7T coshn
Xg >~ ——Ng,
Qo

where the scale at which xg is to be evaluated is Qg. Before pro-
ceeding further to estimate coshn, let us interpret Eq. (13). 2.7T is
the typical thermal energy of a gluon in our ideal plasma in its rest
system. 2.7T cosh 7 is the energy of a thermal gluon in the boosted
frame. The ratio @ is then just Xls with x; the value of x to
which the thermal gluon has cascaded in our strong coupling pic-
ture. Thus, we could equally well write

1
Xs(Qo)

with the enhancement of gluons coming from our assumed cas-
cading of all gluons to x;(Qp). In the weak coupling limit there is
little evolution and xg would just be equal to Ng. (Recall that we
took xG >~ 1 in going from Eq. (7) to Eq. (8).)

Now we proceed to estimate cosh7/Qp in Eq. (13). Consider a
part of the volume of the plasma which extends over 0 <z < L,
—00 < X,y < oo in the rest system of the plasma. L is chosen so
that this longitudinal region of the plasma contracts to a size 1/Qg
after boosting. That is

L =coshn/Qyp. (15)

(13)

~

Ng, (14)

Now we write two equations for the longitudinal momentum per
unit area of the slice of the plasma having 0 < z < L. In the
boosted frame, one of these equation is

dp, _ 2(NZ—1)m?T*
d2x; 30

the momentumy/area of an ideal gas of thermal gluons. Our second
equation is in terms of partons,

dp, _ 2(NZ—1)
d2x, —  2n)3

Lsinhn, (16)

f(rQg)Qo. (17)

with f the quantum occupancy of the gluons. The an in Eq. (17)
is the transverse momentum phase space while the final Qg is
the longitudinal momentum of the partons whose value matches
the contracted size of our slab of matter as given by Eq. (15).
Comparing Egs. (16) and (17), after using Eq. (15), gives (taking
coshn =~ sinhn)

2
15 Qo
hn=,—fl—) . 18
cosh) 4f(nT> (18)
Now taking f ~1 gives
Qo
hn~2(—| . 19
cosh (nT) (19)
Using Eq. (19) in Eq. (13) gives
Qo
>~ —Njg. 20
Xg oT 8 (20)

Thus our estimate gives an enhancement of % for the partonic
gluon density at scale Qg and an identical factor for the enhance-
ment to g as given in Eq. (3), in the approximation where xGg = 1
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and quarks are neglected. While we do not take the precise value
we have found in Eq. (20) as definitive, we feel the mechanism
we have used, a strong cascading (evolution) of partons from the
large-x to the small-x region, should be natural if the effective
coupling in the low momentum region is strong. It would be inter-
esting to find more direct tests for a suppression of large-x partons
in the quark gluon plasma.
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