Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein

Yasushi Inoue a,b,c, Hideki Aizaki a, Hiromichi Hara a, Mami Matsuda a, Tomomi Ando a, Tetsu Shimoji a, Kyoko Murakami a, Takahiro Masaki a, Ikuo Shoji d, Sakae Homma b, Yoshiharu Matsuura e, Tatsuo Miyamura a, Takaji Waki a, Tetsuro Suzuki f,

a Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
b Department of Respiratory Medicine, Toko University School of Medicine, Tokyo 143-8541, Japan
c International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan
d Division of Microbiology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
e Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
f Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan

A R T I C L E I N F O
Article history:
Received 12 June 2010
Returned to author for revision 18 July 2010
Accepted 15 October 2010
Available online 18 November 2010

Keywords:
Hepatitis C virus
Replication
Non-structural protein
Chaperonin

A B S T R A C T
To identify the host factors implicated in the regulation of hepatitis C virus (HCV) genome replication, we performed comparative proteome analyses of HCV replication complex (RC)-rich membrane fractions prepared from cells harboring genome-length bicistronic HCV RNA at the exponential and stationary growth phases. We found that the eukaryotic chaperonin T-complex polypeptide 1 (TCP1)-ring complex/chaperonin-containing TCP1 (TRiC/CCT) plays a role in the replication possibly through an interaction between subunit CCT5 and the viral RNA polymerase NS5B. siRNA-mediated knockdown of CCT5 suppressed RNA replication and production of the infectious virus. Gain-of-function activity was shown following co-transfection with whole eight TRiC/CCT subunits. HCV RNA synthesis was inhibited by an anti-CCT5 antibody in a cell-free assay. These suggest that recruitment of the chaperonin by the viral nonstructural proteins to the RC, which potentially facilitate folding of the RC component(s) into the mature active form, may be important for efficient replication of the HCV genome.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Hepatitis C virus (HCV) is a major cause of chronic liver diseases, such as chronic hepatitis, hepatic steatosis, cirrhosis, and hepatocellular carcinoma (Hoofnagle, 2002; Manns et al., 2006; Saito et al., 1990; Seeff and Hoofnagle, 2003). HCV is an enveloped positive-strand RNA virus belonging to the Flaviviridae family. Its genome of ~9.6 kb encodes a polyprotein precursor of ~3000 amino acids (aa) (Suzuki et al., 2007; Taguwa et al., 2008). The precursor polyprotein is post- or cotranslationally processed by both viral and host proteases into at least ten viral products. The nonstructural (NS) proteins NS3–NS5B are necessary and sufficient for autonomous HCV RNA replication. They form a membrane-associated replication complex (RC), in which NS5B is the RNA-dependent RNA polymerase (RdRp) that is responsible for copying the RNA genome of the virus during replication. The HCV RC has been detected in detergent-resistant membrane (DRM) structures, possibly in a lipid-raft structure (Aizaki et al., 2004; Shi et al., 2003). Cell-free RC replication activity has also been demonstrated in crude membrane fractions of HCV subgenomic replicon cells (Aizaki et al., 2004; Ali et al., 2002; Hara et al., 2009; Hardy et al., 2003; Yang et al., 2004); these cell-free systems provide semi-intact RdRp assays for biochemical dissection of viral replication.

In general, any process that occurs during viral replication is dependent on the host cell machinery and requires close interaction between viral and cellular proteins. Although evidence that host cell factors interact with HCV NS proteins and are involved in viral replication is accumulating (Moriishi and Matsuura, 2007), the cellular components of HCV RC and their functional roles in viral replication are not fully understood.

Recently, using comparative proteome analysis, we identified 27 cellular proteins that were highly enriched in the DRM fraction of HCV replicon cells relative to parental cells. Subsequent analyses demonstrated that one of the identified proteins, creatine kinase B, a key ATP-generating enzyme, is important for efficient replication of the HCV genome and for production of the infectious virus (Hara et al., 2009).

In this study, to extend our investigation and to increase our understanding of the precise components of HCV RC and the
mechanisms of viral genome replication, we designed another comparative proteomic approach in which cells harboring genome-length bicistronic HCV RNA at the exponential growth phase (showing rapid replication of viral RNA) were compared with cells at the confluent-growth phase (showing poor replication of viral RNA). This strategy revealed that the chaperonin T-complex polypeptide (TCP1)-ring complex/chaperonin-containing TCP1 (TRiC/CCT) participates in HCV RNA replication and virion production possibly through an interaction between CCT5 (chaperonin-containing TCP1, subunit 5) and NSSB.

Results

CCT5 and Hsc70 are enriched in the DRM fraction containing the HCV RC.

Recently, we analyzed the protein content of DRM fractions prepared from HCV subgenomic replicons and parental Huh-7 cells and identified 27 cellular proteins that were enriched in the DRM fraction prepared from the replicon cells (Hara et al., 2009). These were identified as factors that may be involved in the HCV RC and in viral replication. In fact, subsequent silencing of several genes coding for these proteins resulted in the inhibition of HCV RNA replication (Hara et al., 2009). However, it is likely that proteins unrelated to HCV replication are also included in the identified groups because long-term culture of the replicon cells under the selective pressure of G418 selects a subpopulation of the parental cells and may induce changes in their protein expression profiles. Thus, to minimize interline differences in culture background, we further designed a comparative proteome analysis using a single cell line as a control.

HCV replication efficiency is dependent on the conditions of host cell growth. High cell density of the replicon culture has a reversible inhibitory effect on viral RNA replication (Nelson and Tang, 2006; Pietschmann et al., 2001). Fig. 1A demonstrates that a high level of HCV RNA was detected in cells harboring the genome-length bicistronic HCV RNA, Con1 strain of genotype 1b (RCYM1) in the growth phase, whereas the RNA level declined sharply when the cells reached the stationary phase. We further compared the synthesis of HCV RNA in cell-free reaction mixtures containing the viral RC isolated from the RCM1 cells at various cell densities (Fig. 1B). Replication activity was highest at the mid-log phase of cell growth (day 4 after seeding). By contrast, little or no RNA synthesis was observed under the confluent-growth cell culture (day 8), confirming the critical role of host cell growth conditions in the replication of the HCV genome.

Thus, to identify the host cell proteins required for HCV replication, we designed a two-dimensional fluorescence difference gel electrophoresis (2D-DIGE)-based comparative proteomics analysis of RC-rich DRM fractions prepared from RCM1 cells at the mid-log and confluent-growth phases. Protein spots that reproducibly showed a greater than 1.5-fold difference in the mid-log growth- and the confluent phases were excised and digested by trypsin or lysylendopeptidase. Matrix-assisted laser desorption ionization–time-of-flight (MALDI-TOF) mass spectrometry (MS), which allows identification of the corresponding proteins in 9 cases (Table 1). Two increased spots that showed an increase in levels (their stereoscopic images are shown in Fig. 2A) were identified as CCT5 and Hsc70. CCT5, an epsilon subunit of chaperonin TRiC/CCT, is a 900-kDa toroid-shaped complex consisting of eight different subunits (Valpuesta et al., 2002; Yaffe et al., 1992). Hsc70, a member of the HSP70 family, is a 71-kDa heat shock cognate protein (Dworniczak and Mirault, 1987). Independent of the proteome analyses, DRM fractions and whole cell lysates were prepared from RCM1 cells at two different growth phases (as above) and were analyzed by immunoblotting (Fig. 2B). Steady-state levels of CCT5 and Hsc70 were obviously higher in the DRM fraction prepared from the cells that were at the mid-log growth phase compared with those at the confluent phase. However, in the whole cell analyses, they were shown to be present at comparable levels during the two different growth phases. These results suggest that expression of CCT5 and Hsc70 is not enhanced in proliferating cells and that the enrichment of these proteins in the DRM fraction is possibly due to their post-translational modification. It should be noted that in the previous proteome analysis, CCT5 and other TRiC/CCT subunits, such as CCT1 and CCT2, were identified as proteins that were enriched in the DRM fraction prepared from subgenomic replicon-containing cells compared with that prepared from parental cells (Hara et al., 2009). We showed that CCT5 and CCT1 were enriched in the DRM fractions of cells transfected with the HCV genomic RNA derived from JFH-1 isolate as well as of subgenomic replicon cells (Fig. 2C).

TRiC/CCT participates in replication of the HCV genome.

We investigated gain- and loss-of-functions of TRiC/CCT and Hsc70 with respect to the replication of HCV RNA. Seventy-two hours after RCM1 cells were transfected with eight plasmids corresponding to each of the TRiC/CCT subunits, the level of HCV RNA in the cells (determined by quantitative RT-PCR) significantly increased to 2-fold that observed in the control cells. However, exogenous expression of Hsc70 in the RCM1 cells showed no effect on the viral RNA (Fig. 3A). siRNAs targeted to CCT5 or Hsc70 and consisting of pools of three target-specific siRNAs or control nonspecific siRNAs were transfected
into RCYM1 cells. After 72 h, the HCV RNA level was reduced by 42% and 27% in the cells transfected with siRNAs against CCT5 and Hsc70, respectively, compared with controls (Fig. 3B). TRiC/CCT possibly interacts with Hsc70, and its complex formation contributes to increasing the efficiency of protein folding (Cuéllar et al., 2008). Our results suggest the involvement of TRiC/CCT and Hsc70 in the HCV life cycle. In particular, TRiC/CCT may play an important role in the replication of the viral genome.

To verify the specificity of the knockdown of CCT5 siRNA, we further synthesized two siRNAs targeted to different regions used in the above CCT5 siRNA and assessed their knockdown effect on HCV genome replication (Fig. 3C, upper panel). As expected, transfection of

Table 1

<table>
<thead>
<tr>
<th>Av. ratio</th>
<th>T-test</th>
<th>Coverage (%)</th>
<th>Protein name</th>
<th>Molecular function</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.58</td>
<td>0.017</td>
<td>31</td>
<td>CCT5</td>
<td>Protein folding</td>
<td>33879913</td>
</tr>
<tr>
<td>1.54</td>
<td>0.005</td>
<td>35</td>
<td>HSPA8 (Hsc70)</td>
<td>Protein folding</td>
<td>24657660</td>
</tr>
</tbody>
</table>

Increased proteins

<table>
<thead>
<tr>
<th>Av. ratio</th>
<th>T-test</th>
<th>Coverage (%)</th>
<th>Protein name</th>
<th>Molecular function</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1.95</td>
<td>0.028</td>
<td>44</td>
<td>Creatine kinase isozyme CK-B gene, exon 8</td>
<td>Energy pathway/metabolism</td>
<td>180568</td>
</tr>
<tr>
<td>−1.53</td>
<td>0.011</td>
<td>16</td>
<td>Chain C, Human Sir2 Histone deacetylase</td>
<td>Cell cycle control</td>
<td>15826438</td>
</tr>
<tr>
<td>−2.14</td>
<td>0.001</td>
<td>33</td>
<td>Proteasome regulatory particle subunit p44S10</td>
<td>Metabolism</td>
<td>15341748</td>
</tr>
<tr>
<td>−1.71</td>
<td>0.004</td>
<td>21</td>
<td>Aldehyde dehydrogenase</td>
<td>Metabolism</td>
<td>178388</td>
</tr>
<tr>
<td>−1.85</td>
<td>0.004</td>
<td>40</td>
<td>Aminotransferase</td>
<td>Metabolism</td>
<td>12804328</td>
</tr>
<tr>
<td>−2.77</td>
<td>0.003</td>
<td>15</td>
<td>Eukaryotic translation initiation factor 3, subunit 3 gamma</td>
<td>Metabolism (translation regulator activity)</td>
<td>6685512</td>
</tr>
<tr>
<td>−2.43</td>
<td>0.014</td>
<td>20</td>
<td>Intracellular transport protein 74 homolog</td>
<td>Cell growth and/or maintenance</td>
<td>10439078</td>
</tr>
</tbody>
</table>

Decreased proteins

<table>
<thead>
<tr>
<th>Av. ratio</th>
<th>T-test</th>
<th>Coverage (%)</th>
<th>Protein name</th>
<th>Molecular function</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1.95</td>
<td>0.028</td>
<td>44</td>
<td>Creatine kinase isozyme CK-B gene, exon 8</td>
<td>Energy pathway/metabolism</td>
<td>180568</td>
</tr>
<tr>
<td>−1.53</td>
<td>0.011</td>
<td>16</td>
<td>Chain C, Human Sir2 Histone deacetylase</td>
<td>Cell cycle control</td>
<td>15826438</td>
</tr>
<tr>
<td>−2.14</td>
<td>0.001</td>
<td>33</td>
<td>Proteasome regulatory particle subunit p44S10</td>
<td>Metabolism</td>
<td>15341748</td>
</tr>
<tr>
<td>−1.71</td>
<td>0.004</td>
<td>21</td>
<td>Aldehyde dehydrogenase</td>
<td>Metabolism</td>
<td>178388</td>
</tr>
<tr>
<td>−1.85</td>
<td>0.004</td>
<td>40</td>
<td>Aminotransferase</td>
<td>Metabolism</td>
<td>12804328</td>
</tr>
<tr>
<td>−2.77</td>
<td>0.003</td>
<td>15</td>
<td>Eukaryotic translation initiation factor 3, subunit 3 gamma</td>
<td>Metabolism (translation regulator activity)</td>
<td>6685512</td>
</tr>
<tr>
<td>−2.43</td>
<td>0.014</td>
<td>20</td>
<td>Intracellular transport protein 74 homolog</td>
<td>Cell growth and/or maintenance</td>
<td>10439078</td>
</tr>
</tbody>
</table>

Three paired samples of RC-rich membrane fractions at the exponential- and confluent-growth phases of RCYM1 cultures were analyzed. The proteins representing a more than 1.5-fold increase or decrease (−) reproducibly and significantly are indicated.

Coverage (%): the ratio of the portion of protein sequence covered by matched peptides to the whole sequence.

GI: GenInfo Identifier number.

Fig. 2. Comparison of protein levels in DRM fractions prepared from RCYM1 cells at the exponential and stationary growth phases. (A) Three-dimensional images of CCT5 and Hsc70 analyzed by Ettan DIGE (GE Healthcare). Spots corresponding to CCT5/Hsc70 at exponential and stationary growth phases of the cells, respectively, are shown in green and red. (B) Equal amounts of protein in the DRM fractions prepared from RCYM1 cells at the exponential and stationary growth phases or corresponding whole cell lysates were analyzed by immunoblotting with Abs against CCT5, Hsc70 or flotillin-1. (C) Enrichment of CCT1 and CCT5 in the DRM fractions of HCV RNA replicating cells. Equal amounts of DRM or non-DRM fractions from full-length JFH-1 RNA transfected cells (JFH-1), subgenomic replicon cells (SGR) and parental Huh-7.5.1 cells were analyzed by immunoblotting with antibodies against CCT1, CCT5, NS5A, caveolin-2 or calnexin. *Non-specific bands.
RCYM1 cells with each CCT5 siRNA resulted in a reduction in viral RNA to a level of about 50% of that observed in cells treated with control siRNAs. Immunoblotting confirmed the efficient reduction in expression of endogenous CCT5 and the lack of cytotoxic effect exerted by the CCT5 siRNAs (Fig. 3C, middle and lower panels).

Having confirmed the upregulation of HCV RNA by ectopic expression of all the TRiC/CCT subunits, we further addressed the possibility that CCT5, independent of the complete TRiC/CCT complex, might have a role in promoting replication of HCV RNA. Transfection with either a CCT5 expression plasmid alone or with seven plasmids expressing all the TRiC/CCT subunits except CCT5 resulted in no or only a slight increase in the level of HCV RNA, indicating that all CCT subunits are required for HCV replication (Fig. 3D).

TRiC/CCT is generally known as a cytosolic chaperone (Valpuesta et al., 2002). However, it is enriched in the DRM fraction of HCV-replicating cells during the exponential growth phase (Fig. 2B). We used immunofluorescence staining to investigate whether TRiC/CCT is localized in the intracellular membrane compartments where replication of the viral genome occurs (Fig. 4). The de novo-synthesized RdRp was labeled by bromouridine triphosphate (BrUTP) incorporation in the presence of actinomycin D, and brominated nucleotides were detected with a specific antibody (Ab). Fluorescence staining in distinct speckles of various sizes was found in the cytoplasm of the HCV subgenomic replicon cells, whereas no signal was detected in the control cells, indicating that the observed BrUTP-incorporating RNA is mostly viral, newly synthesized viral RNA (Fig. 4A). Double immunofluorescence staining showed that a certain section of CCT5 co-distributed with the BrUTP-labeled RNA (Fig. 4A), which is known to co-exist with HCV NS proteins in viral replicating cells (Shi et al., 2003). We further observed that CCT5 was at least partially colocalized...
with the viral NS protein in certain compartments sharing a dot-like structure in Huh-7 cells infected with HCV JFH-1 infectious HCV (HCVcc) derived from HCV genotype 2a (Fig. 4B) as well as in the replicon cells (data not shown). Fig. 4C indicated co-localization of BrUTP-labeled RNA with NS5A.

To further address the role of TRiC/CCT in HCV genome replication, we performed immunodepletion and in vitro replication analyses, which have been used for studying the genome replication of several viruses (Daikoku et al., 2006; Garcin et al., 1993; Liu et al., 2009). Cell extracts prepared from the HCV-replicating cells were reacted with either a mouse monoclonal Ab against CCT5 or mouse IgG derived from preimmune serum, followed by cell-free synthesis of HCV RNA. Fig. 3E shows that treatment with anti-CCT5 Ab inhibited viral RNA synthesis, whereas the control IgG did not affect the process, suggesting that TRiC/CCT participates directly in HCV RNA replication.
CCT5 interacts with HCV NS5B

The genome replication machinery of HCV is a membrane-associated complex composed of multiple factors including viral NS proteins. Given the involvement of TRiC/CCT in HCV RNA synthesis, we next examined its possible interaction with HCV NS proteins. A first attempt to immunoprecipitate the viral proteins with antibodies against TRiC/CCT subunits in the replicon cells was unsuccessful (data not shown), suggesting that endogenous levels of TRiC/CCT is not sufficient to pull out NS5B. Next, dual (myc/FLAG)-tagged NS3, NS5A, or NS5B proteins derived from the genotype 1b NIHJ1 strain were co-expressed with CCT5 in Huh-7 cells and then subjected to two-step immunoprecipitation with anti-myc and anti-FLAG Abs (Ichimura et al., 2005; Shirakura et al., 2007). An empty plasmid was used as a negative control in the analyses. As shown in Fig. 5A, CCT5 specifically interacted with NS5B. Little or no interaction was found between CCT5 and NS3 or NS5A. To determine the NS5B region required for the interaction with CCT5, various deletion mutants of HA-NS5B were constructed and their interactions with CCT5 were analyzed as described above. CCT5 was shown to be coimmunoprecipitated with either a full-length NS5B (aa 1–591), an N-terminal deletion (aa 71–591) or a C-terminal deletion (aa 1–570), but not with deletions aa 215–591 or aa 320–591 (Fig. 5B), suggesting that aa 71–214 of NS5B are important for its interaction with CCT5.

Knockdown of CCT5 results in the reduction of propagation of infectious HCV

We further examined whether the knockdown of CCT5 would abrogate the production of infectious HCV (HCVcc), derived from JFH-1 (Fig. 6). At 72 h post-transfection with each CCT5 siRNA, HCV RNA levels in Huh-7 cells infected with HCVcc were reduced by 25–35% compared with controls. Accordingly, virion production from CCT5 siRNA-transfected cultures was significantly decreased, as determined by intracellular HCV core protein levels at 72 h after the infection of naïve cells with culture supernatants taken from transfected cells. These results demonstrate that reduction of the HCV RNA replication by siRNA-mediated knockdown of CCT5 results in reduction of the propagation of the infectious virus.

Discussion

The chaperone-assisted protein-folding pathway is a process in living cells that results from coordinated interactions between multiple proteins that often form multi-component complexes. Several steps in the viral life cycle, such as protein processing, genome replication, and viral assembly, are regulated by cellular chaperones. Hsp90, one of the most abundant proteins in unstressed cells, has been implicated in HCV RNA replication (Nakagawa et al., 2007; Okamoto et al., 2006, 2008; Taguwa et al., 2008, 2009; Ujino et al., 2009). FKBP8, a member of the FKBP506-binding protein family, and hB-ind1, human butyrate-induced transcript 1, play key roles through their interaction with HCV NS5A and Hsp90 (Okamoto et al., 2006, 2008; Taguwa et al., 2008, 2009). Hsp90 has also been implicated in viral enzymatic activities including those of the influenza virus (Momose et al., 2002; Naito et al., 2007), herpes simplex virus (Burch and Weller, 2005), Flock house virus (Kampmueller and Miller, 2005), and hepatitis B virus (Hu et al., 2004).
in HCV replication (Hara et al., 2009). We extended the proteomics by modifying our protocol of the analysis to reduce the interline differences in culture background and analyzed the DRM samples derived from the mid-log and confluent-growth phases of single cell line. Here, we identified two proteins, CCT5 and Hsc70, showing an increase in levels at the mid-log growth phase. Although CCT5 was also identified in the former study as expected, Hsc70 was not included in the list of proteins identified in the study (Hara et al., 2009). This difference may be due to the use of cells carrying the full-length replicon RNA in this study.

In this study, we demonstrated that TRiC/CCT participates in HCV RNA replication and virion production possibly through its interaction with NS5B. TRiC/CCT is a group II chaperonin that assists in protein folding in eukaryotic cells and forms a double-ring-like hexadecamer complex. Although relatively little is known about its function compared with that of the group I chaperonins such as bacterial GroEL, several mammalian proteins whose folding is mediated by TRiC/CCT have been identified, such as actin, tubulin, and von Hippel–Lindau tumor suppressor protein (Farr et al., 1997; Feldman et al., 2003; Frydman and Hartl, 1996; Meyer et al., 2003; Tian et al., 1995). With regard to viral proteins, the Epstein–Barr virus nuclear antigen, HBV capsid protein, and p4 of M-PMV have been identified as TRiC/CCT-interacting proteins (Yam et al., 2008). However, the functional significance of their interactions in the viral life cycles has yet to be determined. Here we demonstrated that the reduction in CCT5 expression in HCV replicon cells and in virus-infected cells inhibits HCV RNA replication (Figs. 3B and C) and virus production (Fig. 6) respectively. Gain-of-function was also shown by co-transfection of the replicon cells with eight constructs corresponding to all the TRiC/CCT subunits (Figs. 3A and D).

A recent study of the three-dimensional structure of the TRiC/CCT and Hsc70 complex has demonstrated that the apical domain of the CCT2 (CCT-beta) subunit is involved in the interaction with Hsc70 (Cuéllar et al., 2008). The complex formation created by the TRiC/CCT and Hsc70 interaction may promote higher efficiency in the folding of certain proteins (Cuéllar et al., 2008). In our comparative proteome analyses, both CCT subunits and Hsc70 were enriched in the HCV RC-rich membrane fraction of the replicon cells that showed high viral replication activity (Fig. 2B). Transfection of Hsc70 siRNA into the replicon cells moderately inhibited viral RNA replication (Fig. 3B). However, upregulation of Hsc70 replication was not observed by ectopic expression of Hsc70 (Fig. 3A), and little or no interaction was observed between Hsc70 and HCV NS proteins in the co-immunoprecipitation analysis (data not shown). Thus, it is likely that TRiC/CCT acts as a regulator of HCV replication through participating in the de novo folding of NS5B RdRp, and Hsc70 might serve to assist in folding through its interaction with TRiC/CCT. It was recently reported that Hsc70 is associated with HCV particles and modulates the viral infectivity (Parent et al., 2009). Here we showed an additional role of Hsc70 in the HCV life cycle.

HCV genomic single-stranded RNA serves as a template for the synthesis of the full-length minus strand that is used for the overproduction of the virus-specific genomic RNA. NS5B RdRp is a single subunit catalytic component of the viral replication machinery responsible for both of these processes. It is known that the in vitro RdRp activity of recombinant NS5B expressed in and purified from insect cells and Escherichia coli is low in many cases. This could be due to the lack of a suitable cellular environment for favorable RdRp activity, although the particular conformational features dependent on the viral isolates may also be involved (Lohmann et al., 1997; Weng et al., 2009). In fact, besides interacting with HCV NS proteins, NS5B has been reported to interact with several host cell proteins. For example, human vesicle-associated membrane protein-associated protein sub-type A (VAP-A) and subtype B (VAP-B), which are involved in the regulation of membrane trafficking, lipid transport and metabolism, and the unfolded protein response, interact with NS5B and NS5A and participate in HCV replication (Hamamoto et al., 2005). Recently, VAP-C, a splicing variant of VAP-B, was found to act as a negative regulator of viral replication through its interaction with NS5B but not with VAP-A (Kukihara et al., 2009). Cyclophilin A and B, peptidyl-prolyl isomerases that facilitate protein folding by catalyzing the cis–trans interconversion of peptide bonds at proline residues, play a role in stimulating HCV RNA synthesis through interaction with NS5B (Liu et al., 2009; Wataishi et al., 2005). SNARE-like protein (Tu et al., 1999), elf4A II (Kyonoto et al., 2002), protein kinase C-related kinase 2 (Kim et al., 2004), nucleolin (Kim et al., 2004; Hirano et al., 2003; Shimakami et al., 2006), and p68 (Goh et al., 2004) are also known to associate with NS5B and are possibly involved in HCV RNA replication.

We found that the aa 71–214 region in NS5B is important for interaction with TRiC/CCT. The catalytic domain of HCV RdRp has a “right-hand” configuration similar to other viral polymerases, such as HIV-1 reverse transcriptase (Huang et al., 1998) and poliovirus RdRp (Hansen et al., 1997), and is divided into the fingers, palm, and thumb functional subdomains (Lohmann et al., 2000). The region required for the interaction with TRiC/CCT has been mapped in a part of the fingers and palm domains of NS5B RdRp. To address how TRiC/CCT assists in the correct folding or disaggregation of NS5B through their interaction, leading to the formation of a functional RdRp, work based on an in vitro reconstitution system using purified proteins is under way. As all the TRiC/CCT subunits possess essentially identical ATPase domains, their protein-recognition regions are apparently divergent, allowing for substrate-binding specificity. It has recently been reported that TRiC/CCT interacts with the PB2 subunit of the influenza virus RNA polymerase complex and TRiC/CCT binding site is located in the central region of PB2, suggesting involvement of TRiC/CCT in the influenza virus life cycle (Fišlová et al., 2010). Eukaryotic RNA polymerase subunit has also been identified as a binding partner of TRiC/CCT from interactome analysis (Yam et al., 2008). It would be interesting to examine how conserved the mechanisms of TRiC/CCT action that result in enhanced replication are among RNA polymerases.

The recruitment of a chaperonin by viral NS proteins may be important for understanding regulation of the viral genome replication. In this study, we demonstrated the involvement of TRiC/CCT in HCV RNA replication possibly through its interaction between TRiC/CCT and HCV NS5B. Although possible interaction of subunit CCT5 with NS5B was shown, considering involvement of whole TRiC/CCT complex in its chaperonin function, whether CCT5 directly interacts with NS5B is unclear. Further detailed studies are needed to make clear the manner of TRiC/CCT-NS5B interaction. NS5B RdRp is one of the main targets for HCV drug discovery. The search for NS5B inhibitors has resulted in the identification of several binding sites on NS5B, such as the domain adjacent to the active site and the allosteric GTP site (De Francesco and Migliaccio, 2005; Laporte et al., 2008). The findings obtained here suggest that disturbing the interaction between NS5B and TRiC/CCT may be a novel approach for an antiviral chemotherapeutic strategy.

Materials and methods

Cell culture, transfection, and infection

Human hepatoma Huh-7 and Huh-7.5.1 cells (kindly provided by Francis V. Chisari from The Scripps Research Institute) and human embryonic kidney 293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum. Huh–7–derived SGR-N (Shi et al., 2003) and RCYM1 (Murakami et al., 2006) cells, which possess subgenomic replicon RNA from the HCV-N strain (Guo et al., 2001; Ikeda et al., 2002) and genome-length HCV RNA from the Con 1 strain (Pietschmann et al., 2002), were cultured in the above medium in the presence of 1 mg/ml G418. Cells were transfected with plasmid DNAs using FuGENE transfection reagents.
Ab

Primary Abs used in this study were mouse monoclonal Abs against FLAG (Sigma-Aldrich, St. Louis, MO), c-myc (Sigma-Aldrich), CCT5 (Abnova Corporation, Taipei City, Taiwan), flotillin-1 (BD Biosciences, San Jose, CA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Chemicon, Temecula, CA), BrdU (CalTag, CA) and HCV NSSA (Austral Biologicals, San Ramon, CA), a rabbit polyclonal Ab against hemagglutinin (HA; Sigma-Aldrich), a sheep polyclonal Ab against bromodeoxyuridine (Biodiesign International, Saco, ME), and anti-hemagglutinin (HA; Sigma-Aldrich), a rabbit polyclonal Ab against NS5A (Austral Biologicals, San Ramon, CA), a rabbit polyclonal Ab against NS5B (Austral Biologicals, San Ramon, CA), a goat polyclonal Ab against human CCT1 through CCT8 were synthesised viral RNA was performed as described previously (Hamamoto et al., 2005). In some experiments, HA-tagged full-length NS5B (aa 1–591) or its deletion mutants (aa 71–591) were transfected with in vitro-transcribed RNA corresponding to the full-length HCV RNA derived from the JFH-1 strain (Wakita et al., 2005) and co-expressed with CCT5 in cells, followed by single-step immunoprecipitation and immunoblotting.

MALDI-TOF MS analysis

Target spots were cut and collected from gels under UV luminescence and rechecked with Typhoon scanner. The spot gels of the target proteins were subjected to in-gel trypsin digestion and analyzed by MALDI-TOF MS. (Voyager-DE STR, Applied Biosystems, Tokyo, Japan) as described previously (Yanagida et al., 2000). All proteins were identified by peptide mass fingerprinting.

Immunoblot analysis and immunoprecipitation

Immunoblot analysis was performed essentially as described previously (Aizaki et al., 2004). The membrane was visualized with SuperSignal West Pico chemiluminescent substrate (Pierce, Rockford, IL). For immunoprecipitation, cells transfected with plasmids expressing epitope-tagged HCV protein or CCT5 were lysed and then subjected to two-step precipitations with anti-myc and anti-FLAG Abs according to the procedures described previously (Ichimura et al., 2005). In some experiments, HA-tagged full-length NS5B (aa 1–591) or its deletion mutants (aa 71–591) were used for the infection assay (Aizaki et al., 2008).

In vitro RNA replication assay

In vitro replication of HCV RNA was performed as described previously (Hamamoto et al., 2005). Briefly, cytoplasmic fractions of subgenomic replicon cells were treated with 1% NP-40 at 4°C for 1 h, followed by being incubated with 1 mM ATP, GTP, and UTP; 10 μM CTP; 10 μM cytidine D; and 800 μM RNase inhibitor (Promega, Madison, WI) for 4 h at 30°C. RNA was extracted from the total mixture by using TRI Reagent (Molecular Research Center, Cincinnati, OH). The RNA was precipitated, eluted in 10 μl of RNA-free water, and analyzed by 1% formaldehyde–agarose gel electrophoresis. For the immunodepletion assay, the cytoplasmic fractions were incubated with anti-CCT5 Ab in the presence of NP-40 for 4 h before NTP incorporation.

Plasmids

To generate expression plasmids for the NS proteins with dual epitope tags, DNA fragments encoding the NS3, NS5A, or NS5B proteins were amplified from HCV strain NIHJ (Aizaki et al., 1998) by PCR and cloned into the EcoRI–EcoRV sites of pcDNA3-MEF, which includes the MEF tag cassette containing the myc tag, TEV protease cleavage site, and FLAG tag sequences (Ichimura et al., 2005; Shirakura et al., 2007). To create a series of NS5B truncation mutants, each fragment was amplified by PCR and cloned into the EcoRl–Xhol site of pCMV-HA (Clontech, Mountain View, CA). To generate expression plasmids for the individual CCT subunits, cDNA fragments encoding human CCT1 through CCT8 were amplified by nucleotide sequencing.

Proteome analysis

RC-rich membrane fractions from the cells were isolated as described previously (Aizaki et al., 2004). Briefly, cells were lysed in hypotonic buffer. After removing the nuclei, the supernatants were centrifuged at 38,000 rpm for 14 h. Proteins from the membrane fractions were then analyzed by 2D-DIGE as described previously (Niwa et al., 1991). All PCR products were confirmed, eluted in 10 μl of RNase-free water, and analyzed by 1% agarose gel electrophoresis and rechecked with Typhoon scanner. The spot gels of the target proteins were cut and collected from gels under UV luminescence and rechecked with Typhoon scanner. The spot gels of the target proteins were subjected to in-gel trypsin digestion and analyzed by MALDI-TOF MS. The samples were used for the infection assay (Aizaki et al., 2008).

Immunofluorescence staining

Cell permeabilization with lysolecithin and detection of de novo-synthesized viral RNA was performed as described previously (Shi et al., 2003). Briefly, Huh-7 cells were plated on 8-well chamber slides at a density of 5 × 10⁵ cells per well. Cells were incubated with actinomycin D (5 μg/ml) for 1 h and were washed twice with serum-free medium, before being incubated for 10 min on ice. The cells were then incubated in a transcription buffer containing 0.5 mM BrUTP for 30 min. The cells were fixed with 4% formaldehyde for 20 min and then incubated for 15 min in 0.1% Triton X-100 in phosphate-buffered saline (PBS). Primary Abs were diluted in 5% bovine serum albumin in PBS and were incubated with the cells for 1 h. After washing with PBS, fluorescein-conjugated secondary Abs (Jackson Immunoresearch Laboratories, West Grove, PA) were added to the cells at a 1:200 dilution for 1 h. The slides were then washed with PBS and mounted in ProLong Antifade (Molecular Probes, Eugene, OR). Confocal microscopy was performed on a Zeiss Confocal Laser Scanning Microscope LSM 510 (Carl Zeiss MicroImaging, Thornwood, NY).

RNA interference

Small interfering RNAs (siRNAs) targeted to CCT5 or Hsc70 and scrambled negative control siRNAs were purchased from Sigma-Aldrich Japan (Tokyo, Japan). Cells were plated on a 24-well plate with
antibiotic-free DMEM overnight, and each plate was transfected with 10 nM siRNAs by X-tremGene (Roche Diagnostics) according to the manufacturer’s protocol. Forty-eight hours post-transfection, the total RNA and protein extracts were prepared and subjected to real-time RT-PCR and immunoblot analyses, respectively.

Quantitation of HCV RNA and core protein
Total RNA was extracted from cells using TRIzol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. Real-time RT-PCR was performed using TaqMan EZ RT-PCR Core Reagents (PE Applied Biosystems, Foster City, CA) as described previously (Aizaki et al., 2004; Murakami et al., 2006). HCV core protein levels in the cells and in the supernatant were quantified using an HCV core enzyme-linked immunosorbent assay (Ortho-Clinical Diagnostics, Tokyo, Japan).

Acknowledgments
We thank Drs. F. V. Chisari (The Scripps Research Institute) and D. Moradpour (Centre Hospitalier Universitaire Vaudois, University of Lausanne) for providing the HuH-7.5.1 cells and anti-NS5B monoclonal antibody, respectively; S. Yoshizaki, M. Kaga, M. Sasaki, and T. Date for their technical assistance, and T. Mizoguchi for secretarial work. This work was supported by a grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science, from the Ministry of Health, Labour and Welfare of Japan, and from the Ministry of Education, Culture, Sports, Science and Technology, and by Research on Health Sciences focusing on Drug Innovation from the Japan Health Sciences Foundation, and by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation of Japan.

References

