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0. Introduction

For a field k, say perfect, and a Grothendieck topology t on the category of smooth k-schemes, such as the Nisnevich or
the étale topology, we denote by Shvy.(k) the abelian category of t-sheaves with transfers on Sm/k. Following Voevodsky,
we consider DM (k) the full subcategory of the derived category D(Shv¢.(k)) whose objects are the Al-local complexes,
i.e.,, Voevodsky’s (effective) motivic complexes. We refer to [18, Section 3] and [ 10, Lect. 14] for an outline of this theory.

Attached to a smooth k-scheme X we then get the representable t-sheaf Z(X) € Shvy.(k) and the homological motive
M(X) € DM (k) given by the Al-localization of Z(X); recall that the A'-localization functor D(Shvg.(k)) — DMZ(k) is
left adjoint to the obvious inclusion DM;(k) C D(Shv{,(k)). The smallest triangulated subcategory of DM (k) containing
M(X) for X € Sm/k and stable by direct summands, is called the category of geometric (or constructible) motives and will be
denoted by DMz, (k). When 7 is the Nisnevich topology or the cohomological dimension of k is finite, we obtain exactly
the subcategory of compact objects.

Under some hypotheses (e.g., the exponent characteristic of k is inverted or k is perfect and t = Nis), we know
that the canonical t-structure on D(Shvy,(k)) restricts to a t-structure on DMZ;(k) whose heart is the abelian category
HIf, (k) C Shv{ (k) of the homotopy invariant r-sheaves with transfers. This follows immediately from [10, Th. 14.11]. For
the étale topology, see [4, D.3.3]. This t-structure is the so called homotopy t-structure.

0.1. To the core

Notably, we may consider the triangulated subcategory DMZ, (k) C DM (k) generated by M(X) for X of dimension <n
and closed with respect to direct sums, i.e., the so called triangulated category of n-motivic complexes or n-motives.
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Afirststep in the study of these subcategories was done by Voevodsky [ 18, 3.4]: for example, one can see that the inclusion
DMYs (k) DMNE (k) has a right adjoint for all n > 0. Defining DML, (k) C DML, (k) as before, Voevodsky provided a

description, rationally, of DMYS (k) and DMYS (k) in terms of Artin motives and Deligne 1-motives (up to isogenies).

<0,gm <1,gm

A second step was done by the second author jointly with Kahn, see [4]. The category DMit1 m(k) is described as the
bounded derived category of Deligne 1-motives, for a suitable exact structure, after 1nvert1ng the exponentlal characteristic
p of the perfect field k, via a fully-faithful Z[1/p]-linear embedding Tot into DMeff (k). Furthermore, such embedding
provides the homotopy t-structure on the derived category of Deligne 1-motives whose heart is the Z[1 /pl-linear category
of (constructible) 1-motivic sheaves, see [4, Section 3]. _

A key result of [4] is that Tot has, rationally, a left adjoint which refines, integrally, to a functor LAlb on DMggffgm(lc),
the motivic Albanese triangulated functor. Dually, composing with (motivic) Cartier duality, one obtains the functor RPic.
Applied to the motive M(X) of an algebraic k-scheme X these functors provide natural objects LAIb(X) and RPic(X) in
DMejl rn(k) An important application is in view of their 1-motivic homology which is providing the 1-motives predicted by

Dellgne s conjecture. See the forthcoming second part of [4] for a proof of this conjecture (up to isogenies).

0.2. Have a bird

The general goal of this paper is the study of the categories of n-motives by sheaf theoretic methods providing new
algebraic invariants.

In Section 1 we introduce the key notion of n-motivic t-sheaf, see 1.1.20. To do so, we first define (non-necessarily
constructible) n-generated and strongly n-generated t-sheaves, see 1.1.13. Roughly speaking, n-motivic t-sheaves are
obtained from strongly n-generated t-sheaves by applying the functor hj that takes a r-sheaf to a homotopy invariant
one in a universal way. This functor is defined as the left adjoint of the 1nclu51on HI (k) C Shvy (k). An example of n-motivic
t-sheafis given by hj (Z (X)) with X smooth of dimension less than n. We also show (under some mild hypotheses) that the
category HIZ (k) of n—motivic t-sheaves is a cocomplete abelian category, see 1.1.24. For n = 1 we show that this category
is generated by lattices and semi-abelian group schemes. Actually, we show a structure theorem for 1-motivic étale sheaves,
see Theorem 1.3.10, including finitely presented (or constructible) 1-motivic étale sheaves, see 1.3.8 and cf. [4, Section 3.2].

Itis easy to see that HIZ (k) = Shvg, (k<o), the category of T-sheaves with transfers on 0-dimensional smooth k-schemes.
This yields a functor

: Shv. (k) — HIZ Zo(k)

left adjomt to the inclusion HIZ,(k) C Shvy,(k), see 1.2.6. With some more efforts, by taking a suitable colimit of Serre’s
Albanese schemes (cf. [12]), we obtain a functor

Alb : Shvp.(k) — HIZ 210k

left adjoint to the inclusion HIZ, (k) C Shvj,(k), see 1.3.11. We denote by (—)=" the restriction of these functors to HI, (k)
and we conjecture that, at least rationally, the functors

(=)=": HIEt(k) — HI LK)

exist also forn > 2.

We finally propose a conjectural framework (still for n > 2), remarkably linked to the Bloch-Beilinson conjectural
filtration on zero-cycles, which permits a better understanding of the categories Hlitn(k) and implies the existence of the
functors (—)=" (see 1.4.1, 1.4.6).

In Section 2 we construct functors Ly and LAlb on D(Shvy, (k)) as “true” derived functors of the functors o and Alb
defined in the previous section. In order to derive Alb we have to go through the proof that there are enough Alb-admissible
complexes, see 2.1.6. The key point here is that if X is a smooth k-scheme which is affine and NS'-local, i.e., the Néron-Severi
geometrically vanishes, then Z.(X) is Alb-admissible, see 2.4.6 for details. The so obtained LAlb factors through the A!-
localization yielding a functor on DM (k): our main goal is then Theorem 2.4.1. As a by-product, we get, under some
technical assumptions, an equivalence of categories DMZ, (k) >~ D(HIZ,(k)) for n = 0, 1. See 2.3.1, 2.4.1 for a precise
formulation. N N

Note that Lirg and LAlb both take compact objects to compact objects so that LAlb is an extension of the one (in [4]) to
non constructible motives. We then show the non existence of left adjoints to DMZ, (k) C DM (k) for n > 2 and set a
conjecture linking HIZ, (k) to DMZ, (k).

In Section 3 we apply the functors L7y and LAIb to the meaningful (non constructible) motivic complexes
Hom(M(X), Z(r)[2r]) or Hom(Z(r)[2r], M(X)). The s-homology with respect to the homotopy t-structure is yielding a 0-
motivic sheaf whose group of k-points is the higher Néron-Severi NS (X, s). Similarly, we define the higher Picard Pic" (X, s)
and Albanese Alb, (X, s) 1-motivic sheaves.

The NS'(X,0) are related to higher codimension cycles in the following manner. Recall that the hgis of
Hom(M(X), Z(r)[2r]) is the Nisnevich sheaf CHrX associated to the presheaf U ~- CH" (U x X) given by the Chow group
of codimension r-cycles. Since 7o (CH’, X) = NS’ by the Theorem 3.1.4 we obtain that NS™ (X, 0) = NS"(X) is the classical
Néron-Severi group of codimension r cycles modulo algebraic equivalence.
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Notation and conventions

We let k be our base field and p its exponential characteristic. By scheme we always mean a finite type k-scheme. We
warn the reader that all over in this paper we tacitly invert p in the Hom groups of all categories constructed out of étale
sheaves.

For the sake of exposition, we here provide a comparison between some of the notations adopted in this paper and the
corresponding existing notations in the book [10] as follows:

Paper Book Meaning

Cor(k) Cory, Category of finite correspondences

Cor(X,Y) Cor(X,Y) Group of finite correspondences from
XtoY

PST(k) PST (k) Category of presheaves with transfers

Shvi.(k)  Sh(Cory) Category of z-sheaves with transfers

DMZ:(k) DMT(k)  Voevodsky category of effective
T-motives

Zer (X) Ze (X) Representable presheaf with
transfers

1. n-generated sheaves

Let Sm/k be the category of smooth schemes and Cor(k) the category of finite correspondences of Voevodsky [10, Lect.
1]. Let T € {co, Nis, ét} be one of the following Grothendieck topologies on Sm/k: coarse, Nisnevich or étale topology.

1.1. Generalities

Let X € Sm/k. We denote by Z(X) the representable presheaf with transfers
U ~ Zu(X)(U) := Cor(U, X).
For any presheaf with transfers & we have by Yoneda:
Hom(Zy(X), F) = F(X). (1.1)

Let PST(k) be the category of presheaves with transfers on Sm/k and let Shvy,.(k) be the full subcategory of r-sheaves.
Recall that the presheaf Z (X) is actually a T-sheaf (see [10, Lemma 6.2]). Further denote by HI{.(k) the full subcategory
of homotopy invariant t-sheaves with transfers on Sm/k (see [ 10, Def. 2.15]).

Lemma 1.1.1. The inclusions

HI”. (k) C ShvZ.(k) C PST(k)

r

admit left adjoints

h'[
PST(k) —> Shv7.(k) —> HIZ (k).

Proof. The functor a, is the “associated sheaf” functor (cf. [1]). Here we use that the t-sheaf a, (F) associated to a presheaf

with transfers F admits a unique structure of presheaves with transfers such that F — a, (F) is a morphism of presheaves

with transfers. See [17, 3.1.4] for a proof in the case of Nisnevich topology and [10, Th. 6.17] in the case of étale topology.
For t = co we let hg® := hy the associated homotopy invariant presheaf functor, i.e., the Hy of the Suslin complex C,. For

T # co we define inductively (as in [ 14]), hg‘o := id and for all non negative integers n > 0

T,n+1 n
he™ = a,hoh]

and then take the colimit (in the category of presheaves)

h? := Colimh}".
0 olim M
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To show that h takes values in the category of homotopy invariant t-sheaves, consider the following commutative
diagram:

,n T,n+1 7,n+2
hy h hy

7,n+1
0

7,n+2

——— hoh},

hohy™ —— hoh

T,n+1

T,n+2
o h

,n
arhoho E—— a-[hoh 0

ac hO

41 ,n+2
hoh(r) n+ 4>h0h8 n+

,n+3
R hoh(r) nt

Passing to the colimit we get the following sequence (using that hy commutes with colimits of presheaves):
//\
h§ hohg hg hohg
v/

which proves that hj = hohg. But h{(?) is a -sheaf (because the topology 7 is quasi-compact) and hohg(?) is homotopy
invariant.
It is easy to see that hy is a left adjoint, e.g., note that on a homotopy invariant t-sheaf t we get hj (1) =+. O

Under some mild hypotheses, we have hy = hg‘] = a.hg as the following proposition shows.

Proposition 1.1.2. Assume that one of the following conditons:

(1) © = cois the coarse topology,
(2) kis perfect and T = Nis is the Nisnevich topology,
(3) the exponent characteristic p of k is inverted.

Let ¥ be a homotopy invariant presheaf with transfers. Then a, (¥') is strictly homotopy invariant, i.e., H} (—, a, (¥)) is homotopy
invariant for all n.

Proof. When 7 = co there is nothing to prove. For t = Nis and k perfect, this follows from [10, Lect. 22]. If k is not perfect,
let kinsp be the biggest totaly inseparable extension of k (contained in an algebraic closure of k). As remarked by Suslin, the
base-change functor Cor(k) — Cor(kinsp) becomes an equivalence of categories when p is inverted. It is then possible to
extend Voevodsky's result to non perfect fields up to p-torsion.

Suppose that T = ét and p is inverted. The following argument is similar to [4, Lemma D.1.3]. Using the Hochschild-Serre
spectral sequence, we may reduce to the case k separably closed. Let F;,; be the torsion sub-presheaf of . By Suslin rigidity
theorem [10, Th. 7.20], we know that as (For) is a constant étale sheaf (as k is separably closed). By [1, XV, Cor. 2.2], we
deduce that ag (F¢or) is strictly homotopy invariant. Using the long exact sequence of cohomology, we reduce to the case of
F' = F | For.

Let F” = F ® Q/F’. Using again Suslin rigidity theorem [10, Th. 7.20] and the long exact sequence of cohomology
we reduce to the case of # ® Q. But if § is a homotopy invariant presheaf with transfers taking values in the category of

Q-vector spaces, we have () = anis(§) and HZ (—, a($)) = Hy;(—, anis(4))- The claim now follows from [10, Lect. 22].
O

Corollary 1.1.3. Same assumption as in Proposition 1.1.2. The category HI{.(k) is abelian complete and cocomplete, the inclusion
HIf. (k) C Shv{ (k) is exact and h{ is right exact.

1.1.4
For X € Sm/k we let
ho(X) = hy(Zu(X)).
For a homotopy invariant t-sheaf # € HI{.(k) we thus obtain

Hom(hj(X), F) = Hom(Z(X), F) = F(X). (1.2)
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1.1.5
For & € PST(k) we have a canonical map
ColimZy(X) —> F
X—>F
where the colimit is taken over the category Cor(k) /# whose objects are the elements in F (X) for X € Sm/k or equivalently

(by (1.1)) maps of presheaves with transfers Z (X) — ¥ . Morphisms in Cor(k)/¥ are commutative triangles of presheaves
with transfers

Zyp(X) —— Zye(Y)

N

F

Note that the indexing category is pseudo-cofiltered in the sense that any two objects are the target of two arrows having
the same domain. Indeed for the two objects Zy(X) — ¥ and Zy(Y) — F we can take Z (X [[Y) — F.

Lemma 1.1.6. For ¥ € Shv.(k) we have an isomorphism
ColimZy(X) ——= ¥
X—>F

where the colimit is equally computed in PST(k) or in Shvg, (k).

Proof. This is a well known fact. For any presheaf £’ € PST(k) consider the composition:

Hom(F, F') —— Hom(Cxolim Ze(X), F) =, Lim Hom(Z(X), F
, ol m

Lim 7' (X)

X—>F
By Yoneda we need to prove that this is an isomorphism. Elements of Limyx_, # #'(X) are families of o’ € F'(X) indexed
by ¢ € F(X) and satisfying the following compatibility with correspondences: for any 8 € F(Y) and y € Cor(X,Y)
such that @ = y*(B8) we have &' = y*(8'). In other terms, Limx_, # F'(X) is exactly the set of families of functions
(fx : FX) — F’'(X))x compatible with the action of correspondences. To prove that such a family is a morphism of
t-sheaves with transfers we still need to verify that fy are linear maps. This follows immediately from the diagram:

FX) D FX) FELX) L 7 X)

fx®fx l ifx 11x lfx

FIX) @ F'(X) == F' XX —— F'(X)
where y is the sum of the two obvious inclusions X C X [[X. O

Remark 1.1.7. The argument in the proof works for any site with finite coproducts and a topology for which the family of
morphisms X; — [ [, X; is a covering for any finite family (X;);e;.

Corollary 1.1.8. For ¥ € HI{ (k) we have
Colimhj(X) —= F.
X—>F
Here the colimit is computed in the category Shvy, (k).
Proof. The map in Lemma 1.1.6 factors as follows

ColimZ¢(X) —> Colimhj(X) — F

X—=>F X—=>F

where the first map is surjective and the composition is an isomorphism. O
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1.1.9

Let (Sm/k) <, be the category of smooth schemes of dimension <n with the topology 7 (remark that the dimension is
stable under t-covers). Denote o, : Sm/k — (Sm/k)<, the continuous map of sites in the sense of [11, Def. 1.42], given
by the obvious inclusion (Sm/k)<, C Sm/k. Note that a priori o, is not a morphism of sites i.e., the pull-back functor is not
exact.

Consider the full subcategory Cor(k<,) of Cor(k) whose objects are the same of (Sm/k)<,. We let PST (k) be the category
of presheaves with transfers on (Sm/k)<,: these are the additive contravariant functors from Cor(k<,) to the category of
abelian groups.

For X € (Sm/k)<, we let Z-,(X) € PST(k<,) denote the presheaf with transfers

Z<n(X)(U) := Cor(U, X)
given by finite correspondences. For any presheaf with transfers # € PST(k<,) we have
Hom(Z<n(X), #) = F (X). (1.3)

Note that the presheaf Z-,(X) is a r-sheaf. Denote by Shvy,.(k<,) the subcategory of t-sheaves in PST(k-,). The same proof
as for Lemma 1.1.6 gives:

Lemma 1.1.10. For ¥ € Shvy,(k<,) we have that

Colim Z,(X) —— F
X—=F)<n

where the colimit is taken over the category Cor(k<,)/ .

1.1.11
We have a restriction functor on 7-sheaves with transfers

Ons & Shvf (k) —> Shv{ (k<p)

which is clearly exact.

Lemma 1.1.12. The functor oy, : Shv{ (k) — Shv{ (k<y) has a left adjoint
o, : Shvi.(k<n) —> Shvy (k)

which is given by

o, (F) = ( )(Cgl,}g Zie(X)

for ¥ € Shv{ (k<y). Here the colimit is computed in Shv{. (k).
Proof. In fact, for ¥ € Shv{ (k<,) and ¥’ € Shv.(k) we have, by Lemma 1.1.10,

Hom(¥F, 0, (F’)) = Hom (( Colil)n Z<n(X), Un*(ﬁ’)>
X—>F)<n

which is

Lim Hom(Z<,(X), on:(F')).

(X—F)<n

Since we clearly have Hom(Z <, (X), 0y (¥')) = Hom(Z(X), F') = F'(X), for all X € (Sm/k) <p, cf. (1.3), we obtain:

Hom(¥%, 0, (F')) = Hom <(XC01Tir)n Ze(X), 57/) = Hom(o, (), ). O

Definition 1.1.13. A t-sheaf ¥ € Shvy, (k) is n-generated if the counit
oo (F) — F

is a surjection. When it is an isomorphism we say that ¥ is strongly n-generated. We denote by ShvZ (k) the subcategory of
strongly n-generated t-sheaves.

Remark 1.1.14. The property of being (strongly) n-generated is compatible with the change of topology. For example if # is
an n-generated Nisnevich sheaf then a¢ ¥ is an n-generated étale sheaf. Indeed, we have ag0n, = 0p.ler and o, agr = g0, .
Beware that in the last formula, the first o,° stands for the inverse image on étale sheaves whereas the second one stands
for the inverse image on Nisnevich sheaves.
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Lemma 1.1.15. The property of being (strongly) n-generated is stable by cokernels and extensions in the category of t-sheaves.

Proof. We do this only for extensions in the case of n-generated sheaves; the other cases are simpler. The result follows
from:

0yon& —— 0 o F ——> 0 on§ —— 0

N

0 & F 9 0

and a diagram chase. 0O

Lemma 1.1.16. The unitid —— o,.0* isinvertible.
Proof. For Z.,(X) and X € (Sm/k)<,, we have 0;Z;,(X) = Zu(X) and 04, Zy(X) = Z<,(X). It follows that Z.,(X) =~

00y Z<n(X). Using Lemma 1.1.10, we only need to show that ¢,; and oy, commute with colimit. This is clear for o, as it is
a left adjoint. For o;,,, we use that it commutes with colimits of presheaves and with sheafification. O

Note the following useful corollary:

Corollary 1.1.17. Let F be a t-sheaf with transfers on Sm/k. Denote by N the kernel of o0 (F) ——= F .If N isn-
generated then it is zero.

Proof. As o,, is exact, we have a left exact sequence:

0 —— Oni(N) — 0140, 0 (F) —— 07 (F).
Using 1.1.16 and that the composition:

0 ——> 0fop0 —= 0o}

is the identity, we see that o, (V) = 0. But as . is n-generated, we have a surjection: 0 = 0, 0p(N) —>= N . O

Proposition 1.1.18. The functor o,y in Lemma 1.1.12 takes values in the category ShvZ (k) and it induces an equivalence between
Shvy,(k<n) and the category of strongly n-generated sheaves.

Proof. Everything follows from Lemma 1.1.16. The essential image of o,; consists of strongly n-generated sheaves because
we always have that the composition of

0} —> 0}op.0; — o}
is the identity and we have that the first map is an isomorphism. O

Remark 1.1.19. An example of strongly n-generated sheaf is Z (X) for X € (Sm/k) <. It follows that h{ (X) is n-generated.
However we don’t expect this sheaf to be strongly n-generated for n > 1. We leave it as an open (possibly hard) problem to
prove (or disprove) that hy(C) is not strongly 1-generated for an elliptic curve or even for Gy,.

Definition 1.1.20. A homotopy invariant t-sheaf # € HI{ (k) is n-motivic if
hG (00 (F)) —— hg(F) = F
is an isomorphism. We let HIZ, (k) be the full subcategory of homotopy invariant n-motivic t-sheaves.

Remark 1.1.21. By definition any n-motivic t-sheaf is the h{ of a strongly n-generated t-sheaf. Conversely, if a T-sheaf #
is strongly n-generated then hj (¥ ) is n-motivic. Indeed, we have the following commutative square of epimorphisms:

Oy o (F) ——= 00 hg (F)

| L

}‘4>>h6(?")
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Applying hj we get:
h§oyons(F) ——= hioyonhi(F)
ha (F) —7—rwm= h6 (F)

Which proves that the arrow hjo, on.hg (F) = hi(¥) is invertible. In particular the t-sheaves hg (X) are n-motivic
for smooth k-varieties of dimension <n.

Lemma 1.1.22. Same assumption as Proposition 1.1.2. The property of being n-motivic is stable by cokernels and extensions in
HIF (k).

T

Proof. Recall (Corollary 1.1.3) that h is right exact being the left adjoint of an exact functor. Then use the same diagram
chase as in the proof of Lemma 1.1.15 adding hg on the top line. O

Denote by inc : HI.(k) C Shvg, (k) the obvious inclusion. We have the following weaker version of Lemma 1.1.16:

Lemma 1.1.23. The two natural transformations:
(Onsin€) —— (Opsdn€) (h§0,F) (OpsinC) — > (opyinc)
are invertible.

Proof. As the composition of the two arrows of the lemma is the identity, we need only to show that the left hand side is
surjective when applied to any # € HIf.(k). This follows from the commutative diagram:

OpsiNC(F) ————— 010, OpiiNC(F)
(an*inc)(hgo:)(an*inc)(f)
and Lemma 1.1.16. O

Corollary 1.1.24. Same assumption as Proposition 1.1.2. The category HIZ,, (k) is abelian and cocomplete. The inclusion HIZ , (k) C
HIf. (k) is right exact.

T

Proof. Letf : ¥ — ¥’ be a morphism between two n-motivic sheaves. By Lemma 1.1.22, Coker(f) is n-motivic so that
HIZ, (k) admits cokernels. The category HIZ (k) admits also kernels that are given by hjo, o Ker(f). One easily checks that
the image and coimage agree by applying the conservative (on HIZ, (k)) functor os. O

Remark 1.1.25. For t = ét and p inverted, we believe that the inclusion Hléstn(k) - Hlfrt(k) is also left exact. However, this
seems a difficult problem. See Corollary 1.4.5 for a conjectural proof relying on 1.4.1.

The following is a homotopy invariant version of Corollary 1.1.17:

Corollary 1.1.26. Let ¥ be a homotopy invariant t-sheaf with transfers on Sm/k. Denote by N the kernel of
hioyons(F) —— F .If N is n-generated then it is zero.

Proof. As o, is exact, we have a left exact sequence:

00— ops(N) —— On*héa:on*(?) — o (F).

By 1.1.23, we get 0,,.(#) = 0. But as W is n-generated, we have a surjection: 0 = 0, 0p(N) —== N . O

1.2. 0-generated

Recall that a lattice is a presheaf which is representable by a k-group scheme locally constant for the étale topology with
geometric fiber isomorphic to a free finitely generated abelian group. This is an example of 0-generated étale sheaf.
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1.2.1
For a reduced k-scheme X one has the Stein factorization
X — 1y(X) —— Spec(k)
where 7, (X) is the spectrum of the integral closure of k in I" (X, Ox). If X is smooth and [ is a finite étale extension of k, we
have a canonical isomorphism
Cor(X, Spec(l)) = Cor(w,(X), Spec(l)) =~ 770 (X ®x 1)

where |X ®y | is the Zariski topological space underlying the scheme X ®; ! and 7(]X ®|) is the set of connected
components.

We thus have a functor r, : Cor(k) —— Cor(k<p) which is left adjoint to the inclusion op : Cor(k<g) C Cor(k). The
functor , clearly induces a map of t-sites, so that we have a pair (7§, ,,) of adjoint functors:

i
Shv?, (k) — > Shv, (k<o)

S

Ty
From the adjunction (r ), 0¢), one immediately gets an adjunction (i3, o). This gives a canonical isomorphism 7, ~ o;.

Lemma 1.2.2. A strongly 0-generated t-sheaf is homotopy invariant. Furthermore, the functor of : Shv{.(k<g) — Shv{ (k)
induces an equivalence of categories between Shvy, (k<o) and HIZ, (k).

Proof. Take ¥ = o %o = 7, Fo. Using F (X) = Fo(zy(X)) we only need to show that (X xi A;) = 7,(X) which is
true, more generally, for X reduced. The last assertion follows from Proposition 1.1.18. O

Definition 1.2.3. A 0-motivic 7-sheaf & is finitely generated if there exists an étale k-algebra | and a surjection
Zy(Spec(l)) —= €.

Corollary 1.2.4. A 0-motivic t-sheafis a filtered colimit of finitely generated 0-motivic sheaves.

Proof. Let us say that a r-sheaf with transfers &, on (Sm/k) <o is finitely generated if there exist an étale k-algebra I and a
surjection Z<o(Spec(l)) ——= &y . By Lemma 1.2.2, a 0-motivic T-sheaf & = o] & is finitely generated if and only if & is

finitely generated. We are thus reduced to prove the corresponding statement for r-sheaves with transfers on (Sm/k) <.
But it is clear that such a r-sheaf % is a filtered union of images of Zo(Spec(l)) — %, with [ an étale k-algebra. O

Corollary 1.2.5. The embedding HIZ,(k) <> Shvi. (k) has a left adjoint
o : Shvg (k) — HIZ,(k)

given by
mo(F) = Colim Zy (4 (X))

Proof. Indeed, HIZ (k) is simply the subcategory of strongly 0-generated r-sheaves which in turnis equivalent to Shvy, (k<o).

Under this equivalence the inclusion HIZ,(k) C Shvy,(k) is given by oy =~ m,,. The latter admits zr}; as a left adjoint. The
formula follows from Lemma 1.1.6 and the commutation of left adjoints with colimits. O

Definition 1.2.6. Denote by (—)=° : HIf (k) — HIZ, (k) the restriction of my to HI. (k) C Shv{. (k). Itis clearly the left adjoint
of the inclusion HIZ, (k) C HI (k). -
Proposition 1.2.7. Assume one of these conditions is fulfilled:

(a) kis separably closed,
(b) t is the étale topology,
(c) that we work with rational coefficients.

Then a 0-generated t-sheaf is strongly 0-generated and hence 0-motivic. The category HIZ (k) C Shv{ (k) is a Serre or thick
abelian subcategory, i.e., stable under extensions, subobjects and quotients. B

Remark 1.2.8. If k is separably closed then any smooth k-scheme has a rational point.
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We first prove the following lemma:

Lemma 1.2.9. Let F be a t-sheaf. Under one of the assumptions in Proposition 1.2.7 the morphism
F —— 1m0, 70F
is surjective.

Proof. Using Lemma 1.1.6 we are left to show the statement for
Ly (X) —— Ztr(zo(x)) .

This is clear when assuming (b) or (c). For (a), one uses Remark 1.2.8. O

1.2.10
Let # = o %o be a strongly 0-generated t-sheaf and suppose given a morphismi : & —— F . Because o ~ 7,

this is equivalent to give a morphism 756 —— ¥, . We have by this a factorization:
§ ——> 1€ —>F .

By Lemma 1.2.9, the first arrow is surjective. It follows that if i is injective, we have an isomorphism & >~ 7, 756 >~ oy 7}é.
We have proven:

Lemma 1.2.11. Same assumption as in Proposition 1.2.7. Any subsheaf of a strongly 0-generated t-sheaf is again strongly O-
generated.

Proof of Proposition 1.2.7. Let ¥ be a 0-generated t-sheaf. By Proposition 1.1.18, o 0o, (¥) is strongly 0-generated. The
kernel ./ of the surjective morphism o} 0p«(¥) ——= # is then 0-generated by Lemma 1.2.11. By Corollary 1.1.17, ¥ is
zero. The other claims are already proven in Lemmas 1.2.2 and 1.1.15. O

Remark 1.2.12. The category Hlito is the smallest cocomplete Serre abelian subcategory of Shvfrt(k) containing lattices.
Indeed HIZ, (k) is equivalent to Shv{, (k<o).

Remark 1.2.13. Under the assumption of Proposition 1.2.7, a subsheaf of a finitely generated 0-motivic t-sheaf is again a
finitely generated 0-motivic t-sheaf as one easily checks by reducing to the case of t-sheaves with transfers on (Sm/k) <.
In particular, any finitely generated 0-motivic T-sheaf & admits a presentation:

Zy(Spec(ly)) — Zy(Spec(lp)) — F — 0

where Iy and [; are étale k-algebras. Thus it makes sense to say that # is finitely presented.

1.3. 1-generated

Let G be a commutative group scheme whose connected component of the identity G° is a semi-abelian variety and o (G)
is finitely generated, i.e., a semi-abelian scheme with torsion in the terminology of [4, Def. 3.6.4]. Recall that a semi-abelian
variety is an extension of an abelian variety by a torus. In the following we refer to such a G as a semi-abelian group scheme
for short.

Notably G is a quotient of the Serre-Albanese scheme Alb(C) of a suitable smooth subvariety C of G of dimension <1 (up
to p-torsion). It follows that G is 1-generated as Alb(C) represents hg'(C) by Voevodsky [18, Section 3.4].

1.3.1. Warnings and abuse of notation

From now on we stick to the case T = ét and invert the exponential characteristic p of k. All statements of this section
hold only after inverting p. We will make the following abuse of notation: writing Z(X) we mean Z[1/p](X) and writing
G we mean G[1/p] in the corresponding Z[1/p]-linear categories.

Note that given a smooth commutative group scheme G, the étale sheaf G on Sm/k represented by G has a canonical
structure of presheaf with transfers (c¢f. [4, Lemma 1.3.2] and [13]). This gives a functor from the category of smooth group
schemes to the category of presheaves with transfers. One can easily prove that this functor is fully faithful. For this reason,
we identify a smooth group scheme with the presheaf with transfers that represents.

Further, for an arbitrary sheaf # € Shv{; (k), we will denote

FO = Ker(F — mo(F))
by making use of Corollary 1.2.5. We then say that such a sheaf # is connected if 7o(F) = 0.
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1.3.2. Serre-Albanese scheme

Recall by [12,16] that for a smooth k-variety X we have a universal morphism X — Alb(X) with Alb(X) a semi-abelian
scheme as above. The group scheme Alb(X) is the Serre-Albanese scheme of X. The map X — Alb(X) can be extended to a
morphism of presheaves with transfers Z(X) — Alb(X) (see [4,13]).

Lemma 1.3.3. Let X be a smooth k-scheme. The morphism Z:(X) — Alb(X) is surjective for the étale topology.

Proof. Indeed, the image of 0 : Z(X) — Alb(X) is an étale subsheaf of Alb(X). In particular, it is a homotopy invariant
Nisnevich sheaf. To check that Im(f) = Alb(X), we only need to look on function fields of smooth k-varieties (as follows
from [10, Lemma 22.8]). As Im(f) and Alb(X) are both étale sheaves, we may replace this function field by finite étale
extensions. We are then reduced to show that Z (X ®; K)(K) — Alb(X ® K)(K) is surjective for all extensions K of k that
are separably closed. As, we invert the exponential characteristic of k, we may even suppose (using a transfers argument)
that K is algebraically closed. We are then left to show that the group of points of Alb(X) over an algebraically closed field
is generated by the classes of closed points of X, which is a well-known fact. O

We now want to understand the subsheaves of 1-motivic sheaves. Unfortunately, we can’t use here the formalism of
adjoint functors as in the previous paragraph; we are forced to give a direct proof of:

Lemma 1.3.4. Let & be a 1-motivic sheaf. Any subsheaf of ¥ is again 1-motivic.

Proof. We break the proof in three steps. In the first two steps we show that a subsheaf of # is 1-generated. In the third
part we deduce that this subsheaf is 1-motivic.

Step 1: Consider first the case of # = hg‘(C) with C a smooth scheme of dimension <1, which is a 1-motivic sheaf by
Remark 1.1.21. Fix a subsheaf & C F. We can see € as a filtered union of images of Zy(X) —— h(é)t(C) . Actually, we may

suppose that & is the image of a map, i.e, & = Im(a : Zyz(X) — hg‘(C)), because any subsheaf is a filtered union of such
images and a colimit of 1-generated 7-sheaves is also 1-generated.
Since h{'(C) is represented by a semi-abelian group scheme G then a factors through Alb(X):

Zs(X) — Alb(X) —= het(C)

\/

a

Indeed, the morphism a induces a morphism from X to G. The universal property of the Serre-Albanese scheme gives the
morphism a’ : Alb(X) — G. The fact that a = a’ o 6 follows immediately from Hompsr) (Z¢(X), F) = F(X) valid for any
presheaf with transfers F.

By Lemma 1.3.3, the morphism 6 is surjective for the étale topology (up to p-torsion). This implies that & = Im(a’). The
1-generation of & follows now from the 1-generation of Alb(X).

Step 2: By definition we have ¥ = hgt(ol*ﬂ) where #1 = (01)+F. By Lemma 1.1.10, #7 is a colimit of representable
functors:

F1 = Colim Z<1(C)
C—>Fp<1

with C smooth of dimension <1. It follows that

F = hi(o;F) = Colim hS(C).
C—>F1)<1

Let & C ¥ be a subsheaf. Let’s show that & is 1-generated. The obvious morphism:

Colim hS'(C) x5 &€ —> €
(C—>F1)<1

is surjective, even as a presheaf morphism. Indeed, if « is a section of & over some smooth k-variety, there exist objects

HE(C) x5 € — €. )

Each subsheaf h{'(C) x # & C h{'(C) is 1-generated, by Step 1. This proves that & is 1-generated.
Step 3: To finish the proof, we show that any 1-generated homotopy invariant sheaf is 1-motivic (proving the first part of
Corollary 1.3.5). Let F be such a sheaf, the surjection o;01,(¥) —= ¥ factors through hgtal*ol*(?') — F . Let
N be the kernel of the latter surjection. By Proposition 1.1.18 and Remark 1.1.21, we know that hgtal*al*(f' ) is 1-motivic.

By Step 2, N is 1-generated being a subsheaf of the 1-motivic sheaf hgtol*ol*(?). By Corollary 1.1.26, this implies that
N=0. 0O
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Corollary 1.3.5. A 1-generated homotopy invariant étale sheafis 1-motivic. Moreover, Hlé<t1 (k) is a Serre subcategory of Shvtért (k),

i.e., stable by subobjects, quotients and extensions. In particular, the inclusion Hléj] (k) C Shvfrt (k) is exact.

Proof. The first part was proven in Step 3 of the proof of Lemma 1.3.4. The other claims follow easily from Lemmas 1.3.4
and 1.1.22. O

Lemma 1.3.6. Let G be a semi-abelian group scheme. Let ¥ C G be an étale subsheaf with transfers of G such that wo(F) = 0.
Then ¥ is represented by a closed subgroup of G.

Proof. By Lemma 1.3.4, we know that # is 1-motivic. It follows that F is a filtered union of images of hgt(C ) ——F
with C a smooth scheme of dimension <1 (cf. Step 2 in the proof of Lemma 1.3.4):

F = J m®h§(©) - #).
C—>F

As this union is filtered, we have

F=7"= | mnf©) > F)°

C—>¥F
where (1)° denotes the kernel of the surjection { — 7,(+). One checks immediately thatIm(hg‘(C) — F) = Im(hg‘(C)0 —
#9). Now recall [18, Section 3.4] that hg‘(C) is represented by Alb(C) so that hgt(C)O is a semi-abelian variety. We thus have
F=[J m@ - )
G—¥F

where the union is taken over maps G’ — F with G’ a semi-abelian variety. Since the image of G’ — ¥ is also the image of
G' — Gitis then a semi-abelian variety. This proves that F is the union of the connected subgroups of G contained in F.
As G is Noetherian, any chain of connected subgroups of G is stationary. This proves our claim. O

Definition 1.3.7. We say that a 1-motivic sheaf & is finitely generated if there exist a semi-abelian group scheme G
(i.e., such that the connected component of the identity G° is semi-abelian and 74 (G) is finitely generated) and a surjection
q: G—>=§.

If moreover q can be chosen so that Ker(q) is finitely generated (as a 1-motivic sheaf), we say that § is finitely presented
(or constructible).
Proposition 1.3.8. (a) Let & be a finitely presented 1-motivic sheaf. There is a unique and functorial exact sequence

0—->L—>G—>&—>0

where G is a semi-abelian group scheme and L a lattice (i.e., a torsion free and finitely generated 0-motivic sheaf).
(b) Let ¥ be a 1-motivic sheaf. Then ¥ is a filtered colimit of finitely presented 1-motivic sheaves.

Proof. For (a) choose a presentation
Gi—>Gy—>&—>0

with Gg and G; semi-abelian group schemes. Denote by Gﬂ’ the connected component of G; and let G’ = Coker(G? — Gop).
Then G’ is a semi-abelian group scheme. Moreover, we have a presentation

I' -G —-6€6—0

\(/;vrfrg,];’y/: G1/GY = mo(G1). Now let L” be the image of L' in G’ and L;,, C L” its torsion subsheaf. We define L = L"/L;, and

tor- Then L is a torsion free finitely generated 0-motivic sheaf, G is a semi-abelian group scheme and
0>L—>G—>&—0

is an exact sequence. The uniqueness and functoriality of this sequence is easy and left to the reader (see also [4, Prop. 3.2.3]).
We now show part (b) of the proposition. We divide the proof in two parts.
Part 1: We first consider the case where 77y (F) = 0. Let P(F) be the category of all morphisms a : & — ¥ such that

e & is a finitely presented 1-motivic sheaf with 74(&) = 0,
e Ker(a) is a 0-motivic sheaf.
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We will prove that P(F) is filtered and

Colim &~ F.
E—FeP(F)
For simplicity, we write &/ an object & — F of P(F).If §/F and &'/F are two objects in P(F) there is at most
one arrow (§/F) — (&'/F).Indeed, let a;, a; : & — &'. By the first part of the proposition we can find a commutative
diagram

0 L G é 0
N
0 r ¢ &’ 0

with L and L’ lattices and G and G’ semi-abelian varieties. Let H be the coequalizer of b; and b,. Then G’ — ¥ factors trough
H — ¥.Asthe kernel of G’ — ¥ is 0-motivic, we deduce that the kernel of G’ — H is also a 0-motivic sheaf. This happens
only when G’ — H is an isogeny. But then b; — b, factors through the torsion points of G'. This forces by = b, as G is
connected. By a diagram chase, we deduce that a; = a,.

By the proof of Lemma 1.3.6 we know that ¥ is a filtered union of images Im(G — ') with G a semi-abelian variety.
Givensucha : G — ¥, Ker(a)® is a connected subgroup of G by Lemma 1.3.6 (recall that (1)° = Ker(t — mo(}))). If
G = G/Ker(a)®, the kernel of the morphism G' — # is 0-motivic. In particular G — F € P(F).

To prove that P(¥) is filtered, we pick two objects & /F and &,/ . By the discussion above, we can find /¥ € P(¥)
such that Im(4 — ) contains both Im(&; — ¥). We reduce then easily to the case where Im(&; — ) C Im(&, — F).
Let & = &1 X & C &1 X &.By Lemma 1.3.4, &3 is a 1-motivic sheaf and 8? is finitely presented as one easily deduce from
Lemma 1.3.6. By construction, & — & is surjective and its kernel .V is contained in Ker(§; — ) x Ker(& — F).In
particular, it is 0-motivic. Let & = Coker(N¥ — &;).Then &;/F € P(¥) and we have maps & — &; and & — §&;. This
proves that P(F) is equivalent to a filtred ordered set.

The surjectivity of Colimg_, rep(r)& — ¥ is clear. For injectivity, we use that Ker(é — ¥) is the filtered union of its
finitely generated subsheaves L so that Im(& — ¥) is the filtered colimit of the &/L.

Part 2: Now we treat the general case. For £ C mo(¥') a subsheaf, let Q(£) be the set of finitely generated subsheaves of L.
We consider the class  of functors & : Q(L£) — Hlest] (k)/F which assign to L € Q(«£) a morphism &(L) — ¥ such that:

(1) €()°/F° € P(FY),

(2) mo(€(L)) — mo(F) is injective and its image is L.

We have an obvious notion of isomorphism between functors in ¥ and the isomorphism classes in ¥ form a set. Given &
and &’ defined on Q(£) and Q(L"), we write & < &' if £ C £’ and the restriction of & to Q(L£) is isomorphic to &.

By Zorn Lemma, we may pick a maximal functor € : Q(£) — Hlé<t1 (k)/F in ¥. Let us prove that £ = mo(F). Suppose
the contrary and let M C 7o(¥) not contained in £. We may assume that M /M is simple (i.e., has no proper non-zero
subsheaves) where My = M N L.

The inverse image of M along ¥ — mo(¥) is an extension of M by #°. This gives an element in Ext' (M, £°) (where the
Ext! is taken in the category of étale sheaves). By Step 1, we have

Ext'(M, £°%) = Colim Ext'(M, €°).
£0/F0ep(¥0)

It follows that we can find &’ (M) — ¥ such that

e &'(M)°/F° e P(¥9),

o (&' (M)) — mo(F) is injective and its image is M,
e there is a morphism &(My) — &' (M) over F.

Let £ = £ + M. We define a functor & on Q(«£’) in the following way. If L C £ we take &' (L) = &(L). Suppose that
M C Landlet Ly = L N L. We define &; (L) by the pushout square

€(Mo) —— &'(M)

L

E(lo) ——= &)

We then take &'(L) = &](L)/Ker(&;(L) — ¥)°. For general L ¢ £, we let &' (L) be the inverse image of L by &'(L + M) —
L + M. One easily checks that we have extended the functor & to Q(«L’). This is a contradiction.
Fix a functor & : Q(mo(F)) — HIZ, (k)/F in €. Let R(F) C Q(mo(F)) x P(%°) be the full subcategory whose objects

are (L, €°/F°) such that Homyzo,(€(L)°, €% # . Given (L, €°) in R(F) we define T(L, €°) = &(L) | [¢0 €°. We get in
this way a functor T : R(¥) — Hlést] (k)/F such that Colimg(#)T =~ #.That R(¥) is filtered is clear. The proposition is
proven. 0O
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Corollary 1.3.9. Let ¥ be a 1-motivic étale sheaf. Then, the Voevodsky contraction ¥_1 = Hom(G, F) is a torsion free
0-motivic étale sheaf.

Proof. It is clear that #_; is an étale sheaf. Let us show that it is O-generated as a presheaf. This is sufficient by
Proposition 1.2.7 and Remark 1.1.14.

Suppose we can write ¥ as a filtered colimit of 1-motivic étale sheaves # = Colim, %,. As Hom(G,,, —) commutes with
filtered colimits, we need only to show that each Hom(G,,, #,) is O-generated. By Proposition 1.3.8 we may assume that &
is finitely presented and hence have a short exact sequence:

0—->L—>G—>F—>0 (1.4)

with L a lattice and G a semi-abelian group scheme.
For a smooth k-scheme X, we have a long exact sequence

0 LX) G(X) F(X) HLOX L) —— -+ - (1.5)

Let ky/k be a separable closure with Galois group G and write X, = X ®y k;. By the Hochschild-Serre spectral sequence we
have an exact sequence

0 —— H'(G, H, (X, 1)) — Hi (X, L) —— H°(G, H{; (X, L)).

By [1, IX, Prop. 3.6 (ii)] we know that Hgt(st, L) = 0 as the restriction of L to X is isomorphic to a direct sum of copies of
the constant sheaf Z. Moreover, Hgt(st, L) = Hgt(go (X) ®x k). Let K, denote the presheaf on (Sm/k)<¢ which associates
to the spectrum Spec(l) of an étale k-algebra I the group H!(G, Hgt(Spec(l ®rks), ). If X = o5 Ko = 1y, Ko, we get from
(1.5) an exact sequence of presheaves with transfers:

0 L G F X . (1.6)

Moreover, as X is homotopy invariant, this is an exact sequence of homotopy invariant presheaves with transfers.

The functor Hom(G,, —) is obviously exact on PST(k). Moreover, Hom(G,, E) = 0 for E a strongly 0-generated presheaf.
Thus, we obtain from (1.6) an isomorphism Hom(G,;, G) ~ Hom(G,, ). It is well know that Hom(G,, G) is a lattice if G
is a semi-abelian group scheme. Using that filtered colimit of lattices is torsion free, we get also that #_; is torsion free. It is
also possible to show directly that multiplication by n is injective on #_; by noting that it is surjective on G, (for the étale
topology, up to p-torsion). O

Theorem 1.3.10. Let F be a 1-motivic sheaf. There exists an exact sequence in Hlést] (k):

0 N 4 F X 0 (1.7)
such that:

(i) & and K are 0-motivic sheaves, X = mo(F) and N is torsion free.
(ii) We have an isomorphism Hom(G,, ) >~ Hom(Gy,, ¥).

Let £ = Hom(Gy,, ). Then L is a torsion free 0-motivic sheaf and the canonical morphism £ @ G,, — § is injective. Let
A = Coker(L ® Gy — 4).

(iii) A is a filtered colimit of abelian varieties.
(iv) With rational coefficients, A is isomorphic to a direct sum of simple abelian varieties, i.e., A ® Q >~ @ Bg ® Q.

Proof. We know by Proposition 1.3.8 that F is a filtered colimit of finitely presented 1-motivic sheaves. We get (1.7) by
taking the colimit of the functorial exact sequences in Proposition 1.3.8.

Let us check the properties (i)-(iv). We get (i) by construction. To check that Hom(G,, ) >~ Hom(G,, ¥) we may assume
that # is finitely presented. Then the claim follows from the proof of Corollary 1.3.9.

Also, to show that £ ® G,;, — § is injective, we may assume that  is finitely presented. Here again, the claim follows
from the proof of Corollary 1.3.9. Property (iii) is clear from Proposition 1.3.8.

It remains to prove (iv). Let 8 C + be a maximal subsheaf of 4 that can be written as a direct sum of simple abelian
varieties (after tensoring by Q). This exists by Zorn Lemma. Assume that 8 # <. By (iii) there is and abelian variety C
and C — A whose image is not contained in 8. Dividing by the connected component of the kernel of C — +, we may
assume that C — 4 is injective (as the kernel is torsion). Consider now C N B. This is a connected subgroup of C. Let C’ be
a supplement of C N B in C. Then 8 @ C’ C +. This is a contradiction. O

Proposition 1.3.11. The embedding Hléftl (k) — Shvfrt (k) has a left adjoint Alb : Shvfrt(k) — Hléft] (k) given by the following
Alb(F) := Colim Alb(X).
X—=F
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Proof. Let ¥ € Shvtér‘(k) and € € Hl‘itl (k). Consider the following commutative diagram, ¢f. Lemma 1.1.6:

Hom(Alb(¥), §) ——— > Hom(F, &)

Hom(CXoli;n Alb(X), &) 5 Hom(()i(olim Zy(X), 8)
N —F

Lim H Alb(X Lim H Zr (X
Lim Hom(Alb(X), &) . Lim Hom(Z(X). )
We are then left to show the following: O

Lemma 1.3.12. For & € Hle; (k)

ax : Hom(Alb(X), &) — Hom(Z(X), €)
is invertible.

Proof. We may assume k separably closed by Lemma 1.3.13.As Z;(X) — Alb(X) isa surjection of étale sheaves (again
up to p-torsion), our homomorphism is injective. We only need to check that ay is surjective. Take s € Hom(Z(X), &).

By Proposition 1.3.8, we know that & is a filtered colimit of finitely presented 1-motivic sheaves. Since étale topology is
quasi-compact, s factors through § — & with &, finitely presented. We may then assume & to be itself finitely presented.
We then have an exact sequence

0 L G & 0

with L a lattice and G a semi-abelian group scheme. We deduce a long exact sequence in cohomology:
0 —— Hom(Z(X), L) —— Hom(Z (X), G) —— Hom(Z(X), ) —— H{ (X, L) ——----

As k is separably closed, L is isomorphic to the constant sheaf Z". By [1, IX, Prop. 3.6 (ii)], H;t (X, Z") = 0since X is smooth
and hence normal. It follows that s factors:

Zy(X) —>G——=>=¢&

S
By the universality of Alb(X) we get a further factorization:

s

LX) —> Ab(X) —>G——=¢

S

Then s” is mapped to s by ax. This proves the surjectivity of ay. O

Lemma 1.3.13. Let 4 and B be two étale sheaves with transfers on Sm/k. Let k C k' be a Galois extension and denote by Ay
and By the pull-backs to Sm/k’. Then we have an isomorphism:

Hom(A, B) —— Hom (sAy, By ) ®/0.

Definition 1.3.14. Denote by (—)=! : HIf.(k) — HIZ, (k) the restriction of Alb to HIf (k) C Shv,(k). It is left adjoint to the
inclusion HIZ, (k) C HIF, (k). -

Remark 1.3.15. The category Hléjl (k) is the smallest cocomplete Serre subcategory of Shvfrt(k) containing lattices and étale

sheaves represented by semi-abelian varieties. It is also the smallest cocomplete Serre subcategory containing hgt(C ) for C
smooth curves.
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1.4. n-generated forn > 2

In this section, we propose a conjecture that makes it possible to extend the results about 0-motivic and 1-motivic sheaves
to the n-motivic case. Here also assume that p is inverted and take T = ét.

Conjecture 1.4.1. For any smooth k-variety X, there exists a filtration F*'h$'(X) C F'h§(X) such that:

(A) FORS(X) = h§'(X) and F*h§'(X) = 0 for n > dim(X) + 1,

(B) The filtration is compatible with the action of correspondences, i.e., for y € Cor(X, Y) the induced morphism of homotopy
sheaves h&'(X) —— hE\(Y) is compatible with the filtration.

(C) If U is a dense open subvariety of X then hgt(U) — hgt(X) is strict for the filtration.

(D) For n > 0, the quotient FOhS'(X)/F"'hS'(X) is n-generated.

Remark 1.4.2. When X is smooth projective, the Bloch-Beilinson conjectural filtration on the Chow group of 0-cycles
induces a filtration on hy (X)g as we have ho(X)g(K) = CHo(X x K)q for any k-field K. This filtration should be the same as
the one predicted in 1.4.1. We remark also that the properties of the Bloch-Beilinson filtration imply (A) and (B) in the case
that X is projective (at least with rational coefficients). Moreover, with more effort, one should obtain (D) as well.

Lemma 1.4.3. Assume (A), (B) and (D) of Conjecture 1.4.1. Let ¥ be an n-motivic sheaf. Any subsheaf of ¥ is again n-motivic.

Proof. The proofis very similar to Lemma 1.3.4. One argues in three steps. The second and third steps are formal and extend
literally to the general case. The first step is to show that any subsheaf of # = hgt(X) is n-generated if dim(X) < n. Asin
1.3.4, we can suppose that & = Im(a : h§' (W) — hS'(X)) for some smooth variety W. As F™*1hSt(X) = 0 and a is compatible
with the filtration of 1.4.1 we get a factorization:

BEEW) ——= B W) /™ S (W) —= B (X)

\/

a

It is clear that the image of a is equal to the image of a’. This proves that & is n-generated since it is a quotient of the n-
generated sheaf h{'(W)/F" 'h{{(W). O

1.4.4
It follows from Lemma 1.4.3 that under (A) and (B) of Conjecture 1.4.1, condition (D) is equivalent to the stronger one:

(D) Forn > 0, the quotient FOhS'(X) /F™1hS'(X) is n-motivic.

We get also the following (cf. 1.3.5 forn = 1):

Corollary 1.4.5. Assume (A), (B) and (D) of Conjecture 1.4.1. Then Hléstn (k) is a Serre abelian subcategory of Hlfrt(k). Moreover,

the inclusion HIZ, (k) C HIE (k) is exact.

Proof. We just saw in Lemma 1.4.3 that Hléjn (k) is stable by subobjects. Stability by cokernels and extensions is proven in
Lemma 1.1.22. O B

Another consequence of Conjecture 1.4.1 is the following (cf. 1.3.11 forn = 1):
Proposition 1.4.6. Assume Conjecture 1.4.1 with rational coefficients. There exist left adjoints
()" HE (kg — HIE (k)
to the inclusions Hléft" K)q C Hlfrt(k)Q. Moreover, the functors (—)=* and the filtration F* are related by the following:
(#)=" = Colim hE X)) o/F" RS (X)g

and F'h§'(X)g = Ker(h§'(X)g — (h§'(X)g)=""").
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Conversely, if the adjoints (—)=" exist and the Hlitn (k)q are Serre subcategories of Hlf’rt (k) foralln > 0, then Conjecture 1.4.1
holds. N

Proof. First assume Conjecture 1.4.1. As in the 1-motivic case, for € € Hléstn(k)Q we are left to show that
ay : Hom(h§'(X)3", €) — Hom(Qq(X), &)

is surjective (note that injectivity is clear). As in the proof of Lemma 1.3.12 we may suppose that & is the quotient of a hgt(Y)Q
for Y of dimension <n. Since we are working with rational coefficients the map hg‘(Y)@ —> & isasurjection of Zariski

sheaves. It follows that for s € H°(X, §) = Hom(Qy(X), &) there exists a dense open subset U of X such that s lifts to
REH(Y) g

hEH(Y)g —>¢€
A
t: s
Que(U) — Qur(X)
As & and h§'(Y)q are homotopy invariant s and ¢ factors through h$!(X)q and hS'(U)g:

hH(Y)g —= €

hE'(U)q — hE'(X)qg

By Conjecture 1.4.1, the map t, is compatible with the filtration. It sends the subsheaf F**'h§'(U)q to F*"'hE'(Y)q = 0.

The morphism u is surjective. To see this, it suffices by Yoneda to show that Hom(hgt(X)Q, 1) — Hom(hgt(U)@, 1) is
injective for any homotopy invariant étale sheaf of Q-vector spaces t. This map is nothing but (X) — {(U) which is injective
by [10, Lemma 22.8].

By Conjecture 1.4.1(C), F**'h§'(U)q —= F"'hé'(X)q is surjective. This implies that s, maps F™'h§'(X)q to 0. This
gives a factorization:

S

/—\

Qur(X) —— 5 (X)g ——hg')o/F™ g (X)g -~ €
So

The dotted arrow is mapped to s by ay.
Conversely, suppose that the left adjoints (—)=" exist for all n > 0 and define F" as in the statement for any ¥ € Hltért(k)Q
to be the kernel of # — (#)=""'. Properties (A), (B) and (D) are clear. We need only to check (C).

First remark that the inclusion Hléstn(k)@ C HIfﬁ(k)Q is exact (as it admits a left adjoint). We will prove more generally
that for any surjective morphism:

a: § —F

the induced morphism F™*'(a) : F"t1(g) — F""1(F) isagain surjective. Let us denote by X the cokernel of F"*1(a). It is

sufficient to prove that X is n-motivic. Indeed, in this case the cokernel .£ of F**1(&) — # is n-motivic being an extension
of two n-motivic sheaves:

"
0 K L (F)="——0.

The universality of (F)=" implies that t is invertible. This forces X to be zero.
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To check that X is n-motivic, consider the diagram:

N

|

0 Frtlg & (&)=" ——0

L

0——Ftlgy ——F —— (F)" ——=0

|

K —>0

where  is the kernel of (§)=" — (F)=" which is n-motivic. By the snake lemma X is a quotient of .V, If we further assume
that Hi,(k)g C HIy(k)g is a Serre subcategory, X is even n-motivic. O

Remark 1.4.7. Proposition 1.4.6 shows that if a filtration F' as in Conjecture 1.4.1 exists then it is unique (at least after
tensoring with Q).

2. Deriving y and Alb
2.1. Generalities

We first explain a general technique to derive right exact functors between Grothendieck abelian categories. For an
abelian category A, denote by C(A) the category of complexes of objects of A, K (A) the homotopy category of C(A) and D(A)
the derived category of A. When A is Grothendieck, by a theorem of Joyal (cf. [9,6]) the category C(A) has a model category
structure where the cofibrations are the injective morphisms and the weak equivalences are the quasi-isomorphisms. In
particular D(A) exists without enlarging the universe (see also the remark of Gabber in [20, 10.4.5]). In the sequel we will
use the homological indexing for complexes.

Lemma 2.1.1. Let A be a Grothendieck abelian category and I, € C(A) a fibrant complex. For any A, € C(A) we have an
isomorphism: Homg a) (A, I.) > Hompa) (A, I.).

Proof. As A, is cofibrant and I, is fibrant we know that Homp)(A., I,) coincides with the homotopy classes of maps
in Homca) (A, I,) with respect to a fixed cylinder Cyl,, (see [15, IL.1]). When we take the cylinder to be the cone of
(id, —id) : A, — A, @ A, we get the usual homotopy relation on maps of complexes. 0O

Remark 2.1.2. Let A be a Grothendieck abelian category and I, € C(A) a fibrant complex. For any n € Z the object I,
is injective. Indeed, we may assume n = 0.Let A C B and fix A — Ip. We denote by N the kernel of the composition
A — Iy — I;. We get then a morphism of complexes:

0 A A/N 0
1_1 Io 11 12

Using the left lifting property of I, — 0 with respect to the trivial cofibration:

0 A A/N 0
0 B B/N 0

we get an extension B — Iy of A — I,.

Remark 2.1.3. Let F : A — B be an exact functor between Grothendieck abelian categories and suppose that G : B — Ais
right adjoint to F. Then:

(F,G): C(A) —= C(B)

is a Quillen adjunction for the Joyal model structures. Indeed, F preserves cofibrations and quasi-isomorphisms. In particular,
G takes fibrant complexes to fibrant complexes.
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214
Any left exact functor G : B — A between Grothendieck abelian categories admits a total right derived functor:

RG : D(B) — D(A).

Suppose that G admits a left adjoint F : A — B. We will describe a condition (see Proposition 2.1.6) which grants the
existence of a total left derived functor LF left adjoint to RG. This condition is directly inspired from [11, Def. 1.49]. From
now on, we implicitly assume our abelian categories to be Grothendieck.

Definition 2.1.5. A complex P, € C(A) is F-admissible if for any fibrant complex I, € C(B) we have an isomorphism:

Homyg a) (P, G(I,)) >~ Hompa) (P,, G(l,)).

Proposition 2.1.6. If C(A) has enough F-admissible complexes, i.e., any A, € C(A) is quasi-isomorphic to an F-admissible
complex, then F admits a total left derived functor LF : D(A) —— D(B) . Furthermore, LF is a left adjoint of RG.

Proof. Let A, € C(A) and B, € C(B). Choose quasi-isomorphisms P, >~ A, and B, =~ I, with P,F-admissible and I, fibrant.
We then get isomorphisms: HOlTID(A) (A., RG(B,)) =~ HomD(A> (P., G(,)) =~ HOITIK(A) (P., G(,)) =~ HOITIK(B) (F(P,), I,) =~
Hompg) (F(P,), B,). This shows that the covariant functor Hompa) (A., RG(—)) is co-represented by F(P,). This proves the
existence of a left adjoint toRG. O

217
We give some lemmas that help in proving the existence of enough F-admissible complexes for a Grothendieck abelian
category. The following is a direct analogue of the second statement in [11, Lemma 1.53].

Lemma 2.1.8. The full subcategory of C(A) whose objects are the F-admissible complexes is stable by cones and arbitrary sums.
Furthermore, suppose given a diagram:

ap ay an

(Po)o (Pl)o (Pn)o

of F-admissible complexes such that a, and F (a,) are injective for alln > 0. Then the colimit P, (computed in C(A)) of the above
diagram is again F-admissible.

Proof. Only the last statement needs a proof. Let I, € C(B) be fibrant and choose a fibrant replacement G(I,) =~ J,. As usual
we denote Hom, the total complex associated to the double complex of degreewise morphisms of chain complexes. We
then have two isomorphisms:

Hom, (P,, G(I,)) — Li:n Hom, ((Py)., G(,)) (2.1)

Hom, (P., J,) — > Llnm Hom, ((Pn)s, Jo)- (2.2)
We know by hypothesis that Hom, ((P,)., G(I,)) — Hom,((Py)., J.) is a quasi-isomorphism for all n. In order to conclude,
we need to know that the limits in (2.1) and (2.2) are actually homotopy colimits. This follows from the fact that

Hom, (F((Pp).), lo) = Hom, (F((Pr—1).), Lo)
and

Hom, ((Pn)e, Jo) = Home((Pr-1)., Jo)
are surjective as I, and J, are componentwise injective. 0O

Corollary 2.1.9. Keep the notation as above. Suppose we have a generator E € Awhich is F-admissible as a complex concentrated
in degree 0. Then C(A) has enough F-admissible complexes.

Proof. For an object A € A, we define a complex P(A), with a quasi-isomorphism P(A), — A such that:

e P(A), =0forn <0,
o P(A)O = ]_[E—>A E,
e and forn > 0:
P(A) = I E.
E—Ker(P(A)p—1—>P(A)n—2)
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The complex P(A), is functorial in A. We define P(K), for a bounded complex K = K, as the simple complex associated
to P(K,).. If K, — L, is a monomorphism of complexes, P(K), — P(L), is then a split monomorphism in each degree. In
particular, F(P(K),) — F(P(L),) is injective.

Now, let K = K, € C(A). We may write K = ColimuenT>—_n0<n(K) where, 7<_, is the good truncation and o<, is the bad
one. We will show that ColimuenP (t>_n0<n(K)), is F-admissible. By the last statement of 2.1.8, it suffices to show that each
P(t>_no<n(K)), is F-admissible. We are thus reduced to the case where K, is bounded. Using the stability of F-admissibility
by mapping cone (cf. 2.1.8), we may further suppose that K = A[0] is concentrated in degree zero.

To show that the complex P(A), is F-admissible, we write it as the colimit of o<, (P(A),) and use again 2.1.8. O

Lemma 2.1.10. Let P € A such that Homp, (P[0], —) commutes with arbitrary sums. Then P is F-admissible if and only if for
any injective I € B we have Ext'(P, G(I)) = 0 for i > 0.

Proof. The condition is clearly necessarily as I[0] is a fibrant complex. Let us show that it is sufficient.
For a fibrant complex I, in C(B) one has

I, = Colim(Holimo<_n(o>m(1,)))
n m

with o<, and o>, the bad truncations of complexes. We are then reduced to the case where I, is a bounded complex
of injective objects. By induction we might further assume I, concentrated in one degree. That Homga) (P[O], G(I)[n]) —
Hompa) (P[0], G(I)[n]) is invertible is clear if n < 0 and follows from our assumptionof n > 0. O

2.2. The functors Lo}y
As an application we get:

Lemma 2.2.1. The functor
Ons = Rony : D(Shv( (k)) —> D(Shv{,.(k<y))
has a left adjoint Lo, : D(Shv (k<n)) — D(Shv{.(k)).

Proof. We need to check the existence of enough o, -admissible complexes in C(Shv{, (k<,)). By Corollary 2.1.9 it is sufficient
to prove that for any smooth k-variety X of dimension <n, the complex concentrated in degree zero Z <, (X) is o, -admissible.

Let 1, be a fibrant complex in C(Shv{, (k)) and choose a fibrant resolution oy,44 — . .By the commutative diagram:

Homy sz (k<p)) (Z<n(X), Onsede) —— HOM(shyZ (k<p)) (Z<n (XD, o)
/

We need to show that a is invertible. But by Lemma 2.2.2 we have:
Homg shg, (k) (Zer (X)), Lo) H (X, (La)ix,)

and also (see Remark 2.2.3)

Homy s (kep)) (Z<n(X), Fo) = HOX, (F0)ix,)

Homy snvf, (k) (Zer (X)), Lo)

where X; is the category Et/X of X-étale schemes together with the t-topology.
The result follows then from the fact that (4,)x, is quasi-isomorphic to (§¢)x,. O

Lemma 2.2.2. Let i, € C(Shv{.(k)) be a fibrant complex. Then
Homyg shg, (k) (Zer (X)), Lo) = H (X, (La)ix,)
with H* (X, —) the t-hypercohomology of X.

Proof. This is due to Voevodsky. Let us recall quickly his proof. We may assume t € {Nis, ét}. The Nisnevich and étale
cohomology can be computed using Cech hypercovers. Giving a 7-cover f : X’ — X by an étale morphism, we need
to show that:

I'X,40) — ' (C(f), 1.) (2.3)
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is a quasi-isomorphism (where 6(f) is the Cech hypercover associated to f). The morphism (2.3) is equal by adjunction to:
Hom, (Ze(X), 1) — Hom, (Z(C(f)), 4).

As J is fibrant, we only need to show that Ztr((t‘(f)) — Zy(X) is a quasi-isomorphism of complexes of t-sheaves. This is
true by [10, Prop. 6.12]. O

Remark 2.2.3. The statement of Lemma 2.2.2 holds for Shv{,(k<,). The same proof works with obvious changes.

Lemma 2.2.4. The unit of the adjunction id — Ron:Lo, is invertible.

Proof. As a triangulated category with arbitrary sums D(Shvy, (k<)) is generated by Z,(X)[0] for X € (Sm/k)<,. As both
Rons and Lo’ commute with arbitrary sums, we only need to prove that:

Z<n(X)[0] —— Rop.Lo, Z<n(X)[0]

is invertible. This follows immediately from Lo,y Z<,(X)[0] = Z(X)[0] as Z<,(X)[0] is o -admissible. O

Corollary 2.2.5. The functor Lo,’ : D(Shvg(k<s)) —> D(Shv.(k)) is a fully faithful embedding. It induces an equivalence of
triangulated categories between D(Shvg,.(k<y)) and the triangulated subcategory of D(Shvy,(k)) stable under arbitrary sums and
generated by the complexes Z(X)[0] for X € (Sm/k) <p.

Proof. Follows directly from Lemma 2.2.4. O

2.2.6. Motivic complexes

Let M be a model category (satisfying some technical assumptions such as being cellular and proper on the left) and S
be a set of arrows in M. Then the Bousfield localization Lg(M) exists. As abstract categories, Ls(M) = M, the cofibration
are the same and S is contained in the class of weak equivalences of Lg(M). Moreover, the identity functor M — Lg(M)
is a Quillen functor. This means that Ho(M) — Ho(Ls(M)) admits a right adjoint which identifies Ho(Ls(M)) with the full
subcategory of Ho(M) consisting of S-local objects (cf. [8, Th. 4.3.1]). In other words, we can define Ho(Ls(M)) (up to an
equivalence of categories) as being the full subcategory of S-local objects in Ho(M). Up to this equivalence of categories,
Ls : Ho(M) — Ho(Ls(M)) becomes the localisation functor and is the left adjoint to the inclusion.

The triangulated category DMg«(k) is the homotopy category of a Bousfield localization Ls (M) where M is the category
of complexes of t-sheaves with transfers and

S = {maps of the form Z (Ay) — Z(X) and their shifts}.

Therefore DM (k) is the full subcategory of D(Shv{,(k)) whose objects are the Al-local complexes (called also motivic
complexes), i.e., these are complexes +4, such that:

Hompspy, k) (Zir (X), Ae[m]) = HomD(Shvt’r(k))(Ztr(A)l(), Al[m]).

We denote by L1 : D(Shv,(k)) —— DMZ(k) the A'-localization functor which is left adjoint to the obvious inclusion.

For bounded above complexes one can also use [10, Lect. 14]. One can easily see that, for T = Nisnevich and k perfect,
the resulting triangulated category of bounded above (effective) motivic complexes is fully embedded in DM« (k). In fact,
one can use the description of these categories as full subcategories of D(Shvy, (k)) (recall that D~ (Shvy,(k)) C D(Shv{,(k)))
and just check that a bounded above A!-local object is also an A'-local object of DMz (k) (this is equivalent to say that the

complex is bounded and the homology sheaves are homotopy invariants by Voevodsky’s theorem on the A'l-invariance of
cohomology).
The object L1 (Z: (X)) will be denoted by M(X) for any smooth k-variety X. This is the homological motive of X.

Remark 2.2.7. The category DM (k) admits arbitrary sums. Moreover, as a triangulated category with arbitrary sums,
DMZ(k) is generated by L,1(X) with X € Sm/k.If t € {co, Nis} or k has finite cohomological dimension, the inclusion

DM;(k) C D(Shv{ (k)) commutes with arbitrary sums. This follows easily from the commutation of RHom(A,l, —) with
arbitrary sums. Moreover, the generators L,1(X) are compact so that DMZ(k) is compactly generated.

Definition 2.2.8. We denote by DMZ (k) the triangulated subcategory of DM¢(k) stable under arbitrary sums generated
by M(X) for X € (Sm/k)<,. This is the triangulated category of n-motives.

Remark 2.2.9. The functor L1 o Lo, : D(Shvg (k<p)) — DMg(k) takes values in the subcategory DML, (k) C DM (k).
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2.3. The functor Ly

Lemma 2.3.1. The functor Lo induces an equivalence of triangulated categories D(Shvy,(k<o))[1/p"] =~ DM;o (k)[1/p*] where
p® is 1 unless T = ét; in this case, it is the exponential characteristic of the field k.

Proof. By Corollary 2.2.5, the functor o = Loy : D(Shv{;(k<o)) —> D(Shvy,(k)) is a fully faithful embedding and induces an
equivalence with the triangulated subcategory D(Shvtr(k))go of D(Shvg,(k)) w1th arbitrary sums and generated by Z (I/k)[0]
with [ a finite separable extension of k.

We need only to prove that D(Shv{, (k)) <o coincides with DMZ, (k). It is sufficient to show that the objects of D(Shv{,(k)) <o
are A'-local. For this, we remark that any complex +4, in D(Shv{,(k)) <o is the homotopy limits of the bounded complexes
T<nO>_nA. As the property of being A'-local is stable under homotopy limits we may assume .4, to be a bounded complex
of 0-generated sheaves. In fact, we may assume that 4, is concentrated in degree 0 with value the 0-motivic sheaf .£.

We are left to show that .£ is strictly A!-invariant. For T # ét there is nothing to prove as the higher cohomology groups
with values in £ vanish. For T = ét the result follows from Proposition 1.1.2. O

Proposition 2.3.2. Assume one of these two conditions:

(a) T # ét,

(b) we work with rational coefficients.

The functor 7 admits a total left derived functor:

Lrg : D(Shv{ (k)) —— D(Shv (k<o))
which is left adjoint to o : D(Shv{.(k<o)) — D(Shv{ (k)).

Proof. Using Proposition 2.1.6 we need to show the existence of enough m§-admissible complexes. We shall prove that
Zy(X) is j-admissible for any smooth k-variety X. We remark that under one of the above two conditions, Z (X) is compact.
If follows from Lemma 2.1.10 that we need only to check the vanishing of Ext' (Z (X), . d) = 0fori > 0and { injective.

The result follows from the vanishing of higher cohomology in any strongly 0-generated t-sheaf .£: for t # ét this is
clear; for T = ét, étale cohomology with value in the Q-sheaf .£ is also zero in higher degrees. O

Corollary 2.3.3. Under the conditions of Proposition 2.3.2 the inclusion DML (k) C DMeff(k) admits a left adjoint

Lo : DMZz(k) ——> DMLy (k) .

Proposition 2.3.4. Under the conditions of Proposition 2.3.2, the functor Ly takes compact objects to compact objects.

Proof. This follows formally from the fact that the functor admits a right adjoint that commutes with arbitrary sums. 0O

2.4. The functor LAlb

In this section we construct the functor LAlb for non necessarily constructible (i.e., compact or geometric) motives. This
extends the functor LAlb constructed in [4]. In this sub-section we assume that one of the following conditions is fulfilled:

e 7 = Nis and the exponential characteristic p of k is inverted,
e 7 = ét and we work with rational coefficients.

Theorem 2.4.1. Under one of the above Conditions we have:
(i) The composition ¢ : Ie‘] (k) C Shv f(k) C Shvf.(k) admits a right derived functor Re : D(HIEt] (k)) C D(Shv{(k)).

Moreover, with rational coefficients Rt is a full-embedding with essential image the subcategory DMet] (k).
(ii) The composition:

Shvg, (k) — > Shvét (k) —2> HIE,

which we still denote by Alb and which is left adjoint to «, admits a total left derived functor LAlb : D(Shvg,(k)) —— D(HI 1)

which is left adjoint to R.. Moreover, with rational coefficients, the counit of the adjunction LAlb o Rt S id is invertible.
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(iii) The functor LAIb factors through the A'-localization functor:

D(Shvg, (k) —— D(HI 1 (k)
l 7
Ly
DM (k)

The dotted functor will be also called LAlb.

The last assertion of (ii) implies the last assertion of (i). The existence of the right derived functor Rt is clear as HI 1(k) is
a Grothendieck abelian category and hence admits enough fibrant complexes.

To prove the existence of LAlb we will prove that there are enough Alb-admissible complexes in Shvy, (k). We use Fulton’s
definition of algebraic equivalence and denote NS’ (X) the group of codimension r cycles modulo algebralc equivalence.

Definition 2.4.2. A smooth k-scheme X is said to be NS'-local if NS" (Xy,) = O where k/k is a separable closure of k and
st = X Qxks.

Remark 2.4.3. When k is separably closed and the exponent characteristic of k is inverted, one can show that « € CH" (X)
is algebraically equivalent to zero if and only if there exist a smooth projective curve C, two rational points xq, x; € C(k)
and B € CH'(C x X) such that (xp x idx)*B8 = 0and (x; x idx)*8 = «.

Proposition 2.4.4. Let X be a smooth k-scheme which is affine and NS'-local. Then Z(X) is Alb-admissible.

Proof. The object Z(X) is compact if T = Nis or if we work with rational coefficients. By Lemma 2.1.10 we need to check
that Hy; (X, £) = O for * > 0 and { injective in HIEt1 (k). Let £ = Hom(Gy,, £) = 4_ be the Voevodsky contraction of {; by

Corollary 1.3.9 this is a torsion free 0-motivic étale sheaf. Form the exact sequence in HIN‘S(k)
0> N—>LRYRG, >4 —> K — 0.

As Hom(G,,, —) is an exact functor, it follows that & and X are birational homotopy invariant sheaves with transfers.
We deduce that Hy; (X, &) = Hf;,(X, K) = 0 for * > 0. We have also H};,(X, £ ® Gr,) = 0 for * > 1.1t follows that for
* > 1one has Hy; (X, 4) = 0 and we get a surjection:

HY (X, £ ® Gp) > Hy (X, £ ® G/ N) — H (X, 1) .
Using the Leray spectral sequence H <X, RIOF) = Hp+q(X F) for the morphism of sites 6 : Xz — Xnis we deduce as
usual an inclusion H} (X, £) C H] t(X ). In particular we need only to show that the map:

Hét(X5 aét(°C ® Gm)) - Hét(x, l)

is zero.
As X is affine and NS'-local, by Lemma 2.4.5 one has an isomorphism:

Ext! e (AID(X), Get(L ® Gpn)) = Hi (X, ter(L ® Gi)).

HIE (o
Consider the commutative square:

Ext' (AIb(X), as: (£ ® G)) — Ext!(AIb(X), £)
HE (X, aet (£ ® Gp)) ——— HL (X, 1)

To conclude, remark that Ext! (Alb(X), 4) = 0 since Alb(X) is a 1-motivic sheaf and { is injective in HI‘“1 (k). O

Lemma 2.4.5. Let X be a smooth affine scheme which is NS'-local. For any 0-motivic étale sheaf .£ which is torsion free, the
obvious morphism:

Ext! (AIb(X), £ ® Gp,) — HL (X, £ ® Gp) (2.4)

is an isomorphism. (Here, we write £ ® G, for the tensor product of homotopy invariant étale sheaves with transfers, i.e., what
was written ag (£ ® Gy,) in the proof of Proposition 2.4.4.)
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Proof. We break the proof into three steps. The first one is a reduction to the case of a separably closed base field:
Step 1: Fix k C ks a separable closure of k and denote by Gy its Galois group. We assume that the lemma holds over ki, i.e., the
morphism of G,-modules:

EXt] (A]b(st), DCks ® Gm) I H;t(XkS’ °Ck5 ® Gm)

is invertible. On the other hand, the universality of the Albanese scheme gives the following isomorphism of G-modules:
Ext®(AIb(Xy,), Li, ® Gm) — Hg (X, Li, ® C).
Using the morphism of the two Hochschild-Serre spectral sequences:

HP (G, ExtT(AIb(Xy,), Lk, ® Gm)) =—=> Ext"TI(AIb(X), £ ® Gyp)

| |

HP (Gy, HE, (Xis» oLk ® Gp)) =——==HL (X, £ ® Gp)

ét
we obtain a morphism of exact sequences:

0 0
Ext'(AIb(X), £ ® Gp) ———— HL (X, £L ® Gp)

H (G, Ext (AIb(Xy,), Lk, ® Gm)) —> HO(Gr, H Xk, Lis ® Gim))

Hl(Gk, EXtO(Alb(st), Ly, ® G)) — Hl(Gk» Hgt(st, Lk, @ G))

By the five lemma we are then done.
Step 2: From now on, we assume our base field k to be separably closed. £, being torsion free, is a filtered colimit of free

lattices. We may thus assume .£ to be the constant sheaf Z.
First prove the surjectivity of (2.4), i.e.,

Ext!(AIb(X), G,) — Hi (X, Gp) = Pic(X).

Let &; be a line bundle on X. As X is NS!-local, we know that the class [&;] € Pic(X) is algebraically equivalent to zero. By
Remark 2.4.3 there exist a smooth projective curve C with two points xq, x; € C(k) and a line bundle & on X xj C such that
Exxx, is free and Ejxxx, =~ &1.

Let us choose a trivialization t : Oxxx, 2 Exxx. We get then an element (€, t) € Pic(X x C,X x xo) which by
Voevodsky [17] gives a correspondence (unique up to homotopy) « € Cor(X, C — Xg). Recall the construction of «. As X
is affine, X x xo admits an affine neighborhood in X x C (for example X x (C — x) for any closed point x € C different from
Xp). It follows that it is possible to extend the trivialization ¢ to a trivialization t' : @ ~ & over an open neighborhood of
X X Xo. The Cartier divisor o defined by t’ has support inside X x (C — Xq). As it is closed in X x C, it is proper and affine
over X. This means that « is a finite correspondence from X to C — x,.

It follows from the construction of « that the image of [x;] € Pic(C — x¢) along the map «* : Pic(C — xo) — Pic(X) is
equal to [&;].

4 Now, Ex iglduces a section o € Alb(C — xp)(X) which by the universality of the Albanese scheme factors:

o

X — Alb(X) —— Alb(C — xo)
It is clear that [&;] is the image by:
Ext' (AIb(C — Xg), Gm) — Ext' (AIb(X), Gp) — Pic(X)
of the class of the extension:
0 —— G — AIb(C — {xg, X1}) — AIb(C — x9) ——= 0.

This proves that [&;] is in the image of Ext' (AIb(X), Gp) — Pic(X) = HL (X, Gpy).
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Step 3: Finally, we prove the injectivity of (2.4) (still for .£ = Z). Suppose given an extension:

0 Gm € Alb(X) — 0.

& is then represented by a commutative group scheme. Suppose that the class of this extension goes to zero by (2.4). This
means that the G, torsor X xamx) € splits. Fix a splitting X — X xapx) € and consider the composition:

X —->X XAlb(X)g — &.

By the universality of the Albanese scheme we get a morphism of group schemes Alb(X) — & which is clearly a splitting of
our initial extension. O

Corollary 2.4.6. C(Shv:(k)) admits enough Alb-admissible objects.
Proof. It is sufficient to show that any k-variety admits a Zariski hyper-cover by NS'-local affine varieties. As
NS'(Uy,) —= NS!(V},) is surjective for any open subscheme V of a smooth k-scheme U, it is sufficient to prove that

every smooth k-variety X can be covered by NS'-local varieties. Choose a system of generators as, . . ., a, of the finitely
generated module NS’ (Xk,) with g; representable by a very ample line bundle «£; on X;. For any point x € X, one can find
divisors D; C X, representing .£; and which are disjoint from x @ ks. Denote by D} the image of D; by Xy, — X. It follows
that X — U; D} is an NS'-local neighborhood of x. O

Proof of Theorem 2.4.1. Corollary 2.4.6 shows the existence of a left adjoint LAlb to Rt by the general Proposition 2.1.6. Let
us shows that LAIb factors through the A'-localization functor Ly1. For this recall that:

Ly : D(Shvi (k)) — DM (k)

identify DM with the Verdier localization of D(Shv{,(k)) with respect to the triangulated subcategory J stable by infinite
sums and generated by the complexes:

Qx = [0 —— Zu(A}) Ze(X) 0]

Remark that § is also generated by @x with X supposed NS'-local. Indeed by the proof of Corollary 2.4.6, every smooth k-
variety admits a Zariski hyper-cover by NS'-local affine open subvarieties. By universality it suffices to show that LAlb sends
these complexes to 0. The result follows then from the well known fact that Alb(A}( = Alb(X).

To finish the proof, we show that the counit LAlb o Rt — id is invertible with rational coefficients. As both LAIb and
Rt commutes with arbitrary sums we need only to check that:

LAIb(ho(C)) — ho(C)

with C a smooth open curve (use that Rt >~ ¢ with rational coefficients). Recall that Z(C) — hgt(C) is an A'-weak
equivalence by [18]. As every affine smooth curve is NS'-local we are left to check that Alb(C) =~ hgt(C ), which is clear.
O

Proposition 2.4.7. With rational coefficients, the functor LAIb takes compact objects to compact objects.

Proof. By the proof of Corollary 2.4.6, every k-variety admits a Zariski hypercover by NS!-local affine open subvarieties.
It follows that the triangulated category DMg’f‘fS(k)Q is compactly generated by the motives of affine NS'-local smooth k-
schemes X. But for such X, we have by construction LAIb(M(X)) = Alb(X) which is compact in D(Hli‘] (k)). Indeed, with

rational coefficients Alb(X) is a direct factor of the motive of a smooth curve which is actually compact in DM’:fifS (k)@. Our
claim follows from the fact that the inclusion D(Hlést1 (k)) C DML"fifS (k)@ commutes with infinite sums. O

(k) — DME, (k).
This functor coincides with the one defined by a completely different method in [4, Section 5]. Indeed, they are both left
adjoint to the obvious inclusion.

Remark 2.4.8. By Proposition 2.4.7 we have, with rational coefficients, a functor LAIb : DMitffygm

Corollary 2.4.9. Leti : HIéS‘1 (k) C Shvfrt (k) be the obvious inclusion. Then Ri is a full embedding (even with Z[1/p]-coefficients).

Proof. With rational coefficients, this follows from Theorem 2.4.1 as Ri coincides with R: up to the equivalence DMigf(k) o~
DMEfifS(k) (still with rational coefficients). By the Suslin rigidity theorem [10, Th. 7.20], the torsion objects of Hléftl (k) are

simply the o of torsion étale sheaves with transfers on (Sm/k) <. It follows from Lemma 2.3.1 that Ri restricted to torsion
objects is a full embedding. We conclude now using [4,B.2.4]. O
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Proposition 2.4.10. The cohomological dimension of the Z[1/p]-linear abelian category Hléj] (k) is bounded by 2 + cd(k).
Moreover, with rational coefficients, this cohomological dimension is 1. B

Proof. Let us define cd’ (k) to be 2 + cd(k) or 1 if the coefficients ring is Z[1/p] or Q. We need to show that Ext' (4, 8) = 0
for 4 and B two 1-motivic sheaves and i > cd’ (k). We split the proof into two steps.

Step 1: Using the long exact sequences of Ext-groups associated to

0 &0 € o (8) 0

for &€ = 4 and & = B we may assume that each of 4 and B is either 0-motivic or connected (we say that a sheaf 1 is
connected if 77o(+) = 0).

The case where 4 and 8 are both 0-motivic follows immediately from the Hochschild-Serre spectral. We get actually
the more precise statement Ext' (4, 8) = 0 fori > cd'(k) — 1.

We now assume that one of the sheaves 4 or 8B is a connected 1-motivic sheaf. Let & be a connected 1-motivic sheaf
and &, C € its maximal torsion subsheaf. Then by Suslin rigidity theorem [10, Th. 7.20] we know that &, is a 0-motivic
sheaf. Moreover, using the fact that & is connected, we deduce that &' = & /&, is uniquely divisible (i.e., takes values in the
category of Q-vector spaces). Using the long exact sequences of Ext-groups associated to

0 8»[01- 8 8/ O

for & € {4, B} not 0-motivic, we may assume that each of 4 and B is either, 0-motivic or a uniquely divisible connected
1-motivic sheaf. The case where both 4 and 8B are 0-motivic has just been treated. We may then assume that at least one
of 4 or 8 is a uniquely divisible connected 1-motivic sheaf. . )

Suppose that +4 is a 0-motivic sheaf. Then 8 is uniquely Q-divisible and we have Ext' (A, 8) = Ext' (A ® Q, B). As s is
a 0-motivic sheaf, 4 ® Q decomposes of as a direct sum of simple 0-motivic sheaves of Q-vector spaces 4 @ Q = @, Aq
where A, is a direct summand of some Q. (Spec(l,)) with I, /k a finite separable extension. Using that Ext'(A, 8) =
[, Ext'(4q, B) we may assume that 4 = Q(Spec(l)) for some finite separable extension I/k. But then we get (using
Corollary 2.4.9):

Ext'(Qq(Spec(]), B) = H (I, B) = 0
fori > 0 (and in particular fori > cd’(k) — 1) as 8 is uniquely divisible.
Step 2: By Step 1, we may assume that # is a uniquely divisible and connected 1-motivic sheaf.
Let £ = Hom(G,,, +). This is a 0-motivic sheaf by Corollary 1.3.9. Consider the exact sequence of étale sheaves
0> N> LYIG, > A— Ay —> 0.

Then V is 0-motivic and 4 is a birational, uniquely divisible and connected 1-motivic sheaf. Using the long exact sequence
of Ext-groups we need to consider the following two cases:

(1) A =L Q Gp/N with £ and N two uniquely divisible 0-motivic sheaves,
(2) 4 = Ay is a birational, uniquely divisible and connected 1-motivic sheaf.

Using other long exact sequences of Ext-groups, one easily sees that (1) and (2) follow from the following properties:
(i) If & is 0O-motivic and uniquely divisible then Exti(N, B) =0fori> cd'(k) — 1,
(ii) If «£ is 0-motivic and uniquely divisible then Ext'(£ ® G, 8) = 0fori > cd’(k),
(iii) If A is a birational, uniquely divisible and connected 1-motivic sheaf then Ext' (4, 8) = 0 fori > cd’(k).
Property (i) has been proved in Step 1. For (ii), we can write £ as a direct sum .£ = @, £, where £, are direct summand

of Q¢ (Spec(ly)) with I, /k finite separable extensions. It is then sufficient to show that Exti(Qtr(Spec(l)) ® Gp, B) = 0 for
I/k finite and separable and i > cd’(k). Consider now the exact sequence

00— ZE&(D) ® ptoo — ZE(I) ® Gy —> Qu(]) ® Gy —> 0

where we wrote [ in place of Spec(l) and .« for the torsion subsheaf of G,. Using the case when w4 is 0-motivic, settled in
Step 1, we are reduced to show that Ext'(Z'(l) ® Gy, B) = 0 fori > cd'(k). Consider now the curve C; = (A,l< —0) Ryl
The sheaf th (D) ® Gy, is a direct summand of the motive M(Cy). Using Corollary 2.4.9, it is sufficient to show that

Homgyec 4, (M(C1), BIi]) = H (C1. B) =0

fori > 2 + cd(k) (resp.i > 1 with rational coefficients). The integral case follows from [1, X, Cor. 4.3] as C; has Krull
dimension 1. With rational coefficients, we use that H; (C;, —) = Hy;(Cy, —) and the well known fact that the Nisnevich
cohomological dimension is bounded by the Krull dimension.

For (iii), we use Theorem 1.3.10 to get an exact sequence

0 T A A 0
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with 7 a uniquely divisible 0-motivic sheaf and #’ a direct sum of abelian varieties tensored by Q. Using the long exact
sequence of Ext-groups and the case of 0-motivic sheaves, settled in Step 1, we may assume that 4 = ®g Ag @ Q with Ag
abelian varieties. We then have Ext (4, 8) = ]_[ﬁ Exti(Aﬂ ® Q, 8) so we may assume A = A ® Q for some abelian variety
A. One can find an irreducible smooth and projective curve C, having a rational point ¢ such that A ® Q is a direct factor of
hg‘(C , €) ® Q. Using the exact sequence

0 — hg(C, ©)tor —> hG'(C,c) —h'(C,c) ®Q —0

and the fact that hét(C, C)tor 1S a direct factor of M(C), we reduce to show (by Corollary 2.4.9) that
Homyec ) (M(G2) ® Q. B[i]) = HL (G, 8) =0

fori > 2 4 cd(k) (resp.i > 1 with rational coefficients). We then argue as for (ii). O

Remark 2.4.11. With Z[1/p]-coefficients (and T = Nis), Rt is not the composition of the right derived functors of the
inclusions i : Hléj] (k) C Shvfrt(k) andj : Shvfrt(k) C Shv{ (k). Let us suppose for simplicity that k is separably closed
and pick a prime £ invertible in k. We will prove that Ri(Z/¢) is a bounded complex, whereas Rj o Ri(Z/¢) is unbounded.

Let X be an affine smooth and NS'-local k-scheme. We have by adjunction H'(RI" (X, Ri(Z/£))) = Ext'(Alb(X), Z/£).
By Proposition 2.4.10, these groups vanish for i > 2. It follows that the complex Ri(Z/¢) is bounded above by 2 as
h_i(Ru(Z /L)) is the Zariski sheaf associated to U ~» H!(RI"(U,Ri(Z/£))) and every smooth scheme U can be covered
by NS!-local open affine subschemes. On the other hand, Ri(Z/¢) = 7Z/¢ and Rj(Z/¢) is the object of DMEf'fs(k)
that represents étale cohomology. This object is unbounded. Indeed there are varieties Y of dimension d such that
colimycyH*(RI"(V, Rj(Z/¢))) = HL.(k(Y), Z/€) # 0.

2.5. The non-existence of a left adjoint forn > 2

Here we work with rational coefficients. We take T = Nis and drop the corresponding indexing in the notations. A natural
generalization of the previous construction is the following. Consider the smallest triangulated subcategory DM, (k) of
DMe (k) stable under infinite sums and containing M(X) for X smooth of dimension <n. Is there a left adjoint to the obvious
inclusion? Unfortunately, the answer is negative as pointed out (without proof) by Voevodsky cf. [18, Section 3.4].

In this section we provide a proof of this fact, which is probably similar to Voevodsky’s. Note however, that our argument
does not use the motivic conjectural picture. We assume that such an adjoint exists and denote it by @, : DMeg(k) —
DM, (k). We will derive a contradiction. As for the casesn = 0, 1, the functor @, takes constructible motives to constructible
motives. Indeed, the obvious inclusion DM, (k) C DM (k) which is right adjoint to ¢, commutes with arbitrary sums. Note
the following:

Lemma 2.5.1. Assume our base field k is algebraically closed and of infinite transcendence degree over Q. Let M be a constructible
motive. If @, exists then for any finitely generated extension k C K the obvious map ®,(Myx) — (®,(M)) is invertible.

Proof. Note that the obvious morphism is the one we get by adjunction from the pull-back along k C K of M — &,(M). By
replacing M by the cone of M — &,(M) we may assume that @,(M) = 0. We then need to prove that &, (M) = 0.

Consider the universal map u : My — @,(My). As both Mg and &, (M) are constructible, this map is defined over
a smooth variety V with generic point Spec(K). This means that there exists an object A € DM,(V) and a morphism
U : My — Ain DMg;(V) whose pull-back to k(V) is u.

Now remark that for any closed point x € V, the pull-back along x of U is a morphism i, : M — A, with Ay € DM, (k).
As @,(M) = 0, the map 1, is necessarily zero. As k has infinite transcendence degree over Q and because M and A are
constructible this implies that u = 0. This forces @,,(My) to be zero. O

We have:

Corollary 2.5.2. Assume that k is algebraically closed with infinite transcendence degree over Q. Let M be a constructible motive.
If @, exists then the obvious morphism M — &, (M) induces an isomorphism

Hom(&, (M), Z(r)) — Hom(M, Z(r))

forr <n.

Proof. To prove this, it suffices to show that for any finitely generated extension k C K and any n € Z the morphism:
Hom(Spec(K), Hom(®,(M), Z(r))) — Hom(Spec(K), Hom(M, Z(r)))

is invertible. By adjunction and Lemma 2.5.1, the above map is the same as:
Hompp i) (Pn (Mg ), Z(1)) — Hompmqi) (Mx, Z(1)).

As Z(r) is in DM, (K) C DM<,(K) this is true by the universality of My — @,(Mg). O
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Having this, it is easy to provide a contradiction. Indeed, for a smooth and projective variety X of dimension <n one has
Hom(M(X), Z(n)[2n]) >~ M(X) (n — dim(X))[2n — 2 dim(X)]

by [18, Cor. 4.3.4]. As the triangulated subcategory of constructible motives in DM, (k) is generated by motives of smooth
and projective varieties of dimension less than n, we obtain that Hom(M, Z(n)) is constructible for any constructible object
of DM, (k). We deduce from Corollary 2.5.2 that for any constructible motive M, Hom(M, Z(n)) is constructible. This is
false for M = M(X) with X a generic quintic in P* and n = 2. Indeed, the complex Hom(M(X), Z(2)[4]) is concentrated in
(homological) positive degree and its zero homology sheaf ho(Hom(M(X), Z(2)[4])) is CH?X (see 3.1.1). By Theorem 3.1.4,

we get that Lyro(Hom(M(X), Z(2)[4])) >~ Lomg (CH}X) = NS?X. The latter is not finitely generated. For more details, see [3].
Despite the above negative result, we expect that the following conjecture is true but also quite difficult.

Conjecture 2.5.3. With rational coefficients, DM <, (k) is exactly the full subcategory of motivic complexes whose homology
sheaves are n-motivic in each degree. In other words, the homotopy t-structure on DM (k) restricts to a homotopy t-structure on
DM ., (k) whose heart is Hl <, (k). Moreover, DM <, (k) has cohomological dimension <n with respect to the homotopy t-structure,
i.e, for ¥ and ¢ n-motivic sheaves, we have Hompy (¥, 4[i]) = O for i > n.

3. Computations and applications

One of the main tasks of this work is to extend the functor LAlb defined in [4] to not necessarily constructible motives in
order to apply it to motives of the form Hom(Z(n), M(X)). Note that such motives are not constructible in general (e.g., X
a generic quintic in P* and n = 1, ¢f. [3]). In this section we use the functors Ly and LAlb to produce some invariants of
algebraic varieties. We begin with some computations.

3.1. Chow and Néron-Severi sheaves

Let X be a smooth scheme. Recall that CH" (X) denotes the group of codimension r cycles in X up to rational equivalence.
Acycle « € CH'(X) is said algebraically equivalent to zero if there exist a smooth connected variety U, a zero cycle Y, n;[u;]
in U of degree zero and an element 8 € CH' (U x X) such that @ = >, n;(u; x idx)(u; x idx)*B.

3.1.1

Recall that the Néron-Severi group NS’ (X) of codimension r cycles in X is the quotient CH' (X) /CH' (X) 4o With CH" (X) g
the subgroup of algebraically equivalent to zero cycles. We denote by CH;;(’ the t-sheaf associated the presheaf U ~-

CH' (U % X). We define also a r-sheaf NS}y in the following way:

Definition 3.1.2. Suppose that U is connected. A cycle « € CH" (U x X) is algebraically equivalent to zero relatively to U (or
U-algebraically equivalent to zero for simplicity) if there exist a smooth connected U-scheme V — U, a finite correspondence
> im[T;] € Cor(V/U) of degree zero and B € CH'(V x; X) such that o = ), n;j(t; x idx).(t; x idx)*B with ¢t; the finite
surjective projection T; — U. When U is not connected, we say that « is algebraically equivalent to zero relatively to U if
this is the case of the restrictions to Uy X X for Uy any connected component of U.

We denote by NS?’XZ the t-sheaf associated to the presheaf

U~ CHr(U XkX)/CHr(U ><kX)U-alg
where CH" (U x X)y-alg is the subgroup of cycles that are algebraically equivalent to zero relatively to U.

Proposition 3.1.3. The morphism CH;‘Xr — nO(CH;;(’ ) factors uniquely:

T

CHjy —— NSJy - -7 > mo(CH)

Proof. The uniqueness of s is clear as the first map is surjective. Let us prove the existence. For this, we need to show that for

any smooth U the subgroup CH" (U x X)y.aig g0€s to zero by the map CI-I;’Xr U) - 7r0(CH;’Xr (U)). Letr € CH' (U X X)y-alg-

By definition, there exists a smooth connected U-scheme V, a 0-correspondence ), m[T;] € Cor(V/U) of degree zero and

an element 8 € CH'(V x X) such that 8 = Zi ni(t; x idy).(t; x idx)* B with t; the finite surjective projection T; — U.
The cycles @ € CH' (U x; X) and 8 € CH" (V x X) induce morphisms of t-sheaves:

hy(U) — CH)Y and hg(V) — CHJy.
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Moreover, the finite correspondence Y, n;[T;] gives a morphism h{(U) — h{(V) and the equality oo = Y, m;(t; X idx).(t; x
idy)* B is exactly the commutativity of the triangle:

hg(U) — CHJ
hy (V)

We need to show that the composition

hE (U) CHy mo(CH)
is zero. For this, we can show that the composition

h (U) hg (V) hg (770 (V))

is zero. This follows immediately from the fact that ), n;[T;] is of degree zero and that V is connected. O

Theorem 3.1.4. Under one of the following assumptions:

(a) kis separably closed and the exponential characteristic of k is inverted,
(b) T = ét and the exponential characteristic of k is inverted,
(c) we work with rational coefficients and T = Nis,

the morphisms : NS}y —— mo(CH)Y) is invertible.

Proof. Remark that it suffices to show that NS?'Xr is a 0-motivic sheaf. Indeed, if this is true we get by universality an inverse
mo(CH)y ) — NS}y from the map CH)y’ — NS’y

To check that NS?’XT is strongly 0-generated we might extend the situation to the separable closure of k using one of the
assumptions. Given a smooth variety U we will show that NS"(X) — CH"(X x4 U)/CH" (X X U)y-aig is an isomorphism.
This map is obviously injective as it has a section given by any rational point of U. We will show the surjectivity,
ie. every [Z] € CH (U x,X) is U-algebraically equivalent to a “constant cycle”. For this, fix a point u € U and consider
V=Ux,U LA U together with the finite correspondence of degree zero [A] — [U x u] € Cor(V/U).If [W] =
pr3[Z] € CH (U x U x X) then we have a U-algebraically equivalent to zero cycle:

WnNnAxX)]-WnNnuxUxX)]=I[Z]-[U x Z,].
This shows that [Z] is U-algebraically equivalent to [U x Z,]. O

3.2. The higher Néron-Severi groups

Here we work only with the Nisnevich topology. We will write DM (k) instead of DMEfifs(k).

Definition 3.2.1. Let X be a smooth k-scheme. We define a family of abelian groups NS' (X, s) by:

NST(X. 5) = {(L;nonn(M(xx ZORrE) forr 20,

Lemma 3.2.2. For r > dim(X) we have NS’ (X, s) = 0. Moreover, under one of the following hypotheses:
(a) kis algebraically closed,

(b) kis separably closed and the exponential characteristic of k is inverted,

(c) we work with rational coefficients,

there is a canonical isomorphism NS (X, 0) >~ NS’ (X) with the usual Néron-Severi group.

Proof. To prove the vanishing of NS'(X,s) = O forr > dimX = d we remark that Hom(M(X), Z(r)[2r]) =~
Hom(M(X), Z(d)[2r]) ® Z(r — d). So it suffices to show more generally that Lzo(M ® Z(1)) = 0 for any motive M. We are
reduced to check this for M = M(U) with U smooth. The result follows then from the fact that 7q(U) = mo(U x (A,]< —0)).

‘The complex Hom(M(X), Z(r)[2r]) is concentrated in positive homological degree, ie., the homology sheaf
th‘S(Hom(M(X), Z(r)[2r])) = 0 fori < 0. Moreover, we know that hgls(M(M(X), Z(r)[2r])) is the Nisnevich sheaf
CH;X associated to the presheaf U ~» CH" (U x X). We thus have:

LomoHom(M(X), Z(r)[2r]) = mo(CH)y).

So we need only to show that 7 (CH;X) = NS?X which is true by Theorem 3.1.4. O
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Proposition 3.2.3. Given a closed embedding of smooth schemes Y C X of pure codimension ¢ we have a long exact sequence:

NS"(X —Y,s+1) — NS°(Y,s) - NS"(X,s) > NS'(X — Y, s).

Proof. This follows immediately from the exact triangle:

M(X — Y) M(X) M(Y)(c)[2¢c] —=

inDMEE(k). O
Lemma 3.2.4. There exists a morphism CH" (X, s) — NS'(X, s) natural in X and compatible with the long exact sequences of
Proposition 3.2.3.
Proof. By [18, Prop. 4.2.9 and Th. 4.3.7], we have
CH'(X, 5) = h{"*(Hom(M(X), Z(r)[2r])) (k).
The morphism of the lemma is obtained by applying h's\’iS to
Hom(M(X), Z(r)[2r]) — LmoHom(M(X), Z(r)[2r])

and then taking k-rational points. O

Definition 3.2.5. We can also define a homological version:

__ JLsmoHom(Z(r)[2r], M(X))(k)  forr > 0,
NS (X, 5) := {Lsng(M(X) ® Z(—1)[—2r])(k) forr <0,

Remark 3.2.6. Using the formalism of the Grothendieck six operations (cf. [2]) we think it is possible to extend NS" (X, s) to
a cohomology theory with support H?Gs, 2 (X, -) together with a Borel-Moore homology theory Hys (X, -) and a pairing such
that these data satisfy the Bloch-Ogus axioms [5]. In particular, we would have a Gersten resolution for NS" (X, s) (cf. [5,7]).
This deserves a separate treatment.

3.3. The higher Picard and Albanese 1-motivic sheaves
Here we still work with DMYs (k) = DMeg(k).

Definition 3.3.1. Let X be a k-scheme. Define the higher Picard sheaves by:

. __ JLAIbHom(M(X), Z(r)[2r]) forr >0,
Pic(X, 5) = {O forr < 0.

These are objects of HI%, (k).

Proposition 3.3.2. We have Pic" (X, x) = Owhenr > dim(X) + 1orif r = 1and % # 0, 1. Moreover if k is algebraically
closed and X smooth, then Pic! (X, 0)(k) is the usual Picard group of X. If X is also projective then Pic' (X, 0) is represented by
the Picard scheme of X.

Proof. Forr > dim(X) + 1 we have
Hom(M(X), Z(r)) = Hom(M(X), Z(dim(X))) ® Z(r — dim(X))

It is then sufficient to show that for any M € DM (k) we have LAIb(M ® Z(2)) = 0.
We may assume that M = M(U) with U affine and NS'-local. The result follows then from the decomposition:

Alb(U x (A} —0) x (A} —0)) = Alb(U) @ Alb(U x (A, — 0, 1))
@ AIbU x (A —0,1)) @ AU x (4 — 0, )"?)
and the fact that Alb(V x V') = Alb(V) ® (V") & 7o(V) ® Alb(V’) which in particular implies that Alb(U x (A,l -0,1) =
To(U) @ Gp,. O
Proposition 3.3.3. Given a closed embedding of smooth schemes Y C X of pure codimension ¢ we have a long exact sequence:
Pic’(X —Y,s+ 1) — Pic"°(Y,s) — Pic"(X,s) — Pid (X — Y, s)
in HIZ (k).
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Proof. Same proof as Proposition 3.2.3. O

Definition 3.3.4. For a smooth scheme X define the higher Albanese sheaves by:

Alb, (X, 5) = L;Alb(Hom(Z(r)[2r], M(X))) forr >0
r S = LAIDMX) ® Z(—r)[—2r])  forr < 0.
These are objects of HIZ, (k).

Proposition 3.3.5. We have Alb,(X,s) = Oforr < —1orr = —1ands # 0. Moreover Alby(X, 0) is the usual Albanese
scheme Alb(X) and Alb_;(X, 0) = G;; ® mo(X).

Proof. To prove the vanishing of Alb, (X, s) = 0 for r < —1 we argue as for Proposition 3.3.2. O

Remark 3.3.6. Assume X projective of dimension d. Then one has Alb, (X, 0) = Alb(hgHom(Z(r)[2r], M(X))) = Alb(CH‘/’;r)
which most probably, over k = C, will be providing Walter's morphic Abel-Jacobi map (cf. [19]) on the r-dimensional cycles.
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