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Let n be an integer with n E 4 (mod 8). For any Hadamard matrices H, of order 
n, we give a method to define a doubly even self-dual [2n, n] code W(NH,). Then 
we will prove that two Hadamard equivalent matrices define equivalent codes. 
6 1987 Academic Press, Inc. 

1. INTRODUCTION 

A Hadamard matrix H,, of order n is defined to be a square matrix of 
order n, whose entries consist of + 1, satisfying 

H,, tH,, = nl,, , 

where ‘H,, is the transpose of H,, and I,, is the unit matrix of order n. It is 
known that Hadamard matrices H,, exist only when n = 2 or n is a multiple 
of 4. Hereafter, we assume that n E 4 (mod 8). Two Hadamard matrices 
H(‘) and Ht2) of the same order n are said to be Hadamard equivalent 
(a;breviatei H-equivalent) if Hj,*) is obtained from Hi,‘) by a sequence of 
operations of(i) exchanging two rows (or columns) of H(,‘) or (ii) multiply- 
ing some rows (or columns) of Hk’) by - 1. It is easily seen that any 
Hadamard matrix H,, is H-equivalent to the matrix of the shape 

NH, = (1) 

Although most authors call Hadamard matrices, whose entries of the first 
row and column are all 1, normalized Hadamard matrices (or normal 
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forms of Hadamard matrices), we would like to call Hadamard matrices of 
the shape (1) normalized Hadamard matrices (or normal forms of 
Hadamard matrices), because the matrices of the shape (1) are more 
suitable for our present work. 

Let F, = GF(2) be the field consisting of elements 0 and 1. Let V, be the 
vector space F’; of dimension y1 over F,. A binary linear code [n, k] is a 
vector subspace of V,, of dimension k. In what follows, we treat only binary 
linear codes, and we drop the adjective “binary.” For two elements 
x = (x,. -x2 ,..., x,,) and y = (v,, y, ,..., y,) in V,,, the inner product (x, y) is 
defined by 

(x, Y)’ i xiy;. 
i= 1 

The Hamming distance d(x, y) between x and y is defined to be the number 
of indices i such that xi #tly,. The Hamming weight wt(x) of the vector x is 
defined to be d(x, 0), where 0 is the zero vector in V,. The dual code 
[M, k]’ of a linear code [n, k] is the space defined by 

C~,kl~={~~I/,l (x,y)=O for all x E [n, k] }. 

A linear code [n, k] is said to be self-orthogonal (resp. self-dual) if it holds 
that 

L-n, kl= Cn, kl’ (resp. [n, k] = [n, k]‘). 

A linear code [n, k] is said to be even (resp. doubly even) if the weight 
wt(x) of any element x in [n, k] is divisible by 2 (resp. 4). Two codes 
Cn, klcI, and Cn, kl,,, of the same dimension k are said to be equivalent if 
we can find a basis {xi) of [In, klc,, and a basis (y;l of [n, k],,, such that 
the vectors yi are obtained from xi by exchanging some coordinates of xi 
simultaneously for i= 1, 2 ,..., k. 

In this paper, we give a method to obtain a doubly even self-dual linear 
code %(NH,,) of length 2n over F, from a normalized Hadamard matrix 
NH,, of order n (Theorem 1). In the existing literature (e.g., [4] or [S]), 
some non-linear codes are called Hadamard codes, but they are different 
from %‘(NH,,). Theorem 1 can produce many doubly even self-dual [2n, n] 
codes, which have not been obtained by other methods. 

Before defining code %(NH,,), we study the properties of the normalized 
Hadamard matrix NH,, in Section 2. In Section 3, we describe the definition 
of @(NH,!) and the properties of g(NU,,). In Section 4, we give a test to 
determine the minimal weight of W(NH,). In Section 5, we show some con- 
sequences of our present method. In Section 6, we pose some questions 
arising from our investigation. Unfortunately, our method is successful only 
for the case n E 4 (mod 8). 
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2. A STUDY OF THE NORMALIZED HADAMARD MATRIX 

Let 

NH,, = 

be a normalized Hadamard matrix of order IZ. We let 5; denote the ith row 
vector of NH,. Let v,(i) (resp. vZ(i)) be the number of l’s (resp. -1’s) in 
the last n - 1 entries of ri. By definition, we have 

vr(l)=n- 1 and v,(l)=O. (2) 

It is easy to show that 

VI(i)=42 (34 

and 

v2( i) = n/2 - 1 for 2<i<n. (3b) 

Furthermore, let ,~r(i, h), ,~*(i, h), p3(i, h) and pd(i, h) (1 d i< h < n), 
respectively, be the cardinalities of the sets defined by 

{ j 1 sji = Shi = 1 2<j<n}, 

(j~s;i=l,s,j= -1 2<j<n}, 

{j 1 si,= -1, Slti= 1 2,<j<n} 

and 

(j 1 sii=shi= -1 2 <j,<n}, 

respectively. We see that, for 2 d i -=c h < n, 

h(i, A) +PAL A) = v,(j) = 42, 

p,(i, h)+p4(i, h)=v,(i)=n/2- 1, 

pLl(i, h)+b(i, h)=v,(h)=n/Z 

(da) 

(4b) 

(4c) 

and 

&i, h) +pJi, h) = v2(h) = n/2 - 1. (4d) 
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By the orthogonality of rj with t,, (2 ,< i < i < h 6 n), we have 

From (4a)-(4d) and (5), we have 

and 

pq(i, h) = n/4 - 1 for 2<i<hdn. 

3. THE DEFINITION AND THE PROPERTIES OF THE CODE W(NH,) 

Let NH,, = (sii) be a normalized Hadamard matrix of order n. Let J, be 
the all 1 square matrix of order 12. We put 

K, = WNH,, + J,,). 

By definition, K,, is a (0, 1) matrix. Let 

be an n x 2n matrix, and x ,,,.., x,, be the row vectors of C,. Regarding xi 
(1 d i < n) as vectors in the vector space VZtl = F$‘, we may define the vec- 
tor subspace QT(NH,,) of V2,? generated by x;s over F,. By the definition, it 
is clear that the vectors x1, x2,..., x, are linearly independent over F,, so 
that dim @(NH,,) = n. By this fact, we call C, the generator matrix of the 
linear code W(NH,,). If we write 

xi = (ei, Y;) (1 QiBn), (7) 

using the first half row ej of xi and the last half row yi of xi, then the ith 
entry of the vector ei is 1 and the remaining entries of ei are all 0. Note that 
yi( I 6 i 6 n) are the row vectors of the matrix K,,. By (7), we see that 

wt(x,)= 1 + wt(y,), l<i<?l , , -. (81 

Let y, be the entries of the vector yi; then we see that 

yii = 1 * sii = 1 (94 

and 

y,=oos,= -1 for 1 <i,j<n. Pb) 
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By virtue of (2), (3a), (S), (9a), and (9b), we get 

wt(x,) =n 

and 

wt(x,) = n/2 + 2, 26i6n. 

The inner product (xi, xh) is clearly given by 

(xi, Xh)’ 2 YijYhj, ldi<h<n. 
j=l 

By (9a) and (9b), the above sum equals the parity of v,(h) (resp. 
,~,(i, h) + 1) for 1 = i < h (resp. 1 < i < h < n), and we have 

(xi, xh) = o for 1 <i<h<n, (11) 

because of the equations (3a), (6) and our assumption that n = 4 (mod 8). 
Here, we quote a theorem in [6], which is useful for our present work. 

PROPOSITION 3.1 (Theorem 4 in [6]). Zf the rows of a generator matrix 
C,, for a binary [n, k] code C have weights divisible by 4 and are orthogonal 
to each other, then C is self-orthogonal and all weights in C are divisible 
by 4. 

We prove: 

THEOREM 1. Let the notations be as abbove. When II = 4 (mod 8), then 
%T(NH,) is a doubly even self-dual linear [2n, n] code. 

ProoJ: By (10a) and (lob), the generators of the code V(NH,,) have 
weights divisible by 4. By (1 l), the generators are mutually orthogonal, 
and Q?(NH,,) is a self-orthogonal [2n, n] code because of the Proposition 
3.1. Thus, by Proposition 3.1, @(NH,,) is a doubly even self-dual linear 
[2n, n] code. Q.E.D. 

Although a Hadamard matrix H, of order n has many H-equivalent 
normal forms, we can prove: 

THEOREM 2. We assume that n -4 (mod 8). Suppose NH!,‘) and NH:*’ 
are two normalized and H-equivalent Hadamard matrices of order n; then the 
codes %?(NHk’)) and +Y(NHj,2)) are equivalent codes. 

ProoJ: To prove this theorem, it is sufficient to show that the code 
%(NHL2)) is equivalent to the code %T(NHy)) in the cases (CX) when NH;) is 
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obtained from NH:‘) by exchanging two different rows of NH:“, (p) when 
NHj;Z’ is obtained from NH;” by exchanging two different columns of 
NHj,l’, and more generally (y) when NHL2’ is obtained from MIX’) as 

Nffc2’ = pNHfl’ Q n n ) 

where P and Q are monomial permutation matrices of + l’s and - 1’s. 
Since such matrix P (resp. Q) can be written as a product of a pure per- 
mutation matrix (i.e., a monomial permutation matrix of + l’s) and a 
diagonal matrix with diagonal entries + l’s, the proof for the case (y) is 
done similarly to that of (a) or (/?), and we omit the detail. 

Throughout the proof, we use y, (resp. zii) for the right half of the n x M 
matrix Kj,‘) (resp. Kjz2’) of the generator matrix Ci” (resp. CL*‘) for the code 
Y( NH!,’ )) (resp. %‘(NH!;L))), 

Case (a). When NH!:’ is obtained from NH:‘) by exchanging the ith 
and the hth rows of NH:‘) with 1 < i < h < n, then the theorem is obvious. 

When we exchange the first and the hth (h > 1) rows of NH;“‘, then the 
resulting matrix M, is not in normal form. Apart from the trivial way (i.e., 
the exchange of the first and the hth rows of M, again), there are two ways 
to return to normal form. One way is (i) to multiply the first column by 
- 1, (ii) to multiply all the rows other than the first and the hth rows by 
- 1, (iii) to multiply each kth (k > 1) column by - 1 whenever the top 
entry of the column is - 1. The resulting matrix is denoted by M,, which is 
in normal form. Another way is (iv) to multiply the hth row by - 1, (v) to 
multiply the first row by - 1, and (vi) to multiply each kth (k > 1) cohrmn 
by - 1 whenever the top entry of the column is - 1. However, the resulting 
matrix is identical to the matrix M,. Let sii (resp. tii) be the entries of HNcj 
(resp. NN),2) = M2). 

Suppose that 

s/,, = - 1 for j=jl ,j,,...,j, with 1 <j, < .I. <jr 

and 

shi= 1 for j#j,, j2,...,.jr; 

then, from the processes (i) - (iii), we see that 

t,, =s,, = -1, t,;=s1j= 1 (2djdnL 

fi, = si, = 1 (2didn), jhj = Shj (2Gj<n), 

tii = sii for j=j,,j*,.... j, and if 1, h, 

ti,= -sii for j#l,j,,j, ,..., jr and i#l,h. 
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By the above relations, we can infer the relations between yii and zij, 
namely, 

.lJI] =--II =o, y,]=z,j= 1 (2 <.i d n), 

yil = Zil = 1 (2di6n), Yhj = zllj (2 <i 6 n), 

yjj = zii for j=j,,j2 ,..., j, and if l,h, 

yjj+ zji= 1 for j+I,j,,j? ,..., j,. and ifl,h. 

Let ui = (e,, zi) (1 < i <n) be the row vectors of the generator matrix C(f) of 
%‘(NHjl’), where z,= (z,,, zi2 ,..., -l+,). Then, it is clear that the vectors 
VI =u1, v2 = U? + M/i,..., v/,- , = u/r- I + Uh, v/T = u/,5 VIZ+ 1 = u/,+ 1 + u/,,..-, 
v,, = u,, + u,, for& a basis of %(NN(,l’). If we exchange the hth column with 
the (n + 1 )st column in the n x 2n matrix 

Vl 

V2 

i:i 

. 1 

v,, 

then we get Ihe generator matrix C,, (I 1 of the code QYNHj,‘)). This implies 
that the code %?(NHj,Z)) is equivalent to the code %‘(NHj,“). 

Case (8). When NH:,21 is obtained from NH:,‘) by exchanging the jth 
and the k-th columns of NHj,” with 1 <,j< k d n, then the theorem is 
obvious. 

When we exchange the first and the kth (k > 1) columns of NH!,‘), then 
the resulting matrix M, is not in normal form. There are two ways to 
return to another normal form. One way is (vii) to multiply the first row by 
- 1, (viii) to multiply all the columns other than the first and the kth 
columns by - 1, (ix) to multiply each hth (h > 1) row by - 1 whenever the 
first entry of the row is - 1, obtaining another normal form M,. Another 
way also leads to the same matrix M, as in the row case. 

Let s,~ (resp. f,,) be the entries of NH!,’ 1 (resp. NHL2) = M4). Suppose that 

St/, = 1 for i= 1, iI, iz ,..., i, with 1 < i, < . . <i, 

and 

six = -1 for i # 1, i,, i, ,..., i,, 
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then, from the processes (vii) - (ix), we see that 

f,, =s,1= -1, f,j=s,,= 1 (Z<j<n), 

fil = Sil = 1 Qdidn), T;k = S,k (26idn), 

iii= -s,, for i = i,, i2 ,..., i, and j# I, k 

and 

f ;, = s ji for if i,, i2 ,..., i,. and j # 1, k. 

By the above relations, we infer the relations between y, and zij, namely, 

j’ , , = : 1, = 0, y,,=zj,= 1 (2 <j<n), 

J’i, = Z,l = 1 (2<idn), )‘jk = Zik (Z<iQn), 

T,,+J*,,= 1 for i=ii, i2 ,..., i,. and j#l,k 

and 

- z2)’ 
- I, - 1, for i # i, , i2 ,..., i, and j # 1: k. 

J-et xi (resp. u, = (ei, z,)) (1 6 i<n) be the row vectors of the generator 
~~~~tr;rB’;;;q~ C;;‘) of th e code %(NNj,“) (resp. %?(NHiz2’)). It can be 

Putting 

u, = x; for i # i,, i, ,..., i,. 

v, = u; for i # i,, i2 ,..,, i, 

and 

v,=ui+ul for i = i, i2 ,..., i,, 

we see that the matrix 

forms a generator matrix of %‘(NHjf’). If we exchange the first and the 
(II + k)th columns of D, we obtain the generator matrix Cl,” of %‘(NH!r ‘1. 
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This implies that two codes %‘(NHL’)) and Q7(iVHL2)) are equivalent. We 
have thus proved the Theorem 2. 

4. A TEST TO DETERMINE THE MINIMAL WEIGHT OF THE CODE @(NH,) 

AS before, we let xi (1~ i<n) denote the row vectors of the generator 
matrix C,, of the code V(NH,). When we want to prove that a given 
natural number d is the minimal non-zero weight of the code $?(NH,) for a 
given normalized Hadamard matrix NH,, of order n, we must show that the 
inequalities 

wt(f,) 3 d with 1 <r,<d- 1 (12) 

hold, where f,‘s run over all r linear combinations chosen from the vectors 
Xl, x2,..., x,1. By Theorem 1, we may assume that d is a multiple of 4. Let yi 
be the last half of the vector xi= (e,, yi) as in Section 3, then by (8) we see 
that the condition (12) is equivalent to the condition 

r i- wt(g,) 2 a’ with l<r<d-1, (13) 

where g, runs over all r linear combinations chosen from the vectors 
Y I > Y2Y~ Y,~. We prove 

THEOREM 3. Let the notations be as above. Assume that 

n>2d-4 (14) 

and 
wt(g,) 3 d- r - 3 with 3<r<d-1, (15) 

where g, runs over all r linear combinations chosen from the vectors 
y1 9 YZY, y,,. Then the code V(NH,,) is a code with minimal weight d. 

ProoJ: First we remark that if r 3 d and f, is any one of r linear com- 
bination chosen from x,,..., x,, then it automatically holds that 

wt(f,) 3 d 

because of the shape xi = (ei, yi) (1 d id n). 
It is easy to show that the inequalities 

wt(g,)>d-2 

wt(g2) 2 d- 2 

(16) 

(17) 

are derivable from the assumption (14). 
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We see that inequalities 

wt(y1+ yJ = v,(i) + 1= n/2 3 d- 2 

hold for 2 < id n, and the inequalities 

wt(y,+ Yh) =Il*(i, h) + Il3(i, h) 

=&?>d-2 

hold for 2 < i < h < ~1, which imply (17). If the inequalities (15) hold for 
3<r<d- 1, then we have 

wt(f,) = Y + wt(g,) 3 d- 3, 

for each r linear combination f, chosen from the vectors xi, x2,..., x,. By 
Theorem 1, any codeword is divisible by 4, and wt(f,) must be a multiple 
of 4. Hence we have 

wtffr) > d for 3<r<d-1 

By the above argument, any element x in %(NN,) satisfies wt(x) 3 d, and 
this completes the proof of Theorem 3. 

5. SOME CONSEQUENCES OF THE PRESENT METHOD 

When we take Hadamard matrix H, of order 4, our code %?(NH,) is 
equivalent to the Hamming code of length 8. When we take any Hadamard 
matrix Hi2 of order 12, our code ‘#(NH,,) is equivalent to the Golay code 
of length 24. These facts are easily shown by using Theorems 1 and 2 and 
the known result that there is only one H-equivalence class in the 
Hadamard matrices H,, of order yz for n = 4 and 12. (Conf. [S].) 

When we apply our method to the case n =20, we obtain two new 
doubly even extremal [40,20] codes and a doubly even extremal [40,20] 
code, which is equivalent to the known code explained in [S, p. 507-509). 
By Hall [3], there are three H-equivalent classes of Hadamard matrices of 
order 20. We can take the Paley matrix Hz,,i, the Williamson matrix Ii,,,, 
and the matrix H,o,3 constructed from the symmetric conference matrix of 
order 10 [IS, p. 3391, respectively, as the representdtives of the three 
H-equivalent classes. By Theorem 2, our method gives at most three non- 
equivalent doubly even (extremal) self-dual [40,20] codes. In the 
Appendix, we give the right half 20 x 20 matrices of the generator matrices 
of the two codes %(NN,0,2) and ~(N&J: Since V(NH,,,,) is equivalent 
to the code explained in [S], we do not give its generator matrix. By virtue 
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of the arguments in Section 4, to prove that the minimal weight of a given 
140, 201 code is 8, it is sufficient to verify the inequalities 

wt(g,) 3 5 -r 

hold for r = 3 and 4, where g,. runs over all r combinations formed from the 
row vectors of the right half 20 x 20 matrix of the generator matrix of the 
code. These inequalities are easily verified by an electronic computer of 
lower ability for each one of the codes V(NH,,,,) and g(NH,,,). To show 
that three codes %?(NH,,,,), V(NH,O,,) and V(NH20,3) are inequivalent to 
one another, we introduce invariants for the equivalence classes of the 
doubly even extremal [40, 201 codes. Let CGi (i = 1, 2, 3) be the set of all 
octads in the code V(NH,,,). By a theorem in [1], we know that each C!$ 
retains the structure of a 1 - (40,857) design. This means that for any one 
of the 40 coordinates of the code %‘(NHzo.;) there exist exactly 57 o&ads in 
0; with the nth coordinate 1. Let n, and n2 be the numbers such that 
1 6 n r < n2 < 40. We say that an octad in 0, passes through the pair (ni, n2) 
if the n,th and n,th coordinates of the octad have the value 1. Let 
ind(n,, nz) be the number of the octads which pass through the pair 
(n, , n2). We call the number ind(n, , nz) the index of the pair of coordinates 
(n,, n2). If we vary the pair (nl, n,), then the value of ind(n, , n2) may vary 
accordingly. The values ind(n,, nr) and their multiplicities are clearly 
invariants in the equivalence class of the codes. In each above ol,, we have 
calculated the values ind(n,, n2) with multiplicities. We only describe the 
results. 

for 20 pairs of (n, , n,), ind(n, , n2) = 0, 

for 380 pairs of (n,, n,), ind(n,, nZ) = 9, 

and 
for 380 pairs of (n,, n,), ind(n,, n,)= 12. 

for 700 pairs of (n,, n,), ind(n,, n2) = 9 

and 
for 80 pairs of (n,, n,), ind(n,, n2) = 21. 

for 740 pairs of (n,, n,), ind(n,, nz) = 9 

and 
for 40 pairs of (n, . Q, ind(n,, n2) = 33. 



TABLE I 

The Right Half of the Generator Matrix for the Code V(NH,,,J) 

1 2 3 4 5 6 7 8 9 10 11 12 13 $4 15 16 17 18 19 20 

1 11 11 111 11 111 1111 Ill 
2 11 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 11 1 1 1 1 1 1 
5 11 11 1 1 1 I 1 1 1 
6 i I 1 1 I 1 1 1 1 i 1 
1 1 I 1 1 1 1111 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 11 I1 f.  

10 1 1 1 11111 11 1 
11 1 1 1 1 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 I 1 1 1 
13 1111 1 1 1 11 1 1 
14 11 1 1 1 1111 1 1 
15 1 1 1 1 1 1 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 1 1 1 1 1 1 1 1 
18 11 1 11 11 1 1 1 f  
19 1 1 1 1 111 1 1 1 1 
20 1 1 1 i 1 1 1 1 1 I 1 

TABLE II 

The Right Half of the Generator Matrix for the Code %(NH,,, ) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 111 1111 111111111111 
2 1 1 1 1 11 111 1 1 
3 1 1 1 1 1 1 i 1 1 1 1 
4 1111 1 1 1 1 1 1 1 
5 I 1 1 1 1 11 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 
7 1 I 111 1 11 1 1 1 
8 1 1 1 1 1 1 1 1 1 I 1 
9 1 1 1 1 1 1 1 I I1 I 

10 1 1 1 1111 1 1 1 1 
I1 1 11111111 11 
12 11 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 1 ! I 1 1 
14 1 1 1 1 1 1 1 1 1 i 1 
15 11 1 1 1 1 1 1 1 1 1 
16 1 1 1 1 1 1 1 1 1 1 1 
17 1 11 11 1 1 111 1 
18 111 1 11 1 1 1 1 1 
19 1 1 1 1 1 1 1 1 1 1 1 
20 11 1 11 1 1 1 1 1 1 
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By the above calculation, we can say that three codes V(NH,,,,), %?(N2& 
and V(NH,,,) are inequivalent to one another, and we summarize the 
results as 

THEOREM 4. There are at least three inequivalent doubly even self-dual 
extremal [40,20] codes. 

6. A CONCLUDING REMARK AND Two REMAINING QUESTIONS 

Remark. When we apply our method to the case n = 36, we may get a 
doubly even self-dual [72,36, 161 code, which has not been found by 
anyone [7]. We have tested some Hadamard matrices H,, of order 36 
hoping to find such a code. We have not found a [72,36, 161 code by our 
present method. Many [72, 361 codes obtained by our method seem to 
have the minimal weight 12, and some minimal weight 8! By [a], there are 
at least 110 H-equivalence classes at order 36. We are not so patient as to 
test such enormous H-equivalence classes of Hadamard matrices. 

Theoretically, there remain two fundamental questions. 

(I) Are two codes %‘(NH!‘)) and %?(NHjf)) not equivalent to each 
other if the Hadamard matrices of order n NH!‘) and NH!,*) are not 
H-equivalent? 

This is the converse assertion to Theorem 2. 

(II) Is there a method to define doubly even self-dual codes from 
Hadamard matrices of order n in the case IZ = 0 (mod 8)? 

APPENDIX 

We give the right half 20 x 20 matrices K2 and K3 of the generator 
matrices of the two codes %?(NH,,,) and W(NH20,3) (Tables I, II). The 
blanks mean the zeros. Each generator matrix C, (resp. C,) of %‘(NH20,2) 
(resp. @(NH,,,)) is given by 

(rev. G = V20K3)). 
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