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Abstract 

Much importance is given to determining the input data for water distribution system networks, particularly with regard to urban 
networks, because the design and the management of WDS are based on a verification model. Good calibration of models is 
required to obtain realistic results. This is possible by the use of a certain number of measurements: flow in pipes and pressure in 
nodes. The purpose of this paper is to analyze a new model able to provide guidance on the choice of measurement points to obtain 
the site data. All analyses are carried out firstly on literature networks and then on a real network using a new approach based on 
sensitivity matrices. 
© 2014 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Organizing Committee of WDSA 2014. 
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1. Introduction 

For the management of WDS is important that the results obtained by the models used for the analyses reflect reality 
and this is possible by calibration. In the calibration procedures the roughness is calculated using pressure in nodes 
and flow in pipes as the input parameters. Three different types of approaches to calibration are mentioned in literature: 
1) heuristic models, 2) explicit models and 3) implicit models. In heuristic or trial-and-error models [1][2], unknown 
parameters are updated at each iteration using heads and flows obtained by solving the set of mass balance and energy 
equations. Explicit models [3] are based on solving an extended set of mass balance and energy equations; initial 
equation and other equations are derived from the available head and flow measurements. In the last few years, a 
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particular attention has been devoted to implicit models, which take into account the measured data by using 
optimization coupled with a hydraulic solver. Different models and applications of the implicit calibration method 
were reported by [4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19]. Kapelan et al. [20] and Veltri et al. [21] 
proposed further models based on a probabilistic approach by considering the parameters to be estimated as random 
variables. 

To proceed with calibration, a certain number of measurements of pressure at nodes and flow along pipes is always 
required. These have to be obtained on site and under various operating conditions to provide the most information 
needed for the calibration model [22]. To do this it is necessary to identify the optimal points where measurements are 
more sensitive to the variation of roughness and/or flow, so an optimal Sampling Design (SD) is required. The 
sampling design is used to determine: 1) the magnitude to observe (pressure or flow); 2) when to observe it; 3) where 
to observe it and 4) under what conditions [23]. Some authors proposed different types of SD, which can be classified 
under three different categories: D-optimality criteria, A-optimality criteria and V-optimality criteria. 

The D-optimality and A-optimality criteria are based on the analysis of the Jacobian matrix: particularly the A-
optimality, which minimizes the average parameter variance by minimizing the inverse matrix, whereas D-optimality 
maximizes the determinant of the same matrix. According to D-optimality criteria, first [5] and then [24] proposed 
three different sampling design models: 1) Max-Sum; 2) Min-Max and 3) Weighted-Sum. The last type of criterion, 
V-optimal, is concerned with prediction uncertainty: first [25] and then [26][23][27] used genetic algorithms (GA) 
single or multi-objective, to solve the SD problem. 

In this paper, a new D-optimality based method is proposed to solve the problem of Sampling Design. The choice 
of measurement points for roughness or demand calibration, according to different operating conditions of the system 
at a relatively low computational cost, is the first step in order to obtain accurate results. 

2. Sensitivity matrices and methodology 

In particular, each element of the matrix represents the variation in pressure, head or flow rate, versus the variation 
of the demand, Qi, supplied to the i-th node or the roughness coefficient, j, of the j-th pipe. 

Each element of the sensitivity matrix for pressure Pi, at nodes and flow rates, qj, in pipes is as follows: 

ji
j,i j, j

j j

qpp qε εand
  (1)

 

for roughness coefficient variation matrix and 
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for demand rate variation matrix, where  and  are respectively the variation of the load in the i-th node and 
the variation of the flow circulating in the j-th pipe when varying the coefficient  of the j-th pipeline; and pi,i and qi,j 
are respectively the variation of the load in the i-th node and the variation of the flow circulating in the j-th pipe when 
varying the base demand at the i-th node. Therefore, if n and l are respectively the number of network nodes and that 
of pipes, two matrices can be derived for each case, Sp, , Sp,Q and Sq, , Sq,Q and Sq,Q, that will have the form: 
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having respectively size (n x l) and (l x l) in the roughness coefficients variation and (n x n) and (l x n) in the base 
demand variation. The matrices can be obtained in discrete terms (3) and (4), so each element of the roughness 
coefficient variation is obtained as follows: 
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where akj is the discrete element of the load matrix, pkj is the value of load at the j-th node after the variation, pj is 
the value of load at the j-th node used as prior and Δεk is the amount of variation of the roughness coefficient; 
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where bkj is the discrete element of the flow matrix, qkj is the value of the flow at the j-th pipe after the variation, qj 
is the value of flow at the j-th pipe used as prior and Δεk  is again the amount of variation of the roughness coefficient. 

Similarly, the discrete elements (5) and (6) of the demand variation matrices are as follows: 
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where akj is the discrete element of the load matrix, Hkj is the value of load at the j-th node after the variation, Hj is 
the value of load at the j-th node used as prior and ΔQ’k  is the amount of variation of base demand at the k-th node;  
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where bkj is the discrete element of the flow matrix, qkj is the value of the flow at the j-th pipe after the variation, qj 
is the value of flow at the j-th pipe used as prior and ΔQ’k  is the amount of variation of base demand at the k-th node. 
Each element of the matrices is subjected to uncertainties due to initial conditions assumed for roughness of pipes and 
demand at nodes;  uncertainty is a consequence of the type of simulation analysis, when using both Demand Driven 
Analysis (DDA) or Pressure Driven Analysis (PDA). 

2.1. Evaluation of results 

Each element of matrices indicates the variation of pressure or flow in each node or pipe, respectively, under a 
variation of roughness in pipes or demand at nodes. Each row of the matrices represents the variation of pressure or 
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flow for the i-th node or j-th pipe versus the variation of roughness in pipes or demand at nodes respectively. So as for 
the Max-Sum Model, in the method here proposed the more sensitive nodes and pipes are those with the highest sum 
per line, rSp and rSq respectively. In addition, the proposed method allows an analysis for columns that define nodes 
and pipes that affect the hydraulic behavior of the WDS by the highest sum per column, cSp and cSq. This is possible 
because each element of a column defines the variation of the pressure in the node or of the flow in the pipe versus a 
variation of demand at the same node or roughness in the same pipe. 

3. Literature case studies 

As already pointed out the objective of this study is to propose a new method to determine the most sensitive pipes 
and nodes in a water distribution network and where to make measurements, to solve the problem of model calibration. 
Two literature networks were used for the analyses: the network proposed by [1] and that proposed by [28]. 

 
 

Fig. 1 - Walski's network (1983) 

The Walski’s network (Fig. 1) consists of one tank, nine pipes, six demand nodes, three  loops and one branch. The 
Greco and Di Cristo’s network (Fig. 2) consists of four loops, two nodes of power, eleven nodes of delivery and sixteen 
pipelines. For each network matrices of pressure and flow were obtained, for both roughness variation in pipe and a 
demand variation at nodes, by discrete elements, steady-state condition and a random change of 10% of the roughness 
coefficient  used as a prior. 

3.1. Results 

This method produces a list of sensitive nodes and pipes and a list of nodes and pipes that affect the hydraulic 
behaviour of the network ranked from best to worst, i.e., highest to lowest sensitivity. Best nodes and pipes can be 
used as measuring points for field data. The following tables report the results of analysis using a variation of roughness 
in pipes. Table 1 shows the results obtained for the Walski’s network for a roughness variation based analysis, where 
the most sensitive node is NODE 1 (Table 1A) and the most sensitive pipe is PIPE 8 (Table 1B). Both nodes and PIPE 
8 (Table 1C) affects the hydraulic behaviour of the network the most. 

Table 1 – Walski’s network results: A) Sensitive nodes; B) Sensitive pipes; C) Pipes that affect the network 

A) Node rSp B) Pipes rSp C) Pipe cSp 

 1 0.161  8 1.546  8 0.331 

 3 0.121  2 1.241  9 0.203 

 4 0.119  9 1.222  7 0.096 

 5 0.118  5 1.073  1 0.049 

 6 0.116  6 1.021  2 0.028 

 2 0.115  7 0.898  5 0.023 

    3 0.785  4 0.014 

    4 0.785  6 0.006 
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    1 0.000  3 0.004 

Table 2 – Walski’s network results: A) Sensitive nodes; B) Sensitive pipes; C) Nodes that affect the network 

A) Node rSp B) Pipes rSp C) Pipe cSp 

 1 1.305  8 16.866  6 1.782 

 4 1.107  9 11.772  3 1.647 

 3 1.089  2 10.881  2 1.143 

 5 0.972  5 8.46  1 0.738 

 2 0.963  3 6.714  4 0.558 

 6 0.945  4 6.453  5 0.513 

    6 5.823    

    7 5.391    

    1 2.268    

 
 

Fig. 2  - Greco's network (1999) 

Table 2 shows the results obtained for the Walski’s network for a demand variation based analysis, where the most 
sensitive node is NODE 1 (Table 2A) and the most sensitive pipe is PIPE 8 (Table 2B) and the NODE 6 (Table 2C) 
affects the hydraulic behaviour of the network the most. For Greco and Di Cristo’s network an analysis based on 
variation of 10% of the roughness coefficient  with different base demand value was also carried out. The results are 
in Table 3, which shows for different values of demand (Q, 0.5xQ and 0.7xQ), the most sensitive nodes. 

Table 3 –Greco and Di Cristo’s network results: A) Sensitive nodes; B) Pipes affecting the network 

A) Q 0,5 Q 0,7 Q B) Q 0,5 Q 0,7 Q 

Node rSp Node rSp Node rSp Pipe cSp Pipe cSp Pipe cSp 

 5 0.562 5 1.440 5 2.781  1 1.616 1 4.176 1 8.073 

 2 0.554 2 1.395 2 2.709  6 1.183 6 2.997 6 5.544 

 3 0.554 11 1.233 7 2.673  2 0.557 2 1.809 2 3.204 

 11 0.546 4 1.233 6 2.673  11 0.501 10 0.927 11 2.322 

 4 0.545 3 1.233 3 2.655  12 0.450 11 0.837 10 2.034 
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 6 0.544 6 1.188 4 2.628  10 0.447 9 0.576 12 1.600 

 7 0.544 10 1.179 11 2.556  14 0.202 12 0.261 14 0.936 

 10 0.532 7 1.170 10 2.475  9 0.148 14 0.234 9 0.927 

 9 0.374 1 1.080 1 1.746  15 0.039 3 0.180 3 0.252 

 1 0.323 9 0.747 9 1.737  3 0.032 16 0.054 15 0.153 

 8 0.140 8 0.288 8 0.621  13 0.030 5 0.054 13 0.081 

        5 0.013 7 0.045 5 0.063 

        8 0.005 15 0.027 8 0.036 

        4 0.001 8 0.009 16 0.018 

        7 0.001 4 0.000 4 0.009 

        16 0.000 13 0.000 7 0.000 

Table 4 – Greco and Di Cristo’s network results: A) Sensitive pipes; B) Pipes affecting the network 

A) Pipe rSp B) Pipe cSp 

 6 0.993  6 2.723 

 9 0.967  2 1.922 

 1 0.925  1 1.883 

 10 0.925  12 0.989 

 11 0.804  11 0.946 

 12 0.804  10 0.626 

 8 0.765  14 0.540 

 7 0.705  9 0.475 

 3 0.671  15 0.261 

 2 0.671  13 0.260 

 4 0.671  5 0.137 

 16 0.572  3 0.094 

 15 0.572  8 0.025 

 13 0.431  16 0.012 

 14 0.283  7 0.003 

 5 0.147  4 0.002 

 
In particular, NODE 5 (Table 3A) and PIPE 1 affect the hydraulic behaviour of the network for a Demand Driven 

Analysis (Table 3B). The results for a Pressure Driven Analysis are in Table 4. The most sensitive pipe is PIPE 6 
(Table 4A and B). 

4. Real case study 

Similar analyses were performed for the real network (Fig. 3) of the town of San Mango d'Aquino (CZ, Italy). 
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Fig. 3. The network of San Mango d'Aquino (CZ, Italy) 

The network (Fig. 3) consist of two sources/tanks, six loops, thirty-one demand nodes, thirty-nine pipes and one 
valve (flow control). For this network an analysis based on variation of 10% of the roughness coefficient  with 
different base demand value was carried out. The results are in tables 5,6 and 7. 

Table 5. Results with 10%  reduction: A) Sensitive nodes; B) Pipes affecting the network 

A) Node rSp Node rSp Node rSp B) Pipe cSp Pipe cSp Pipe cSp 

 30 1,746 25 0,495 8 0,450  1 9,387 35 0,108 18 0,009 

 31 1,296 13 0,495 18 0,441  39 3,888 17 0,090 12 0 

 21 0,648 4 0,495 12 0,441  37 0,945 16 0,063 14 0 

 19 0,639 7 0,495 27 0,441  11 0,585 33 0,045 20 0 

 20 0,639 24 0,495 14 0,432  23 0,342 19 0,045 21 0 

 22 0,612 6 0,468 15 0,432  36 0,333 38 0,036 24 0 

 23 0,594 5 0,468 3 0,432  6 0,288 13 0,027 25 0 

 29 0,549 26 0,459 9 0,423  2 0,243 15 0,027 27 0 

 11 0,504 10 0,459 2 0,405  26 0,189 8 0,027 28 0 

 17 0,504 16 0,459 1 0,360  3 0,162 4 0,027 29 0 

 28 0,504      22 0,135 30 0,027 31 0 

        10 0,120 9 0,018 32 0 

        7 0,108 5 0,009 34 0 

Table 6 - Results: A) Sensitive pipes; B) Pipes affecting the network 

A) Pipe rSp Pipe rSp Pipe rSp B) Pipe cSp Pipe cSp Pipe cSp 

 4 0,405 12 0,207 34 0,117  39 2,025 15 0,135 27 0,045 

 2 0,279 13 0,207 10 0,108  6 0,540 16 0,099 20 0,009 

 3 0,270 21 0,171 23 0,054  11 0,513 8 0,090 24 0,009 

 6 0,243 20 0,171 24 0,054  7 0,207 33 0,090 25 0,009 

 1 0,234 8 0,162 25 0,054  13 0,198 38 0,090 1 0 
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 36 0,234 9 0,162 26 0,054  35 0,180 37 0,072 5 0 

 39 0,234 35 0,153 22 0,054  17 0,180 9 0,072 21 0 

 5 0,234 38 0,153 30 0,018  19 0,171 22 0,072 28 0 

 37 0,234 33 0,153 29 0,018  26 0,171 18 0,063 29 0 

 7 0,225 19 0,144 27 0,018  2 0,162 36 0,054 30 0 

 11 0,225 16 0,144 28 0  23 0,153 4 0,054 31 0 

 17 0,216 18 0,117 31 0  10 0,144 14 0,054 32 0 

 14 0,207 15 0,117 32 0  3 0,135 12 0,054 34 0 

 
Table 5 and 6 show the most sensitive nodes, NODE 30 (Table 5A) and the most sensitive pipes, PIPE 4 (Table 

6A). PIPE 1 (Table 5B) is the most affecting the network hydraulic behaviour when a Pressure Driven Analysis is 
carried out, whereas PIPE 39 (Table 6B) is the most affecting the network hydraulic behaviour when a Demand Driven 
Analysis is carried out. As for the Greco and Di Cristo’s network, an analysis with a different amount of base demand 
was performed and results are: 

Table 7 - Results: A) Sensitive nodes (with a 0.5xQ on left, 0.7xQ at centre and 1.3xQ on right); B) Pipes affect the network (with a 0.5xQ 
on left, 0.7xQ o centre and 1.3xQ on right) 

A) Node rSH Node rSH Node rSH B) Pipe cSH Pipe cSH Pipe cSH 

 30 1,134 30 1,170 30 1,260  39 1,629 39 3,042 1 7,128 

 31 0,675 31 0,702 31 0,792  37 0,765 1 1,485 39 5,292 

 24 0,189 19 0,414 19 0,774  36 0,288 37 0,873 11 1,152 

 4 0,117 25 0,369 21 0,774  4 0,117 36 0,333 37 1,044 

 5 0,108 20 0,351 24 0,729  6 0,090 11 0,297 2 0,594 

5. Conclusions 

In this paper a new method to solve the problem of sampling design with sensitivity analysis (D-optimality criteria 
based) of water networks is presented. In particular a new method of reading sensitivity matrices is introduced to find 
pipes and nodes that affect the hydraulic behaviour of the entire system. The method was verified on case studies 
including both literature networks and a real one, in order to determine which are the most sensitive nodes and pipes 
and which are nodes and pipes affecting the system versus variation of roughness in pipes and base demand in nodes. 
The network analyses were carried out with the Epanet model [29] for the literature networks proposed by [1] [28] 
and the real network of the town of San Mango d'Aquino (CZ, Italy). To check if the methodology obtains stable 
results about sensitive nodes and pipes, the sensitivity matrices were obtained with the results of networks analysis 
carried out under different initial conditions. The good quality of the results shows that the method is a good way in 
order to characterize the measuring points without a high computational cost. 
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