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a b s t r a c t

Using sheaf theoretic methods, we define functors Lπ0 : DMeff(k) → D(HI≤0(k)) and
LAlb : DMeff(k) → D(HI≤1(k)). The functor LAlb extends the one in [L. Barbieri-Viale,
B. Kahn, On the derived category of 1-motives, I. Prépublication Mathématique de l’IHÉS
(M/07/22), June 2007, 144 pages] to non-necessarily geometric motives. These functors
are then used to define higher Néron–Severi groups and higher Albanese sheaves.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

For a field k, say perfect, and a Grothendieck topology τ on the category of smooth k-schemes, such as the Nisnevich or
the étale topology, we denote by Shvτtr(k) the abelian category of τ -sheaves with transfers on Sm/k. Following Voevodsky,
we consider DMτ

eff(k) the full subcategory of the derived category D(Shv
τ
tr(k)) whose objects are the A1-local complexes,

i.e., Voevodsky’s (effective) motivic complexes. We refer to [18, Section 3] and [10, Lect. 14] for an outline of this theory.
Attached to a smooth k-scheme X we then get the representable τ -sheaf Ztr(X) ∈ Shvτtr(k) and the homological motive

M(X) ∈ DMτ
eff(k) given by the A1-localization of Ztr(X); recall that the A1-localization functor D(Shvτtr(k)) → DMτ

eff(k) is
left adjoint to the obvious inclusion DMτ

eff(k) ⊂ D(Shv
τ
tr(k)). The smallest triangulated subcategory of DM

τ
eff(k) containing

M(X) for X ∈ Sm/k and stable by direct summands, is called the category of geometric (or constructible) motives andwill be
denoted by DMτ

eff,gm(k). When τ is the Nisnevich topology or the cohomological dimension of k is finite, we obtain exactly
the subcategory of compact objects.
Under some hypotheses (e.g., the exponent characteristic of k is inverted or k is perfect and τ = Nis), we know

that the canonical t-structure on D(Shvτtr(k)) restricts to a t-structure on DMτ
eff(k) whose heart is the abelian category

HIτtr(k) ⊂ Shv
τ
tr(k) of the homotopy invariant τ -sheaves with transfers. This follows immediately from [10, Th. 14.11]. For

the étale topology, see [4, D.3.3]. This t-structure is the so called homotopy t-structure.

0.1. To the core

Notably, we may consider the triangulated subcategory DMτ
≤n(k) ⊂ DMτ

eff(k) generated by M(X) for X of dimension≤n
and closed with respect to direct sums, i.e., the so called triangulated category of n-motivic complexes or n-motives.
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A first step in the study of these subcategorieswas donebyVoevodsky [18, 3.4]: for example, one can see that the inclusion
DMNis
≤n(k) ⊂ DMNiseff (k) has a right adjoint for all n ≥ 0. Defining DM

τ
≤n,gm(k) ⊂ DMτ

≤n(k) as before, Voevodsky provided a
description, rationally, of DMNis

≤0,gm(k) and DM
Nis
≤1,gm(k) in terms of Artin motives and Deligne 1-motives (up to isogenies).

A second step was done by the second author jointly with Kahn, see [4]. The category DMét
≤1,gm(k) is described as the

bounded derived category of Deligne 1-motives, for a suitable exact structure, after inverting the exponential characteristic
p of the perfect field k, via a fully-faithful Z[1/p]-linear embedding Tot into DMéteff,gm(k). Furthermore, such embedding
provides the homotopy t-structure on the derived category of Deligne 1-motives whose heart is the Z[1/p]-linear category
of (constructible) 1-motivic sheaves, see [4, Section 3].
A key result of [4] is that Tot has, rationally, a left adjoint which refines, integrally, to a functor LAlb on DMNiseff,gm(k),

the motivic Albanese triangulated functor. Dually, composing with (motivic) Cartier duality, one obtains the functor RPic.
Applied to the motive M(X) of an algebraic k-scheme X these functors provide natural objects LAlb(X) and RPic(X) in
DMét
≤1,gm(k). An important application is in view of their 1-motivic homology which is providing the 1-motives predicted by

Deligne’s conjecture. See the forthcoming second part of [4] for a proof of this conjecture (up to isogenies).

0.2. Have a bird

The general goal of this paper is the study of the categories of n-motives by sheaf theoretic methods providing new
algebraic invariants.
In Section 1 we introduce the key notion of n-motivic τ -sheaf, see 1.1.20. To do so, we first define (non-necessarily

constructible) n-generated and strongly n-generated τ -sheaves, see 1.1.13. Roughly speaking, n-motivic τ -sheaves are
obtained from strongly n-generated τ -sheaves by applying the functor hτ0 that takes a τ -sheaf to a homotopy invariant
one in a universal way. This functor is defined as the left adjoint of the inclusion HIτtr(k) ⊂ Shv

τ
tr(k). An example of n-motivic

τ -sheaf is given by hτ0(Ztr(X))with X smooth of dimension less than n. We also show (under somemild hypotheses) that the
category HIτ

≤n(k) of n-motivic τ -sheaves is a cocomplete abelian category, see 1.1.24. For n = 1 we show that this category
is generated by lattices and semi-abelian group schemes. Actually, we show a structure theorem for 1-motivic étale sheaves,
see Theorem 1.3.10, including finitely presented (or constructible) 1-motivic étale sheaves, see 1.3.8 and cf. [4, Section 3.2].
It is easy to see that HIτ

≤0(k) ∼= Shv
τ
tr(k≤0), the category of τ -sheaves with transfers on 0-dimensional smooth k-schemes.

This yields a functor

π0 : Shvτtr(k)→ HIτ
≤0(k)

left adjoint to the inclusion HIτ
≤0(k) ⊂ Shv

τ
tr(k), see 1.2.6. With some more efforts, by taking a suitable colimit of Serre’s

Albanese schemes (cf. [12]), we obtain a functor

Alb : Shvτtr(k)→ HIτ
≤1(k)

left adjoint to the inclusion HIτ
≤1(k) ⊂ Shv

τ
tr(k), see 1.3.11. We denote by (−)

≤n the restriction of these functors to HIτtr(k)
and we conjecture that, at least rationally, the functors

(−)≤n : HIéttr (k)→ HIét
≤n(k)

exist also for n ≥ 2.
We finally propose a conjectural framework (still for n ≥ 2), remarkably linked to the Bloch–Beilinson conjectural

filtration on zero-cycles, which permits a better understanding of the categories HIét
≤n(k) and implies the existence of the

functors (−)≤n (see 1.4.1, 1.4.6).
In Section 2 we construct functors Lπ0 and LAlb on D(Shvτtr(k)) as ‘‘true’’ derived functors of the functors π0 and Alb

defined in the previous section. In order to derive Alb we have to go through the proof that there are enough Alb-admissible
complexes, see 2.1.6. The key point here is that if X is a smooth k-schemewhich is affine and NS1-local, i.e., the Néron–Severi
geometrically vanishes, then Ztr(X) is Alb-admissible, see 2.4.6 for details. The so obtained LAlb factors through the A1-
localization yielding a functor on DMτ

eff(k): our main goal is then Theorem 2.4.1. As a by-product, we get, under some
technical assumptions, an equivalence of categories DMτ

≤n(k) ' D(HI
τ
≤n(k)) for n = 0, 1. See 2.3.1, 2.4.1 for a precise

formulation.
Note that Lπ0 and LAlb both take compact objects to compact objects so that LAlb is an extension of the one (in [4]) to

non constructible motives. We then show the non existence of left adjoints to DMτ
≤n(k) ⊂ DMτ

eff(k) for n ≥ 2 and set a
conjecture linking HIτ

≤n(k) to DM
τ
≤n(k).

In Section 3 we apply the functors Lπ0 and LAlb to the meaningful (non constructible) motivic complexes
Hom(M(X),Z(r)[2r]) or Hom(Z(r)[2r],M(X)). The s-homology with respect to the homotopy t-structure is yielding a 0-
motivic sheaf whose group of k-points is the higher Néron–Severi NSr(X, s). Similarly, we define the higher Picard Picr(X, s)
and Albanese Albr(X, s) 1-motivic sheaves.
The NSr(X, 0) are related to higher codimension cycles in the following manner. Recall that the hNis0 of

Hom(M(X),Z(r)[2r]) is the Nisnevich sheaf CHr/X associated to the presheaf U  CH
r(U × X) given by the Chow group

of codimension r-cycles. Since π0(CHr/X ) = NS
r
/X by the Theorem 3.1.4 we obtain that NS

r(X, 0) = NSr(X) is the classical
Néron–Severi group of codimension r cycles modulo algebraic equivalence.
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Notation and conventions

We let k be our base field and p its exponential characteristic. By scheme we always mean a finite type k-scheme. We
warn the reader that all over in this paper we tacitly invert p in the Hom groups of all categories constructed out of étale
sheaves.
For the sake of exposition, we here provide a comparison between some of the notations adopted in this paper and the

corresponding existing notations in the book [10] as follows:

Paper Book Meaning

Cor(k) Cork Category of finite correspondences
Cor(X, Y ) Cor(X, Y ) Group of finite correspondences from

X to Y
PST(k) PST(k) Category of presheaves with transfers
Shvτtr(k) Shτ (Cork) Category of τ -sheaves with transfers
DMτ

eff(k) DMeffτ (k) Voevodsky category of effective
τ -motives

Ztr(X) Ztr(X) Representable presheaf with
transfers

1. n-generated sheaves

Let Sm/k be the category of smooth schemes and Cor(k) the category of finite correspondences of Voevodsky [10, Lect.
1]. Let τ ∈ {co, Nis, ét} be one of the following Grothendieck topologies on Sm/k: coarse, Nisnevich or étale topology.

1.1. Generalities

Let X ∈ Sm/k. We denote by Ztr(X) the representable presheaf with transfers

U  Ztr(X)(U) := Cor(U, X).

For any presheaf with transfers F we have by Yoneda:

Hom(Ztr(X),F ) = F (X). (1.1)

Let PST(k) be the category of presheaves with transfers on Sm/k and let Shvτtr(k) be the full subcategory of τ -sheaves.
Recall that the presheaf Ztr(X) is actually a τ -sheaf (see [10, Lemma 6.2]). Further denote by HIτtr(k) the full subcategory
of homotopy invariant τ -sheaves with transfers on Sm/k (see [10, Def. 2.15]).

Lemma 1.1.1. The inclusions

HIτtr(k) ⊂ Shv
τ
tr(k) ⊂ PST(k)

admit left adjoints

PST(k)
aτ
−→ Shvτtr(k)

hτ0
−→ HIτtr(k).

Proof. The functor aτ is the ‘‘associated sheaf ’’ functor (cf. [1]). Here we use that the τ -sheaf aτ (F) associated to a presheaf
with transfers F admits a unique structure of presheaves with transfers such that F → aτ (F) is a morphism of presheaves
with transfers. See [17, 3.1.4] for a proof in the case of Nisnevich topology and [10, Th. 6.17] in the case of étale topology.
For τ = co we let hco0 := h0 the associated homotopy invariant presheaf functor, i.e., the H0 of the Suslin complex C∗. For

τ 6= co we define inductively (as in [14]), hτ ,00 := id and for all non negative integers n ≥ 0

hτ ,n+10 := aτh0h
τ ,n
0

and then take the colimit (in the category of presheaves)

hτ0 := Colimn≥0
hτ ,n0 .
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To show that hτ0 takes values in the category of homotopy invariant τ -sheaves, consider the following commutative
diagram:

hτ ,n0 //

��

hτ ,n+10
//

��

hτ ,n+20

��
h0h

τ ,n
0

//

��

h0h
τ ,n+1
0

//

��

h0h
τ ,n+2
0

��
aτh0h

τ ,n
0

//

��

aτh0h
τ ,n+1
0

//

��

aτh0h
τ ,n+2
0

��
h0h

τ ,n+1
0

// h0h
τ ,n+2
0

// h0h
τ ,n+3
0

Passing to the colimit we get the following sequence (using that h0 commutes with colimits of presheaves):

hτ0 // h0hτ0 // hτ0 // h0hτ0

which proves that hτ0 = h0h
τ
0 . But h

τ
0(?) is a τ -sheaf (because the topology τ is quasi-compact) and h0h

τ
0(?) is homotopy

invariant.
It is easy to see that hτ0 is a left adjoint, e.g., note that on a homotopy invariant τ -sheaf Ďwe get h

τ
0(Ď) = Ď. �

Under some mild hypotheses, we have hτ0 = h
τ ,1
0 = aτh0 as the following proposition shows.

Proposition 1.1.2. Assume that one of the following conditons:

(1) τ = co is the coarse topology,
(2) k is perfect and τ = Nis is the Nisnevich topology,
(3) the exponent characteristic p of k is inverted.

Let F be a homotopy invariant presheaf with transfers. Then aτ (F ) is strictly homotopy invariant, i.e.,Hnτ (−, aτ (F )) is homotopy
invariant for all n.

Proof. When τ = co there is nothing to prove. For τ = Nis and k perfect, this follows from [10, Lect. 22]. If k is not perfect,
let kinsp be the biggest totaly inseparable extension of k (contained in an algebraic closure of k). As remarked by Suslin, the
base-change functor Cor(k) → Cor(kinsp) becomes an equivalence of categories when p is inverted. It is then possible to
extend Voevodsky’s result to non perfect fields up to p-torsion.
Suppose that τ = ét and p is inverted. The following argument is similar to [4, LemmaD.1.3]. Using the Hochschild–Serre

spectral sequence, wemay reduce to the case k separably closed. LetFtor be the torsion sub-presheaf ofF . By Suslin rigidity
theorem [10, Th. 7.20], we know that aét(Ftor) is a constant étale sheaf (as k is separably closed). By [1, XV, Cor. 2.2], we
deduce that aét(Ftor) is strictly homotopy invariant. Using the long exact sequence of cohomology, we reduce to the case of
F ′ = F /Ftor.
Let F ′′ = F ⊗ Q/F ′. Using again Suslin rigidity theorem [10, Th. 7.20] and the long exact sequence of cohomology

we reduce to the case of F ⊗ Q. But if G is a homotopy invariant presheaf with transfers taking values in the category of
Q-vector spaces, we have aét(G) = aNis(G) and Hnét(−, aét(G)) = H

n
Nis(−, aNis(G)). The claim now follows from [10, Lect. 22].

�

Corollary 1.1.3. Same assumption as in Proposition 1.1.2. The category HIτtr(k) is abelian complete and cocomplete, the inclusion
HIτtr(k) ⊂ Shv

τ
tr(k) is exact and h

τ
0 is right exact.

1.1.4
For X ∈ Sm/kwe let

hτ0(X) := h
τ
0(Ztr(X)).

For a homotopy invariant τ -sheaf F ∈ HIτtr(k)we thus obtain

Hom(hτ0(X),F ) = Hom(Ztr(X),F ) = F (X). (1.2)
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1.1.5
For F ∈ PST(k)we have a canonical map

Colim
X→F

Ztr(X)→ F

where the colimit is taken over the category Cor(k)/F whose objects are the elements inF (X) for X ∈ Sm/k or equivalently
(by (1.1)) maps of presheaves with transfers Ztr(X)→ F . Morphisms in Cor(k)/F are commutative triangles of presheaves
with transfers

Ztr(X) //

**

Ztr(Y )

��
F

Note that the indexing category is pseudo-cofiltered in the sense that any two objects are the target of two arrows having
the same domain. Indeed for the two objects Ztr(X)→ F and Ztr(Y )→ F we can take Ztr(X

∐
Y )→ F .

Lemma 1.1.6. For F ∈ Shvτtr(k) we have an isomorphism

Colim
X→F

Ztr(X)
∼ // F

where the colimit is equally computed in PST(k) or in Shvτtr(k).

Proof. This is a well known fact. For any presheaf F ′ ∈ PST(k) consider the composition:

Hom(F ,F ′) // Hom(Colim
X→F

Ztr(X),F ′) ∼ // Lim
X→F

Hom(Ztr(X),F ′)

Lim
X→F

F ′(X)

By Yoneda we need to prove that this is an isomorphism. Elements of LimX→F F ′(X) are families of α′ ∈ F ′(X) indexed
by α ∈ F (X) and satisfying the following compatibility with correspondences: for any β ∈ F (Y ) and γ ∈ Cor(X, Y )
such that α = γ ∗(β) we have α′ = γ ∗(β ′). In other terms, LimX→F F ′(X) is exactly the set of families of functions
(fX : F (X) → F ′(X))X compatible with the action of correspondences. To prove that such a family is a morphism of
τ -sheaves with transfers we still need to verify that fX are linear maps. This follows immediately from the diagram:

F (X)⊕ F (X)

fX⊕fX
��

F (X
∐
X)

γ ∗ //

fX
∐
X

��

F (X)

fX
��

F ′(X)⊕ F ′(X) F ′(X
∐
X)

γ ∗ // F ′(X)

where γ is the sum of the two obvious inclusions X ⊂ X
∐
X . �

Remark 1.1.7. The argument in the proof works for any site with finite coproducts and a topology for which the family of
morphisms Xi →

∐
i Xi is a covering for any finite family (Xi)i∈I .

Corollary 1.1.8. For F ∈ HIτtr(k) we have

Colim
X→F

hτ0(X)
∼ // F .

Here the colimit is computed in the category Shvτtr(k).

Proof. The map in Lemma 1.1.6 factors as follows

Colim
X→F

Ztr(X) // // Colim
X→F

hτ0(X) −→ F

where the first map is surjective and the composition is an isomorphism. �
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1.1.9
Let (Sm/k)≤n be the category of smooth schemes of dimension ≤n with the topology τ (remark that the dimension is

stable under τ -covers). Denote σn : Sm/k → (Sm/k)≤n the continuous map of sites in the sense of [11, Def. 1.42], given
by the obvious inclusion (Sm/k)≤n ⊂ Sm/k. Note that a priori σn is not a morphism of sites i.e., the pull-back functor is not
exact.
Consider the full subcategory Cor(k≤n) of Cor(k)whose objects are the same of (Sm/k)≤n. We let PST(k≤n) be the category

of presheaves with transfers on (Sm/k)≤n: these are the additive contravariant functors from Cor(k≤n) to the category of
abelian groups.
For X ∈ (Sm/k)≤n we let Z≤n(X) ∈ PST(k≤n) denote the presheaf with transfers

Z≤n(X)(U) := Cor(U, X)

given by finite correspondences. For any presheaf with transfers F ∈ PST(k≤n)we have

Hom(Z≤n(X),F ) = F (X). (1.3)

Note that the presheaf Z≤n(X) is a τ -sheaf. Denote by Shvτtr(k≤n) the subcategory of τ -sheaves in PST(k≤n). The same proof
as for Lemma 1.1.6 gives:

Lemma 1.1.10. For F ∈ Shvτtr(k≤n) we have that

Colim
(X→F )≤n

Z≤n(X)
∼ // F

where the colimit is taken over the category Cor(k≤n)/F .

1.1.11
We have a restriction functor on τ -sheaves with transfers

σn∗ : Shvτtr(k) −→ Shvτtr(k≤n)

which is clearly exact.

Lemma 1.1.12. The functor σn∗ : Shvτtr(k)→ Shvτtr(k≤n) has a left adjoint

σ ∗n : Shv
τ
tr(k≤n) −→ Shvτtr(k)

which is given by

σ ∗n (F ) := Colim
(X→F )≤n

Ztr(X)

for F ∈ Shvτtr(k≤n). Here the colimit is computed in Shv
τ
tr(k).

Proof. In fact, for F ∈ Shvτtr(k≤n) and F ′ ∈ Shvτtr(k)we have, by Lemma 1.1.10,

Hom(F , σn∗(F ′)) = Hom
(
Colim
(X→F )≤n

Z≤n(X), σn∗(F ′)
)

which is

Lim
(X→F )≤n

Hom(Z≤n(X), σn∗(F ′)).

Since we clearly have Hom(Z≤n(X), σn∗(F ′)) = Hom(Ztr(X),F ′) = F ′(X), for all X ∈ (Sm/k)≤n, cf. (1.3), we obtain:

Hom(F , σn∗(F ′)) = Hom
(
Colim
(X→F )≤n

Ztr(X),F ′
)
= Hom(σ ∗n (F ),F

′). �

Definition 1.1.13. A τ -sheaf F ∈ Shvτtr(k) is n-generated if the counit

σ ∗n σn∗(F ) −→ F

is a surjection. When it is an isomorphismwe say that F is strongly n-generated. We denote by Shvτ
≤n(k) the subcategory of

strongly n-generated τ -sheaves.

Remark 1.1.14. The property of being (strongly) n-generated is compatible with the change of topology. For example ifF is
an n-generated Nisnevich sheaf then aétF is an n-generated étale sheaf. Indeed, we have aétσn∗ ' σn∗aét and σ ∗n aét ' aétσ

∗
n .

Beware that in the last formula, the first σ ∗n stands for the inverse image on étale sheaves whereas the second one stands
for the inverse image on Nisnevich sheaves.
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Lemma 1.1.15. The property of being (strongly) n-generated is stable by cokernels and extensions in the category of τ -sheaves.

Proof. We do this only for extensions in the case of n-generated sheaves; the other cases are simpler. The result follows
from:

σ ∗n σn∗E
//

����

σ ∗n σn∗F
//

��

σ ∗n σn∗G
//

����

0

0 // E // F // G // 0

and a diagram chase. �

Lemma 1.1.16. The unit id ∼ // σn∗σ ∗n is invertible.

Proof. For Z≤n(X) and X ∈ (Sm/k)≤n, we have σ ∗n Z≤n(X) = Ztr(X) and σn∗Ztr(X) = Z≤n(X). It follows that Z≤n(X) '
σn∗σ

∗
n Z≤n(X). Using Lemma 1.1.10, we only need to show that σ ∗n and σn∗ commute with colimit. This is clear for σ

∗
n as it is

a left adjoint. For σn∗, we use that it commutes with colimits of presheaves and with sheafification. �

Note the following useful corollary:

Corollary 1.1.17. Let F be a τ -sheaf with transfers on Sm/k. Denote by N the kernel of σ ∗n σn∗(F ) // F . If N is n-
generated then it is zero.

Proof. As σn∗ is exact, we have a left exact sequence:

0 // σn∗(N ) // σn∗σ ∗n σn∗(F ) // σn∗(F ).

Using 1.1.16 and that the composition:

σ ∗n
∼ // σ ∗n σn∗σ

∗
n

// σ ∗n

is the identity, we see that σn∗(N ) = 0. But asN is n-generated, we have a surjection: 0 = σ ∗n σn∗(N ) // // N . �

Proposition 1.1.18. The functor σ ∗n in Lemma1.1.12 takes values in the category Shv
τ
≤n(k) and it induces an equivalence between

Shvτtr(k≤n) and the category of strongly n-generated sheaves.

Proof. Everything follows from Lemma 1.1.16. The essential image of σ ∗n consists of strongly n-generated sheaves because
we always have that the composition of

σ ∗n
∼ // σ ∗n σn∗σ

∗
n

// σ ∗n

is the identity and we have that the first map is an isomorphism. �

Remark 1.1.19. An example of strongly n-generated sheaf is Ztr(X) for X ∈ (Sm/k)≤n. It follows that hτ0(X) is n-generated.
However we don’t expect this sheaf to be strongly n-generated for n ≥ 1. We leave it as an open (possibly hard) problem to
prove (or disprove) that h0(C) is not strongly 1-generated for an elliptic curve or even for Gm.

Definition 1.1.20. A homotopy invariant τ -sheaf F ∈ HIτtr(k) is n-motivic if

hτ0(σ
∗
n σn∗(F ))

∼ // hτ0(F ) = F

is an isomorphism. We let HIτ
≤n(k) be the full subcategory of homotopy invariant n-motivic τ -sheaves.

Remark 1.1.21. By definition any n-motivic τ -sheaf is the hτ0 of a strongly n-generated τ -sheaf. Conversely, if a τ -sheaf F
is strongly n-generated then hτ0(F ) is n-motivic. Indeed, we have the following commutative square of epimorphisms:

σ ∗n σn∗(F )
// //

∼

��

σ ∗n σn∗h
τ
0(F )

����
F // // hτ0(F )
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Applying hτ0 we get:

hτ0σ
∗
n σn∗(F ) // //

∼

��
∼

**

hτ0σ
∗
n σn∗h

τ
0(F )

����
hτ0(F ) hτ0(F )

Which proves that the arrow hτ0σ
∗
n σn∗h

τ
0(F )

∼ // hτ0(F ) is invertible. In particular the τ -sheaves h
τ
0(X) are n-motivic

for smooth k-varieties of dimension≤n.

Lemma 1.1.22. Same assumption as Proposition 1.1.2. The property of being n-motivic is stable by cokernels and extensions in
HIτtr(k).

Proof. Recall (Corollary 1.1.3) that hτ0 is right exact being the left adjoint of an exact functor. Then use the same diagram
chase as in the proof of Lemma 1.1.15 adding hτ0 on the top line. �

Denote by inc : HIτtr(k) ⊂ Shv
τ
tr(k) the obvious inclusion. We have the following weaker version of Lemma 1.1.16:

Lemma 1.1.23. The two natural transformations:

(σn∗inc)
∼ // (σn∗inc)(hτ0σ

∗
n )(σn∗inc)

∼ // (σn∗inc)

are invertible.

Proof. As the composition of the two arrows of the lemma is the identity, we need only to show that the left hand side is
surjective when applied to any F ∈ HIτtr(k). This follows from the commutative diagram:

σn∗inc(F )
∼ //

**

σn∗σ
∗
n σn∗inc(F )

����
(σn∗inc)(hτ0σ

∗
n )(σn∗inc)(F )

and Lemma 1.1.16. �

Corollary 1.1.24. Same assumption as Proposition1.1.2. The categoryHIτ
≤n(k) is abelian and cocomplete. The inclusionHI

τ
≤n(k) ⊂

HIτtr(k) is right exact.

Proof. Let f : F → F ′ be a morphism between two n-motivic sheaves. By Lemma 1.1.22, Coker(f ) is n-motivic so that
HIτ
≤n(k) admits cokernels. The category HI

τ
≤n(k) admits also kernels that are given by h

τ
0σ
∗
n σn∗Ker(f ). One easily checks that

the image and coimage agree by applying the conservative (on HIτ
≤n(k)) functor σn∗. �

Remark 1.1.25. For τ = ét and p inverted, we believe that the inclusion HIét
≤n(k) ⊂ HIéttr (k) is also left exact. However, this

seems a difficult problem. See Corollary 1.4.5 for a conjectural proof relying on 1.4.1.

The following is a homotopy invariant version of Corollary 1.1.17:

Corollary 1.1.26. Let F be a homotopy invariant τ -sheaf with transfers on Sm/k. Denote by N the kernel of
hτ0σ

∗
n σn∗(F ) // F . If N is n-generated then it is zero.

Proof. As σn∗ is exact, we have a left exact sequence:

0 // σn∗(N ) // σn∗hτ0σ
∗
n σn∗(F ) // σn∗(F ).

By 1.1.23, we get σn∗(N ) = 0. But asN is n-generated, we have a surjection: 0 = σ ∗n σn∗(N ) // // N . �

1.2. 0-generated

Recall that a lattice is a presheaf which is representable by a k-group scheme locally constant for the étale topology with
geometric fiber isomorphic to a free finitely generated abelian group. This is an example of 0-generated étale sheaf.
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1.2.1
For a reduced k-scheme X one has the Stein factorization

X // π0(X) // Spec(k)

where π0(X) is the spectrum of the integral closure of k in Γ (X,OX ). If X is smooth and l is a finite étale extension of k, we
have a canonical isomorphism

Cor(X, Spec(l)) ' Cor(π0(X), Spec(l)) ' Zπ0(|X ⊗k l|)

where |X ⊗k l| is the Zariski topological space underlying the scheme X ⊗k l and π0(|X ⊗k l|) is the set of connected
components.
We thus have a functor π0 : Cor(k) // Cor(k≤0) which is left adjoint to the inclusion σ0 : Cor(k≤0) ⊂ Cor(k). The

functor π0 clearly induces a map of τ -sites, so that we have a pair (π
∗

0, π0∗) of adjoint functors:

From the adjunction (π0, σ0), one immediately gets an adjunction (π
∗

0, σ
∗

0 ). This gives a canonical isomorphism π0∗ ' σ
∗

0 .

Lemma 1.2.2. A strongly 0-generated τ -sheaf is homotopy invariant. Furthermore, the functor σ ∗0 : Shv
τ
tr(k≤0) → Shvτtr(k)

induces an equivalence of categories between Shvτtr(k≤0) and HI
τ
≤0(k).

Proof. Take F = σ ∗0F0 = π0∗F0. Using F (X) = F0(π0(X)) we only need to show that π0(X ×k A1k) = π0(X) which is
true, more generally, for X reduced. The last assertion follows from Proposition 1.1.18. �

Definition 1.2.3. A 0-motivic τ -sheaf E is finitely generated if there exists an étale k-algebra l and a surjection
Ztr(Spec(l)) // // E .

Corollary 1.2.4. A 0-motivic τ -sheaf is a filtered colimit of finitely generated 0-motivic sheaves.

Proof. Let us say that a τ -sheaf with transfers E0 on (Sm/k)≤0 is finitely generated if there exist an étale k-algebra l and a
surjection Z≤0(Spec(l)) // // E0 . By Lemma 1.2.2, a 0-motivic τ -sheaf E = σ ∗0 E0 is finitely generated if and only if E0 is
finitely generated. We are thus reduced to prove the corresponding statement for τ -sheaves with transfers on (Sm/k)≤0.
But it is clear that such a τ -sheaf F0 is a filtered union of images of Z≤0(Spec(l))→ F0 with l an étale k-algebra. �

Corollary 1.2.5. The embedding HIτ
≤0(k) ↪→ Shvτtr(k) has a left adjoint

π0 : Shvτtr(k)→ HIτ
≤0(k)

given by

π0(F ) := Colim
X→F

Ztr(π0(X)).

Proof. Indeed,HIτ
≤0(k) is simply the subcategory of strongly 0-generated τ -sheaveswhich in turn is equivalent to Shv

τ
tr(k≤0).

Under this equivalence the inclusion HIτ
≤0(k) ⊂ Shv

τ
tr(k) is given by σ

∗

0 ' π0∗. The latter admits π
∗

0 as a left adjoint. The
formula follows from Lemma 1.1.6 and the commutation of left adjoints with colimits. �

Definition 1.2.6. Denote by (−)≤0 : HIτtr(k)→ HIτ
≤0(k) the restriction of π0 to HI

τ
tr(k) ⊂ Shv

τ
tr(k). It is clearly the left adjoint

of the inclusion HIτ
≤0(k) ⊂ HIτtr(k).

Proposition 1.2.7. Assume one of these conditions is fulfilled:

(a) k is separably closed,
(b) τ is the étale topology,
(c) that we work with rational coefficients.

Then a 0-generated τ -sheaf is strongly 0-generated and hence 0-motivic. The category HIτ
≤0(k) ⊂ Shv

τ
tr(k) is a Serre or thick

abelian subcategory, i.e., stable under extensions, subobjects and quotients.

Remark 1.2.8. If k is separably closed then any smooth k-scheme has a rational point.
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We first prove the following lemma:

Lemma 1.2.9. Let F be a τ -sheaf. Under one of the assumptions in Proposition 1.2.7 the morphism

F // π0∗π
∗

0F

is surjective.

Proof. Using Lemma 1.1.6 we are left to show the statement for

Ztr(X) // Ztr(π0(X)) .

This is clear when assuming (b) or (c). For (a), one uses Remark 1.2.8. �

1.2.10
Let F = σ ∗0F0 be a strongly 0-generated τ -sheaf and suppose given a morphism i : E // F . Because σ ∗0 ' π0∗,

this is equivalent to give a morphism π∗0E
// F0 . We have by this a factorization:

E // π0∗π
∗

0E
// F .

By Lemma 1.2.9, the first arrow is surjective. It follows that if i is injective, we have an isomorphism E ' π0∗π
∗

0E ' σ
∗

0 π
∗

0E .
We have proven:

Lemma 1.2.11. Same assumption as in Proposition 1.2.7. Any subsheaf of a strongly 0-generated τ -sheaf is again strongly 0-
generated.

Proof of Proposition 1.2.7. Let F be a 0-generated τ -sheaf. By Proposition 1.1.18, σ ∗0 σ0∗(F ) is strongly 0-generated. The
kernelN of the surjective morphism σ ∗0 σ0∗(F )

// // F is then 0-generated by Lemma 1.2.11. By Corollary 1.1.17,N is
zero. The other claims are already proven in Lemmas 1.2.2 and 1.1.15. �

Remark 1.2.12. The category HIét
≤0 is the smallest cocomplete Serre abelian subcategory of Shv

ét
tr (k) containing lattices.

Indeed HIτ
≤0(k) is equivalent to Shv

τ
tr(k≤0).

Remark 1.2.13. Under the assumption of Proposition 1.2.7, a subsheaf of a finitely generated 0-motivic τ -sheaf is again a
finitely generated 0-motivic τ -sheaf as one easily checks by reducing to the case of τ -sheaves with transfers on (Sm/k)≤0.
In particular, any finitely generated 0-motivic τ -sheaf F admits a presentation:

Ztr(Spec(l1))→ Ztr(Spec(l0))→ F → 0

where l0 and l1 are étale k-algebras. Thus it makes sense to say that F is finitely presented.

1.3. 1-generated

Let G be a commutative group schemewhose connected component of the identity G0 is a semi-abelian variety andπ0(G)
is finitely generated, i.e., a semi-abelian scheme with torsion in the terminology of [4, Def. 3.6.4]. Recall that a semi-abelian
variety is an extension of an abelian variety by a torus. In the following we refer to such a G as a semi-abelian group scheme
for short.
Notably G is a quotient of the Serre–Albanese scheme Alb(C) of a suitable smooth subvariety C of G of dimension≤1 (up

to p-torsion). It follows that G is 1-generated as Alb(C) represents hét0 (C) by Voevodsky [18, Section 3.4].

1.3.1. Warnings and abuse of notation
From now on we stick to the case τ = ét and invert the exponential characteristic p of k. All statements of this section

hold only after inverting p. We will make the following abuse of notation: writing Ztr(X)we mean Z[1/p]tr(X) and writing
Gwe mean G[1/p] in the corresponding Z[1/p]-linear categories.
Note that given a smooth commutative group scheme G, the étale sheaf G on Sm/k represented by G has a canonical

structure of presheaf with transfers (cf. [4, Lemma 1.3.2] and [13]). This gives a functor from the category of smooth group
schemes to the category of presheaves with transfers. One can easily prove that this functor is fully faithful. For this reason,
we identify a smooth group scheme with the presheaf with transfers that represents.
Further, for an arbitrary sheaf F ∈ Shvéttr (k), we will denote

F 0
:= Ker(F → π0(F ))

by making use of Corollary 1.2.5. We then say that such a sheaf F is connected if π0(F ) = 0.
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1.3.2. Serre–Albanese scheme
Recall by [12,16] that for a smooth k-variety X we have a universal morphism X → Alb(X) with Alb(X) a semi-abelian

scheme as above. The group scheme Alb(X) is the Serre–Albanese scheme of X . The map X → Alb(X) can be extended to a
morphism of presheaves with transfers Ztr(X)→ Alb(X) (see [4,13]).

Lemma 1.3.3. Let X be a smooth k-scheme. The morphism Ztr(X)→ Alb(X) is surjective for the étale topology.

Proof. Indeed, the image of θ : Ztr(X) → Alb(X) is an étale subsheaf of Alb(X). In particular, it is a homotopy invariant
Nisnevich sheaf. To check that Im(θ) = Alb(X), we only need to look on function fields of smooth k-varieties (as follows
from [10, Lemma 22.8]). As Im(θ) and Alb(X) are both étale sheaves, we may replace this function field by finite étale
extensions. We are then reduced to show that Ztr(X ⊗k K)(K)→ Alb(X ⊗k K)(K) is surjective for all extensions K of k that
are separably closed. As, we invert the exponential characteristic of k, we may even suppose (using a transfers argument)
that K is algebraically closed. We are then left to show that the group of points of Alb(X) over an algebraically closed field
is generated by the classes of closed points of X , which is a well-known fact. �

We now want to understand the subsheaves of 1-motivic sheaves. Unfortunately, we can’t use here the formalism of
adjoint functors as in the previous paragraph; we are forced to give a direct proof of:

Lemma 1.3.4. Let F be a 1-motivic sheaf. Any subsheaf of F is again 1-motivic.

Proof. We break the proof in three steps. In the first two steps we show that a subsheaf of F is 1-generated. In the third
part we deduce that this subsheaf is 1-motivic.
Step 1: Consider first the case of F = hét0 (C) with C a smooth scheme of dimension ≤1, which is a 1-motivic sheaf by

Remark 1.1.21. Fix a subsheaf E ⊂ F . We can see E as a filtered union of images of Ztr(X) // hét0 (C) . Actually, we may

suppose that E is the image of a map, i.e., E = Im(a : Ztr(X) → hét0 (C)), because any subsheaf is a filtered union of such
images and a colimit of 1-generated τ -sheaves is also 1-generated.
Since hét0 (C) is represented by a semi-abelian group scheme G then a factors through Alb(X):

Ztr(X)
θ //

a

88
Alb(X) a′ // het0 (C)

Indeed, the morphism a induces a morphism from X to G. The universal property of the Serre–Albanese scheme gives the
morphism a′ : Alb(X) → G. The fact that a = a′ ◦ θ follows immediately from HomPST(k)(Ztr(X), F) = F(X) valid for any
presheaf with transfers F .
By Lemma 1.3.3, the morphism θ is surjective for the étale topology (up to p-torsion). This implies that E = Im(a′). The

1-generation of E follows now from the 1-generation of Alb(X).
Step 2: By definition we have F ∼= hét0 (σ

∗

1F1) where F1 = (σ1)∗F . By Lemma 1.1.10, F1 is a colimit of representable
functors:

F1 = Colim
(C→F1)≤1

Z≤1(C)

with C smooth of dimension≤1. It follows that

F = hét0 (σ
∗

1F1) = Colim
(C→F1)≤1

hét0 (C).

Let E ⊂ F be a subsheaf. Let’s show that E is 1-generated. The obvious morphism:

Colim
(C→F1)≤1

hét0 (C)×F E // E

is surjective, even as a presheaf morphism. Indeed, if α is a section of E over some smooth k-variety, there exist objects
(Ci → F1)i=1,...,n such that α is in the image of

∐n
i=1 h

ét
0 (Ci) → F . Let C =

∐n
i=1 Ci. Then, α is also in the image of

hét0 (C)×F E → E .
Each subsheaf hét0 (C)×F E ⊂ hét0 (C) is 1-generated, by Step 1. This proves that E is 1-generated.

Step 3: To finish the proof, we show that any 1-generated homotopy invariant sheaf is 1-motivic (proving the first part of
Corollary 1.3.5). Let F be such a sheaf, the surjection σ ∗1 σ1∗(F )

// // F factors through hét0 σ
∗

1 σ1∗(F )
// // F . Let

N be the kernel of the latter surjection. By Proposition 1.1.18 and Remark 1.1.21, we know that hét0 σ
∗

1 σ1∗(F ) is 1-motivic.
By Step 2, N is 1-generated being a subsheaf of the 1-motivic sheaf hét0 σ

∗

1 σ1∗(F ). By Corollary 1.1.26, this implies that
N = 0. �
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Corollary 1.3.5. A 1-generated homotopy invariant étale sheaf is 1-motivic. Moreover,HIét
≤1(k) is a Serre subcategory of Shv

ét
tr (k),

i.e., stable by subobjects, quotients and extensions. In particular, the inclusion HIét
≤1(k) ⊂ Shv

ét
tr (k) is exact.

Proof. The first part was proven in Step 3 of the proof of Lemma 1.3.4. The other claims follow easily from Lemmas 1.3.4
and 1.1.22. �

Lemma 1.3.6. Let G be a semi-abelian group scheme. Let F ⊂ G be an étale subsheaf with transfers of G such that π0(F ) = 0.
Then F is represented by a closed subgroup of G.

Proof. By Lemma 1.3.4, we know that F is 1-motivic. It follows that F is a filtered union of images of hét0 (C) // F
with C a smooth scheme of dimension≤1 (cf. Step 2 in the proof of Lemma 1.3.4):

F =
⋃
C→F

Im(hét0 (C)→ F ).

As this union is filtered, we have

F = F 0
=

⋃
C→F

Im(hét0 (C)→ F )0

where (Ď)0 denotes the kernel of the surjection Ď→ π0(Ď). One checks immediately that Im(hét0 (C)→ F )0 = Im(hét0 (C)
0
→

F 0). Now recall [18, Section 3.4] that hét0 (C) is represented by Alb(C) so that h
ét
0 (C)

0 is a semi-abelian variety. We thus have

F =
⋃
G′→F

Im(G′ → F )0

where the union is taken over maps G′ → F with G′ a semi-abelian variety. Since the image of G′ → F is also the image of
G′ → G it is then a semi-abelian variety. This proves that F is the union of the connected subgroups of G contained in F .
As G is Noetherian, any chain of connected subgroups of G is stationary. This proves our claim. �

Definition 1.3.7. We say that a 1-motivic sheaf E is finitely generated if there exist a semi-abelian group scheme G
(i.e., such that the connected component of the identity G0 is semi-abelian and π0(G) is finitely generated) and a surjection
q : G // // E .
If moreover q can be chosen so that Ker(q) is finitely generated (as a 1-motivic sheaf), we say that E is finitely presented

(or constructible).

Proposition 1.3.8. (a) Let E be a finitely presented 1-motivic sheaf. There is a unique and functorial exact sequence

0→ L→ G→ E → 0

where G is a semi-abelian group scheme and L a lattice (i.e., a torsion free and finitely generated 0-motivic sheaf).
(b) Let F be a 1-motivic sheaf. Then F is a filtered colimit of finitely presented 1-motivic sheaves.

Proof. For (a) choose a presentation

G1 → G0 → E → 0

with G0 and G1 semi-abelian group schemes. Denote by G01 the connected component of G1 and let G
′
= Coker(G01 → G0).

Then G′ is a semi-abelian group scheme. Moreover, we have a presentation

L′ → G′ → E → 0

where L′ = G1/G01 = π0(G1). Now let L
′′ be the image of L′ in G′ and L′′tor ⊂ L

′′ its torsion subsheaf. We define L = L′′/L′′tor and
G = G′/L′′tor. Then L is a torsion free finitely generated 0-motivic sheaf, G is a semi-abelian group scheme and

0→ L→ G→ E → 0

is an exact sequence. The uniqueness and functoriality of this sequence is easy and left to the reader (see also [4, Prop. 3.2.3]).
We now show part (b) of the proposition. We divide the proof in two parts.

Part 1: We first consider the case where π0(F ) = 0. Let P(F ) be the category of all morphisms a : E → F such that

• E is a finitely presented 1-motivic sheaf with π0(E) = 0,
• Ker(a) is a 0-motivic sheaf.
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We will prove that P(F ) is filtered and

Colim
E→F ∈P(F )

E ' F .

For simplicity, we write E/F an object E → F of P(F ). If E/F and E ′/F are two objects in P(F ) there is at most
one arrow (E/F ) → (E ′/F ). Indeed, let a1, a2 : E → E ′. By the first part of the proposition we can find a commutative
diagram

0 // L //

��

G //

bi
��

E //

ai
��

0

0 // L′ // G′ // E ′ // 0

with L and L′ lattices and G and G′ semi-abelian varieties. Let H be the coequalizer of b1 and b2. Then G′ → F factors trough
H → F . As the kernel of G′ → F is 0-motivic, we deduce that the kernel of G′ → H is also a 0-motivic sheaf. This happens
only when G′ → H is an isogeny. But then b1 − b2 factors through the torsion points of G′. This forces b1 = b2 as G is
connected. By a diagram chase, we deduce that a1 = a2.
By the proof of Lemma 1.3.6 we know that F is a filtered union of images Im(G → F ) with G a semi-abelian variety.

Given such a : G → F , Ker(a)0 is a connected subgroup of G by Lemma 1.3.6 (recall that (Ď)0 = Ker(Ď → π0(Ď))). If
G′ = G/Ker(a)0, the kernel of the morphism G′ → F is 0-motivic. In particular G′ → F ∈ P(F ).
To prove that P(F ) is filtered, we pick two objects E1/F and E2/F . By the discussion above, we can find G/F ∈ P(F )

such that Im(G→ F ) contains both Im(Ei → F ). We reduce then easily to the case where Im(E1 → F ) ⊂ Im(E2 → F ).
Let E3 = E1×F E2 ⊂ E1× E2. By Lemma 1.3.4, E3 is a 1-motivic sheaf and E03 is finitely presented as one easily deduce from
Lemma 1.3.6. By construction, E3 → E1 is surjective and its kernel N is contained in Ker(E1 → F ) × Ker(E2 → F ). In
particular, it is 0-motivic. Let E4 = Coker(N → E2). Then E4/F ∈ P(F ) and we have maps E1 → E4 and E2 → E4. This
proves that P(F ) is equivalent to a filtred ordered set.
The surjectivity of ColimE→F ∈P(F )E → F is clear. For injectivity, we use that Ker(E → F ) is the filtered union of its

finitely generated subsheaves L so that Im(E → F ) is the filtered colimit of the E/L.
Part 2: Nowwe treat the general case. ForL ⊂ π0(F ) a subsheaf, let Q(L) be the set of finitely generated subsheaves ofL.
We consider the class C of functors E : Q(L)→ HIét

≤1(k)/F which assign to L ∈ Q(L) a morphism E(L)→ F such that:

(1) E(L)0/F 0
∈ P(F 0),

(2) π0(E(L))→ π0(F ) is injective and its image is L.
We have an obvious notion of isomorphism between functors in C and the isomorphism classes in C form a set. Given E
and E ′ defined on Q(L) and Q(L′), we write E ≤ E ′ ifL ⊂ L′ and the restriction of E ′ to Q(L) is isomorphic to E .
By Zorn Lemma, we may pick a maximal functor E : Q(L) → HIét

≤1(k)/F in C . Let us prove that L = π0(F ). Suppose
the contrary and let M ⊂ π0(F ) not contained in L. We may assume that M/M0 is simple (i.e., has no proper non-zero
subsheaves) whereM0 = M ∩L.
The inverse image ofM along F → π0(F ) is an extension ofM by F 0. This gives an element in Ext1(M,F 0) (where the

Ext1 is taken in the category of étale sheaves). By Step 1, we have

Ext1(M,F 0) = Colim
E0/F 0∈P(F 0)

Ext1(M, E0).

It follows that we can find E ′(M)→ F such that
• E ′(M)0/F 0

∈ P(F 0),
• π0(E

′(M))→ π0(F ) is injective and its image isM ,
• there is a morphism E(M0)→ E ′(M) over F .
Let L′ = L + M . We define a functor E ′ on Q(L′) in the following way. If L ⊂ L we take E ′(L) = E(L). Suppose that

M ⊂ L and let L0 = L ∩L. We define E ′1(L) by the pushout square

E(M0) //

��

E ′(M)

��
E(L0) // E ′1(L)

We then take E ′(L) = E ′1(L)/Ker(E
′

1(L)→ F )0. For general L 6⊂ L, we let E ′(L) be the inverse image of L by E ′(L + M)→
L+M . One easily checks that we have extended the functor E to Q(L′). This is a contradiction.
Fix a functor E : Q(π0(F )) → HIét

≤1(k)/F in C . Let R(F ) ⊂ Q(π0(F )) × P(F 0) be the full subcategory whose objects
are (L, E0/F 0) such that HomP(F 0)(E(L)

0, E0) 6= ∅. Given (L, E0) in R(F ) we define T (L, E0) = E(L)
∐

E(L)0 E0. We get in
this way a functor T : R(F ) → HIét

≤1(k)/F such that ColimR(F )T ' F . That R(F ) is filtered is clear. The proposition is
proven. �
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Corollary 1.3.9. Let F be a 1-motivic étale sheaf. Then, the Voevodsky contraction F−1 = Hom(Gm,F ) is a torsion free
0-motivic étale sheaf.

Proof. It is clear that F−1 is an étale sheaf. Let us show that it is 0-generated as a presheaf. This is sufficient by
Proposition 1.2.7 and Remark 1.1.14.
Suppose we can writeF as a filtered colimit of 1-motivic étale sheavesF = ColimαFα . As Hom(Gm,−) commutes with

filtered colimits, we need only to show that each Hom(Gm,Fα) is 0-generated. By Proposition 1.3.8 we may assume that F
is finitely presented and hence have a short exact sequence:

0→ L→ G→ F → 0 (1.4)

with L a lattice and G a semi-abelian group scheme.
For a smooth k-scheme X , we have a long exact sequence

0 // L(X) // G(X) // F (X) // H1ét(X, L) // . . . . (1.5)

Let ks/k be a separable closure with Galois group G and write Xks = X ⊗k ks. By the Hochschild–Serre spectral sequence we
have an exact sequence

0 // H1(G,H0ét(Xks , L)) // H1ét(X, L) // H0(G,H1ét(Xks , L)).

By [1, IX, Prop. 3.6 (ii)] we know that H1ét(Xks , L) = 0 as the restriction of L to Xks is isomorphic to a direct sum of copies of
the constant sheaf Z. Moreover, H0ét(Xks , L) = H

0
ét(π0(X)⊗k ks). LetK0 denote the presheaf on (Sm/k)≤0 which associates

to the spectrum Spec(l) of an étale k-algebra l the group H1(G,H0ét(Spec(l⊗k ks), L)). IfK = σ
∗

0K0 = π0∗K0, we get from
(1.5) an exact sequence of presheaves with transfers:

0 // L // G // F // K . (1.6)

Moreover, asK is homotopy invariant, this is an exact sequence of homotopy invariant presheaves with transfers.
The functor Hom(Gm,−) is obviously exact on PST(k). Moreover, Hom(Gm, E) = 0 for E a strongly 0-generated presheaf.

Thus, we obtain from (1.6) an isomorphism Hom(Gm,G) ' Hom(Gm,F ). It is well know that Hom(Gm,G) is a lattice if G
is a semi-abelian group scheme. Using that filtered colimit of lattices is torsion free, we get also that F−1 is torsion free. It is
also possible to show directly that multiplication by n is injective on F−1 by noting that it is surjective on Gm (for the étale
topology, up to p-torsion). �

Theorem 1.3.10. Let F be a 1-motivic sheaf. There exists an exact sequence in HIét
≤1(k):

0 // N // G // F // K // 0 (1.7)

such that:

(i) N andK are 0-motivic sheaves,K = π0(F ) andN is torsion free.
(ii) We have an isomorphism Hom(Gm,G) ' Hom(Gm,F ).

Let L = Hom(Gm,F ). Then L is a torsion free 0-motivic sheaf and the canonical morphism L ⊗ Gm → G is injective. Let
A = Coker(L⊗ Gm → G).

(iii) A is a filtered colimit of abelian varieties.
(iv) With rational coefficients,A is isomorphic to a direct sum of simple abelian varieties, i.e.,A⊗ Q ' ⊕β Bβ ⊗ Q.

Proof. We know by Proposition 1.3.8 that F is a filtered colimit of finitely presented 1-motivic sheaves. We get (1.7) by
taking the colimit of the functorial exact sequences in Proposition 1.3.8.
Let us check the properties (i)-(iv).We get (i) by construction. To check thatHom(Gm,G) ' Hom(Gm,F )wemay assume

that F is finitely presented. Then the claim follows from the proof of Corollary 1.3.9.
Also, to show that L⊗ Gm → G is injective, we may assume that F is finitely presented. Here again, the claim follows

from the proof of Corollary 1.3.9. Property (iii) is clear from Proposition 1.3.8.
It remains to prove (iv). Let B ⊂ A be a maximal subsheaf of A that can be written as a direct sum of simple abelian

varieties (after tensoring by Q). This exists by Zorn Lemma. Assume that B 6= A. By (iii) there is and abelian variety C
and C → A whose image is not contained in B. Dividing by the connected component of the kernel of C → A, we may
assume that C → A is injective (as the kernel is torsion). Consider now C ∩B. This is a connected subgroup of C . Let C ′ be
a supplement of C ∩B in C . ThenB ⊕ C ′ ⊂ A. This is a contradiction. �

Proposition 1.3.11. The embedding HIét
≤1(k) ↪→ Shvéttr (k) has a left adjoint Alb : Shv

ét
tr (k)→ HIét

≤1(k) given by the following

Alb(F ) := Colim
X→F

Alb(X).
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Proof. Let F ∈ Shvéttr (k) and E ∈ HIét
≤1(k). Consider the following commutative diagram, cf. Lemma 1.1.6:

Hom(Alb(F ), E) // Hom(F , E)

Hom(Colim
X→F

Alb(X), E) // Hom(Colim
X→F

Ztr(X), E)

Lim
X→F

Hom(Alb(X), E) // Lim
X→F

Hom(Ztr(X), E)

We are then left to show the following: �

Lemma 1.3.12. For E ∈ HIét
≤1(k)

αX : Hom(Alb(X), E)
∼ // Hom(Ztr(X), E)

is invertible.

Proof. Wemay assume k separably closed by Lemma 1.3.13. As Ztr(X) // Alb(X) is a surjection of étale sheaves (again
up to p-torsion), our homomorphism is injective. We only need to check that αX is surjective. Take s ∈ Hom(Ztr(X), E).
By Proposition 1.3.8, we know that E is a filtered colimit of finitely presented 1-motivic sheaves. Since étale topology is

quasi-compact, s factors through E0 → E with E0 finitely presented. We may then assume E to be itself finitely presented.
We then have an exact sequence

0 // L // G // E // 0

with L a lattice and G a semi-abelian group scheme. We deduce a long exact sequence in cohomology:

0 // Hom(Ztr(X), L) // Hom(Ztr(X),G) // Hom(Ztr(X), E) // H1ét(X, L) // . . . .

As k is separably closed, L is isomorphic to the constant sheaf Zr . By [1, IX, Prop. 3.6 (ii)], H1ét(X,Z
r) = 0 since X is smooth

and hence normal. It follows that s factors:

Ztr(X) //

s

;;G // E

By the universality of Alb(X)we get a further factorization:

Ztr(X) //

s

88Alb(X) //

s′

##
G // E

Then s′ is mapped to s by αX . This proves the surjectivity of αX . �

Lemma 1.3.13. Let A and B be two étale sheaves with transfers on Sm/k. Let k ⊂ k′ be a Galois extension and denote by Ak′
andBk′ the pull-backs to Sm/k′. Then we have an isomorphism:

Hom(A,B) ∼ // Hom(Ak′ ,Bk′)Gal (k
′/k).

Definition 1.3.14. Denote by (−)≤1 : HIτtr(k) → HIτ
≤1(k) the restriction of Alb to HI

τ
tr(k) ⊂ Shv

τ
tr(k). It is left adjoint to the

inclusion HIτ
≤1(k) ⊂ HIτtr(k).

Remark 1.3.15. The category HIét
≤1(k) is the smallest cocomplete Serre subcategory of Shv

ét
tr (k) containing lattices and étale

sheaves represented by semi-abelian varieties. It is also the smallest cocomplete Serre subcategory containing hét0 (C) for C
smooth curves.
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1.4. n-generated for n ≥ 2

In this section,wepropose a conjecture thatmakes it possible to extend the results about 0-motivic and1-motivic sheaves
to the n-motivic case. Here also assume that p is inverted and take τ = ét.

Conjecture 1.4.1. For any smooth k-variety X, there exists a filtration F i+1hét0 (X) ⊂ F
ihét0 (X) such that:

(A) F 0hét0 (X) = h
ét
0 (X) and F

nhét0 (X) = 0 for n ≥ dim(X)+ 1,
(B) The filtration is compatible with the action of correspondences, i.e., for γ ∈ Cor(X, Y ) the induced morphism of homotopy
sheaves hét0 (X)

γ
−→ hét0 (Y ) is compatible with the filtration.

(C) If U is a dense open subvariety of X then hét0 (U)→ hét0 (X) is strict for the filtration.
(D) For n ≥ 0, the quotient F 0hét0 (X)/F

n+1hét0 (X) is n-generated.

Remark 1.4.2. When X is smooth projective, the Bloch–Beilinson conjectural filtration on the Chow group of 0-cycles
induces a filtration on h0(X)Q as we have h0(X)Q(K) = CH0(X ×k K)Q for any k-field K . This filtration should be the same as
the one predicted in 1.4.1. We remark also that the properties of the Bloch–Beilinson filtration imply (A) and (B) in the case
that X is projective (at least with rational coefficients). Moreover, with more effort, one should obtain (D) as well.

Lemma 1.4.3. Assume (A), (B) and (D) of Conjecture 1.4.1. Let F be an n-motivic sheaf. Any subsheaf of F is again n-motivic.

Proof. The proof is very similar to Lemma 1.3.4. One argues in three steps. The second and third steps are formal and extend
literally to the general case. The first step is to show that any subsheaf of F = hét0 (X) is n-generated if dim(X) ≤ n. As in
1.3.4, we can suppose that E = Im(a : hét0 (W )→ hét0 (X)) for some smooth varietyW . As F

n+1hét0 (X) = 0 and a is compatible
with the filtration of 1.4.1 we get a factorization:

hét0 (W ) // //

a

66hét0 (W )/F
n+1hét0 (W )

a′ // hét0 (X)

It is clear that the image of a is equal to the image of a′. This proves that E is n-generated since it is a quotient of the n-
generated sheaf hét0 (W )/F

n+1hét0 (W ). �

1.4.4
It follows from Lemma 1.4.3 that under (A) and (B) of Conjecture 1.4.1, condition (D) is equivalent to the stronger one:

(D′) For n ≥ 0, the quotient F 0hét0 (X)/F
n+1hét0 (X) is n-motivic.

We get also the following (cf. 1.3.5 for n = 1):

Corollary 1.4.5. Assume (A), (B) and (D) of Conjecture 1.4.1. Then HIét
≤n(k) is a Serre abelian subcategory of HI

ét
tr (k). Moreover,

the inclusion HIét
≤n(k) ⊂ HIéttr (k) is exact.

Proof. We just saw in Lemma 1.4.3 that HIét
≤n(k) is stable by subobjects. Stability by cokernels and extensions is proven in

Lemma 1.1.22. �

Another consequence of Conjecture 1.4.1 is the following (cf. 1.3.11 for n = 1):

Proposition 1.4.6. Assume Conjecture 1.4.1 with rational coefficients. There exist left adjoints

(−)≤n : HIéttr (k)Q // HIét
≤n(k)Q

to the inclusions HIét
≤n(k)Q ⊂ HIéttr (k)Q. Moreover, the functors (−)

≤∗ and the filtration F∗ are related by the following:

(F )≤n ∼= Colim
X→F

hét0 (X)Q/F
n+1hét0 (X)Q

and F nhét0 (X)Q = Ker(h
ét
0 (X)Q → (hét0 (X)Q)

≤n−1).
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Conversely, if the adjoints (−)≤n exist and theHIét
≤n(k)Q are Serre subcategories of HI

ét
tr (k)Q for all n ≥ 0, then Conjecture 1.4.1

holds.

Proof. First assume Conjecture 1.4.1. As in the 1-motivic case, for E ∈ HIét
≤n(k)Q we are left to show that

αX : Hom(hét0 (X)
≤n
Q , E) // Hom(Qtr(X), E)

is surjective (note that injectivity is clear). As in the proof of Lemma 1.3.12wemay suppose that E is the quotient of a hét0 (Y )Q
for Y of dimension≤n. Since we are working with rational coefficients the map hét0 (Y )Q // // E is a surjection of Zariski

sheaves. It follows that for s ∈ H0(X, E) = Hom(Qtr(X), E) there exists a dense open subset U of X such that s|U lifts to
hét0 (Y )Q:

hét0 (Y )Q // // E

Qtr(U) //

t

OO

Qtr(X)

s

OO

As E and hét0 (Y )Q are homotopy invariant s and t factors through h
ét
0 (X)Q and h

ét
0 (U)Q:

hét0 (Y )Q // // E

hét0 (U)Q u
//

t0

OO

hét0 (X)Q

s0

OO

By Conjecture 1.4.1, the map t0 is compatible with the filtration. It sends the subsheaf F n+1hét0 (U)Q to F
n+1hét0 (Y )Q = 0.

The morphism u is surjective. To see this, it suffices by Yoneda to show that Hom(hét0 (X)Q, Ď) → Hom(hét0 (U)Q, Ď) is
injective for any homotopy invariant étale sheaf ofQ-vector spaces Ď. Thismap is nothing but Ď(X)→ Ď(U)which is injective
by [10, Lemma 22.8].

By Conjecture 1.4.1(C), F n+1hét0 (U)Q // // F n+1hét0 (X)Q is surjective. This implies that s0 maps F n+1hét0 (X)Q to 0. This
gives a factorization:

Qtr(X) //

s

))hét0 (X)Q //

s0

66hét0 (X)Q/F
n+1hét0 (X)Q // E

The dotted arrow is mapped to s by αX .
Conversely, suppose that the left adjoints (−)≤n exist for all n ≥ 0 and define F n as in the statement for anyF ∈ HIéttr (k)Q

to be the kernel of F → (F )≤n−1. Properties (A), (B) and (D) are clear. We need only to check (C).
First remark that the inclusion HIét

≤n(k)Q ⊂ HIéttr (k)Q is exact (as it admits a left adjoint). We will prove more generally
that for any surjective morphism:

a : E // // F

the induced morphism F n+1(a) : F n+1(E)→ F n+1(F ) is again surjective. Let us denote byK the cokernel of F n+1(a). It is

sufficient to prove thatK is n-motivic. Indeed, in this case the cokernelL of F n+1(E)→ F is n-motivic being an extension
of two n-motivic sheaves:

0 // K // L
Ď // (F )≤n // 0 .

The universality of (F )≤n implies that Ď is invertible. This forcesK to be zero.
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To check thatK is n-motivic, consider the diagram:

N

��
0 // F n+1E //

��

E //

����

(E)≤n //

����

0

0 // F n+1F //

����

F //

��

(F )≤n // 0

K // 0

whereN is the kernel of (E)≤n → (F )≤n which is n-motivic. By the snake lemmaK is a quotient ofN . If we further assume
that HI≤n(k)Q ⊂ HItr(k)Q is a Serre subcategory,K is even n-motivic. �

Remark 1.4.7. Proposition 1.4.6 shows that if a filtration F i as in Conjecture 1.4.1 exists then it is unique (at least after
tensoring with Q).

2. Deriving π0 and Alb

2.1. Generalities

We first explain a general technique to derive right exact functors between Grothendieck abelian categories. For an
abelian category A, denote by C(A) the category of complexes of objects of A, K(A) the homotopy category of C(A) and D(A)
the derived category of A. When A is Grothendieck, by a theorem of Joyal (cf. [9,6]) the category C(A) has a model category
structure where the cofibrations are the injective morphisms and the weak equivalences are the quasi-isomorphisms. In
particular D(A) exists without enlarging the universe (see also the remark of Gabber in [20, 10.4.5]). In the sequel we will
use the homological indexing for complexes.

Lemma 2.1.1. Let A be a Grothendieck abelian category and I• ∈ C(A) a fibrant complex. For any A• ∈ C(A) we have an
isomorphism: HomK(A)(A•, I•) ' HomD(A)(A•, I•).

Proof. As A• is cofibrant and I• is fibrant we know that HomD(A)(A•, I•) coincides with the homotopy classes of maps
in HomC(A)(A•, I•) with respect to a fixed cylinder CylA• (see [15, II.1]). When we take the cylinder to be the cone of
(id,−id) : A• → A• ⊕ A• we get the usual homotopy relation on maps of complexes. �

Remark 2.1.2. Let A be a Grothendieck abelian category and I• ∈ C(A) a fibrant complex. For any n ∈ Z the object In
is injective. Indeed, we may assume n = 0. Let A ⊂ B and fix A → I0. We denote by N the kernel of the composition
A→ I0 → I1. We get then a morphism of complexes:

0 //

��

A //

��

A/N //

��

0

��
. . . // I−1 // I0 // I1 // I2 // . . .

Using the left lifting property of I• → 0 with respect to the trivial cofibration:

0 // A //

��

A/N //

��

0

0 // B // B/N // 0

we get an extension B→ I0 of A→ I0.

Remark 2.1.3. Let F : A→ B be an exact functor between Grothendieck abelian categories and suppose that G : B→ A is
right adjoint to F . Then:

(F ,G) : C(A) // C(B)

is a Quillen adjunction for the Joyalmodel structures. Indeed, F preserves cofibrations and quasi-isomorphisms. In particular,
G takes fibrant complexes to fibrant complexes.
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2.1.4
Any left exact functor G : B→ A between Grothendieck abelian categories admits a total right derived functor:

RG : D(B)→ D(A).

Suppose that G admits a left adjoint F : A → B. We will describe a condition (see Proposition 2.1.6) which grants the
existence of a total left derived functor LF left adjoint to RG. This condition is directly inspired from [11, Def. 1.49]. From
now on, we implicitly assume our abelian categories to be Grothendieck.

Definition 2.1.5. A complex P• ∈ C(A) is F-admissible if for any fibrant complex I• ∈ C(B)we have an isomorphism:

HomK(A)(P•,G(I•)) ' HomD(A)(P•,G(I•)).

Proposition 2.1.6. If C(A) has enough F-admissible complexes, i.e., any A• ∈ C(A) is quasi-isomorphic to an F-admissible
complex, then F admits a total left derived functor LF : D(A) // D(B) . Furthermore, LF is a left adjoint of RG.

Proof. Let A• ∈ C(A) and B• ∈ C(B). Choose quasi-isomorphisms P• ' A• and B• ' I• with P•F-admissible and I• fibrant.
We then get isomorphisms: HomD(A)(A•, RG(B•)) ' HomD(A)(P•,G(I•)) ' HomK(A)(P•,G(I•)) ' HomK(B)(F(P•), I•) '
HomD(B)(F(P•), B•). This shows that the covariant functor HomD(A)(A•, RG(−)) is co-represented by F(P•). This proves the
existence of a left adjoint to RG. �

2.1.7
We give some lemmas that help in proving the existence of enough F-admissible complexes for a Grothendieck abelian

category. The following is a direct analogue of the second statement in [11, Lemma 1.53].

Lemma 2.1.8. The full subcategory of C(A)whose objects are the F-admissible complexes is stable by cones and arbitrary sums.
Furthermore, suppose given a diagram:

(Po)•
a0 // (P1)•

a1 // . . . // (Pn)•
an // . . .

of F-admissible complexes such that an and F(an) are injective for all n ≥ 0. Then the colimit P• (computed in C(A)) of the above
diagram is again F-admissible.

Proof. Only the last statement needs a proof. Let I• ∈ C(B) be fibrant and choose a fibrant replacement G(I•) ' J•. As usual
we denote Hom• the total complex associated to the double complex of degreewise morphisms of chain complexes. We
then have two isomorphisms:

Hom•(P•,G(I•))
∼ // Lim

n
Hom•((Pn)•,G(I•)) (2.1)

Hom•(P•, J•)
∼ // Lim

n
Hom•((Pn)•, J•). (2.2)

We know by hypothesis that Hom•((Pn)•,G(I•))→ Hom•((Pn)•, J•) is a quasi-isomorphism for all n. In order to conclude,
we need to know that the limits in (2.1) and (2.2) are actually homotopy colimits. This follows from the fact that

Hom•(F((Pn)•), I•)→ Hom•(F((Pn−1)•), I•)

and

Hom•((Pn)•, J•)→ Hom•((Pn−1)•, J•)

are surjective as I• and J• are componentwise injective. �

Corollary 2.1.9. Keep the notation as above. Supposewe have a generator E ∈ Awhich is F-admissible as a complex concentrated
in degree 0. Then C(A) has enough F-admissible complexes.

Proof. For an object A ∈ A, we define a complex P(A)• with a quasi-isomorphism P(A)• → A such that:

• P(A)n = 0 for n < 0,
• P(A)0 =

∐
E→A E,

• and for n > 0:

P(A)n =
∐

E→Ker(P(A)n−1→P(A)n−2)

E.
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The complex P(A)• is functorial in A. We define P(K)• for a bounded complex K = K• as the simple complex associated
to P(K•)•. If K• → L• is a monomorphism of complexes, P(K)• → P(L)• is then a split monomorphism in each degree. In
particular, F(P(K)•)→ F(P(L)•) is injective.
Now, let K = K• ∈ C(A). We may write K = Colimn∈Nτ≥−nσ≤n(K)where, τ≤−n is the good truncation and σ≤n is the bad

one. Wewill show that Colimn∈NP(τ≥−nσ≤n(K))• is F-admissible. By the last statement of 2.1.8, it suffices to show that each
P(τ≥−nσ≤n(K))• is F-admissible. We are thus reduced to the case where K• is bounded. Using the stability of F-admissibility
by mapping cone (cf. 2.1.8), we may further suppose that K = A[0] is concentrated in degree zero.
To show that the complex P(A)• is F-admissible, we write it as the colimit of σ≤n(P(A)•) and use again 2.1.8. �

Lemma 2.1.10. Let P ∈ A such that HomD(A)(P[0],−) commutes with arbitrary sums. Then P is F-admissible if and only if for
any injective I ∈ B we have Exti(P,G(I)) = 0 for i > 0.

Proof. The condition is clearly necessarily as I[0] is a fibrant complex. Let us show that it is sufficient.
For a fibrant complex I• in C(B) one has

I• = Colim
n
(Holim

m
σ≤−n(σ≥m(I•)))

with σ≤−n and σ≥m the bad truncations of complexes. We are then reduced to the case where I• is a bounded complex
of injective objects. By induction we might further assume I• concentrated in one degree. That HomK(A)(P[0],G(I)[n]) →
HomD(A)(P[0],G(I)[n]) is invertible is clear if n < 0 and follows from our assumption of n > 0. �

2.2. The functors Lσ ∗n

As an application we get:

Lemma 2.2.1. The functor

σn∗ = Rσn∗ : D(Shvτtr(k)) −→ D(Shvτtr(k≤n))

has a left adjoint Lσ ∗n : D(Shv
τ
tr(k≤n)) −→ D(Shvτtr(k)).

Proof. Weneed to check the existence of enoughσ ∗n -admissible complexes in C(Shv
τ
tr(k≤n)). By Corollary 2.1.9 it is sufficient

to prove that for any smooth k-variety X of dimension≤n, the complex concentrated in degree zeroZ≤n(X) is σ ∗n -admissible.
Let I• be a fibrant complex in C(Shvτtr(k)) and choose a fibrant resolution σn∗I• // J• . By the commutative diagram:

HomK(Shvτtr(k≤n))(Z≤n(X), σn∗I•) // HomK(Shvτtr(k≤n))(Z≤n(X),J•)

HomK(Shvτtr(k))(Ztr(X), I•)
a

66

We need to show that a is invertible. But by Lemma 2.2.2 we have:

HomK(Shvτtr(k))(Ztr(X), I•) ' H0(X, (I•)|Xτ )

and also (see Remark 2.2.3)

HomK(Shvτtr(k≤n))(Z≤n(X),J•) ' H0(X, (J•)|Xτ )

where Xτ is the category Ét/X of X-étale schemes together with the τ -topology.
The result follows then from the fact that (I•)|Xτ is quasi-isomorphic to (J•)|Xτ . �

Lemma 2.2.2. Let I• ∈ C(Shvτtr(k)) be a fibrant complex. Then

HomK(Shvτtr(k))(Ztr(X), I•) ' H0(X, (I•)|Xτ )

with H∗(X,−) the τ -hypercohomology of X.

Proof. This is due to Voevodsky. Let us recall quickly his proof. We may assume τ ∈ {Nis, ét}. The Nisnevich and étale
cohomology can be computed using Čech hypercovers. Giving a τ -cover f : X ′ // X by an étale morphism, we need
to show that:

Γ (X, I•) // Γ (Č(f ), I•) (2.3)
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is a quasi-isomorphism (where Č(f ) is the Čech hypercover associated to f ). The morphism (2.3) is equal by adjunction to:

Hom•(Ztr(X), I) // Hom•(Ztr(Č(f )), I).

As I is fibrant, we only need to show that Ztr(Č(f )) → Ztr(X) is a quasi-isomorphism of complexes of τ -sheaves. This is
true by [10, Prop. 6.12]. �

Remark 2.2.3. The statement of Lemma 2.2.2 holds for Shvτtr(k≤n). The same proof works with obvious changes.

Lemma 2.2.4. The unit of the adjunction id
∼ // Rσn∗Lσ ∗n is invertible.

Proof. As a triangulated category with arbitrary sums D(Shvτtr(k≤n)) is generated by Z≤n(X)[0] for X ∈ (Sm/k)≤n. As both
Rσn∗ and Lσ ∗n commute with arbitrary sums, we only need to prove that:

Z≤n(X)[0]
∼ // Rσn∗Lσ ∗n Z≤n(X)[0]

is invertible. This follows immediately from Lσ ∗n Z≤n(X)[0] = Ztr(X)[0] as Z≤n(X)[0] is σ ∗n -admissible. �

Corollary 2.2.5. The functor Lσ ∗n : D(Shv
τ
tr(k≤n)) −→ D(Shvτtr(k)) is a fully faithful embedding. It induces an equivalence of

triangulated categories between D(Shvτtr(k≤n)) and the triangulated subcategory of D(Shv
τ
tr(k)) stable under arbitrary sums and

generated by the complexes Ztr(X)[0] for X ∈ (Sm/k)≤n.

Proof. Follows directly from Lemma 2.2.4. �

2.2.6. Motivic complexes
Let M be a model category (satisfying some technical assumptions such as being cellular and proper on the left) and S

be a set of arrows in M. Then the Bousfield localization LS(M) exists. As abstract categories, LS(M) = M, the cofibration
are the same and S is contained in the class of weak equivalences of LS(M). Moreover, the identity functor M → LS(M)
is a Quillen functor. This means that Ho(M) → Ho(LS(M)) admits a right adjoint which identifies Ho(LS(M)) with the full
subcategory of Ho(M) consisting of S-local objects (cf. [8, Th. 4.3.1]). In other words, we can define Ho(LS(M)) (up to an
equivalence of categories) as being the full subcategory of S-local objects in Ho(M). Up to this equivalence of categories,
LS : Ho(M)→ Ho(LS(M)) becomes the localisation functor and is the left adjoint to the inclusion.
The triangulated category DMτ

eff(k) is the homotopy category of a Bousfield localization LS(M) where M is the category
of complexes of τ -sheaves with transfers and

S = {maps of the form Ztr(A1X )→ Ztr(X) and their shifts}.

Therefore DMτ
eff(k) is the full subcategory of D(Shv

τ
tr(k)) whose objects are the A1-local complexes (called also motivic

complexes), i.e., these are complexesA• such that:

HomD(Shvτtr(k))(Ztr(X),A•[m]) ' HomD(Shvτtr(k))(Ztr(A
1
X ),A•[m]).

We denote by LA1 : D(Shv
τ
tr(k)) // DMτ

eff(k) the A1-localization functor which is left adjoint to the obvious inclusion.
For bounded above complexes one can also use [10, Lect. 14]. One can easily see that, for τ = Nisnevich and k perfect,

the resulting triangulated category of bounded above (effective) motivic complexes is fully embedded in DMτ
eff(k). In fact,

one can use the description of these categories as full subcategories of D(Shvτtr(k)) (recall that D
−(Shvτtr(k)) ⊂ D(Shv

τ
tr(k)))

and just check that a bounded above A1-local object is also an A1-local object of DMτ
eff(k) (this is equivalent to say that the

complex is bounded and the homology sheaves are homotopy invariants by Voevodsky’s theorem on the A1-invariance of
cohomology).
The object LA1(Ztr(X))will be denoted by M(X) for any smooth k-variety X . This is the homological motive of X .

Remark 2.2.7. The category DMτ
eff(k) admits arbitrary sums. Moreover, as a triangulated category with arbitrary sums,

DMτ
eff(k) is generated by LA1(X) with X ∈ Sm/k. If τ ∈ {co,Nis} or k has finite cohomological dimension, the inclusion

DMτ
eff(k) ⊂ D(Shv

τ
tr(k)) commutes with arbitrary sums. This follows easily from the commutation of RHom(A

1
k,−) with

arbitrary sums. Moreover, the generators LA1(X) are compact so that DM
τ
eff(k) is compactly generated.

Definition 2.2.8. We denote by DMτ
≤n(k) the triangulated subcategory of DM

τ
eff(k) stable under arbitrary sums generated

by M(X) for X ∈ (Sm/k)≤n. This is the triangulated category of n-motives.

Remark 2.2.9. The functor LA1 ◦ Lσ ∗n : D(Shv
τ
tr(k≤n))→ DMτ

eff(k) takes values in the subcategory DM
τ
≤n(k) ⊂ DMτ

eff(k).
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2.3. The functor Lπ0

Lemma 2.3.1. The functor Lσ ∗0 induces an equivalence of triangulated categories D(Shv
τ
tr(k≤0))[1/p

τ
] ' DMτ

≤0(k)[1/p
τ
]where

pτ is 1 unless τ = ét; in this case, it is the exponential characteristic of the field k.

Proof. ByCorollary 2.2.5, the functorσ ∗0 = Lσ
∗

0 : D(Shv
τ
tr(k≤0)) −→ D(Shvτtr(k)) is a fully faithful embedding and induces an

equivalencewith the triangulated subcategoryD(Shvτtr(k))≤0 ofD(Shv
τ
tr(k))with arbitrary sums and generated byZtr(l/k)[0]

with l a finite separable extension of k.
We need only to prove thatD(Shvτtr(k))≤0 coincideswithDM

τ
≤0(k). It is sufficient to show that the objects ofD(Shv

τ
tr(k))≤0

are A1-local. For this, we remark that any complex A• in D(Shvτtr(k))≤0 is the homotopy limits of the bounded complexes
τ≤nσ≥−nA. As the property of being A1-local is stable under homotopy limits we may assumeA• to be a bounded complex
of 0-generated sheaves. In fact, we may assume thatA• is concentrated in degree 0 with value the 0-motivic sheafL.
We are left to show thatL is strictly A1-invariant. For τ 6= ét there is nothing to prove as the higher cohomology groups

with values inL vanish. For τ = ét the result follows from Proposition 1.1.2. �

Proposition 2.3.2. Assume one of these two conditions:

(a) τ 6= ét,
(b) we work with rational coefficients.

The functor π∗0 admits a total left derived functor:

Lπ∗0 : D(Shv
τ
tr(k)) // D(Shvτtr(k≤0))

which is left adjoint to σ ∗0 : D(Shv
τ
tr(k≤0)) // D(Shvτtr(k)) .

Proof. Using Proposition 2.1.6 we need to show the existence of enough π∗0-admissible complexes. We shall prove that
Ztr(X) isπ∗0-admissible for any smooth k-varietyX .We remark that under one of the above two conditions,Ztr(X) is compact.
If follows from Lemma 2.1.10 that we need only to check the vanishing of Exti(Ztr(X), π0∗I) = 0 for i > 0 and I injective.
The result follows from the vanishing of higher cohomology in any strongly 0-generated τ -sheaf L: for τ 6= ét this is

clear; for τ = ét, étale cohomology with value in the Q-sheafL is also zero in higher degrees. �

Corollary 2.3.3. Under the conditions of Proposition 2.3.2 the inclusion DMτ
≤0(k) ⊂ DMτ

eff (k) admits a left adjoint

Lπ0 : DMτ
eff(k) // DMτ

≤0(k) .

Proposition 2.3.4. Under the conditions of Proposition 2.3.2, the functor Lπ0 takes compact objects to compact objects.

Proof. This follows formally from the fact that the functor admits a right adjoint that commutes with arbitrary sums. �

2.4. The functor LAlb

In this section we construct the functor LAlb for non necessarily constructible (i.e., compact or geometric) motives. This
extends the functor LAlb constructed in [4]. In this sub-section we assume that one of the following conditions is fulfilled:

• τ = Nis and the exponential characteristic p of k is inverted,
• τ = ét and we work with rational coefficients.

Theorem 2.4.1. Under one of the above conditions, we have:
(i) The composition ι : HIét

≤1(k) ⊂ Shv
ét
tr (k) ⊂ Shv

τ
tr(k) admits a right derived functor Rι : D(HI

ét
≤1(k)) ⊂ D(Shv

τ
tr(k)).

Moreover, with rational coefficients Rι is a full-embedding with essential image the subcategory DMét
≤1(k).

(ii) The composition:

Shvτtr(k)
aét // Shvéttr (k)

Alb // HIét
≤1

which we still denote by Alb and which is left adjoint to ι, admits a total left derived functor LAlb : D(Shvτtr(k)) // D(HIét
≤1)

which is left adjoint to Rι. Moreover, with rational coefficients, the counit of the adjunction LAlb ◦ Rι
∼
→ id is invertible.
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(iii) The functor LAlb factors through the A1-localization functor:

D(Shvτtr(k))
LAlb //

LA1

��

D(HIét
≤1(k))

DMτ
eff(k)

88

The dotted functor will be also called LAlb.

The last assertion of (ii) implies the last assertion of (i). The existence of the right derived functor Rι is clear as HIét
≤1(k) is

a Grothendieck abelian category and hence admits enough fibrant complexes.
To prove the existence of LAlbwewill prove that there are enough Alb-admissible complexes in Shvτtr(k). We use Fulton’s

definition of algebraic equivalence and denote NSr(X) the group of codimension r cycles modulo algebraic equivalence.

Definition 2.4.2. A smooth k-scheme X is said to be NSr -local if NSr(Xks) = 0 where ks/k is a separable closure of k and
Xks = X ⊗k ks.

Remark 2.4.3. When k is separably closed and the exponent characteristic of k is inverted, one can show that α ∈ CHr(X)
is algebraically equivalent to zero if and only if there exist a smooth projective curve C , two rational points x0, x1 ∈ C(k)
and β ∈ CHr(C ×k X) such that (x0 × idX )∗β = 0 and (x1 × idX )∗β = α.

Proposition 2.4.4. Let X be a smooth k-scheme which is affine and NS1-local. Then Ztr(X) is Alb-admissible.

Proof. The object Ztr(X) is compact if τ = Nis or if we work with rational coefficients. By Lemma 2.1.10 we need to check
that H∗Nis(X, I) = 0 for ∗ > 0 and I injective in HIét

≤1(k). LetL = Hom(Gm, I) = I−1 be the Voevodsky contraction of I; by
Corollary 1.3.9 this is a torsion free 0-motivic étale sheaf. Form the exact sequence in HINistr (k):

0→ N → L⊗ Gm → I→ K → 0.

As Hom(Gm,−) is an exact functor, it follows that N andK are birational homotopy invariant sheaves with transfers.
We deduce that H∗Nis(X,N ) = H

∗

Nis(X,K) = 0 for ∗ > 0. We have also H
∗

Nis(X,L⊗ Gm) = 0 for ∗ > 1. It follows that for
∗ > 1 one has H∗Nis(X, I) = 0 and we get a surjection:

H1Nis(X,L⊗ Gm) ' H1Nis(X,L⊗ Gm/N ) // // H1Nis(X, I) .

Using the Leray spectral sequence HpNis(X, R
qθ∗F ) ⇒ Hp+qét (X,F ) for the morphism of sites θ : Xét → XNis we deduce as

usual an inclusion H1Nis(X, I) ⊂ H
1
ét(X, I). In particular we need only to show that the map:

H1ét(X, aét(L⊗ Gm))→ H1ét(X, I)

is zero.
As X is affine and NS1-local, by Lemma 2.4.5 one has an isomorphism:

Ext1
HIét
≤1(k)

(Alb(X), aét(L⊗ Gm)) ' H1ét(X, aét(L⊗ Gm)).

Consider the commutative square:

Ext1(Alb(X), aét(L⊗ Gm)) //

∼

��

Ext1(Alb(X), I)

��
H1ét(X, aét(L⊗ Gm)) // H1ét(X, I)

To conclude, remark that Ext1(Alb(X), I) = 0 since Alb(X) is a 1-motivic sheaf and I is injective in HIét
≤1(k). �

Lemma 2.4.5. Let X be a smooth affine scheme which is NS1-local. For any 0-motivic étale sheaf L which is torsion free, the
obvious morphism:

Ext1(Alb(X),L⊗ Gm) // H1ét(X,L⊗ Gm) (2.4)

is an isomorphism. (Here, we writeL⊗ Gm for the tensor product of homotopy invariant étale sheaves with transfers, i.e., what
was written aét(L⊗ Gm) in the proof of Proposition 2.4.4.)
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Proof. We break the proof into three steps. The first one is a reduction to the case of a separably closed base field:
Step 1: Fix k ⊂ ks a separable closure of k and denote by Gk its Galois group.We assume that the lemma holds over ks, i.e., the
morphism of Gk-modules:

Ext1(Alb(Xks),Lks ⊗ Gm) // H1ét(Xks ,Lks ⊗ Gm)

is invertible. On the other hand, the universality of the Albanese scheme gives the following isomorphism of Gk-modules:

Ext0(Alb(Xks),Lks ⊗ Gm)→ H0ét(Xks ,Lks ⊗ Gm).

Using the morphism of the two Hochschild–Serre spectral sequences:

Hp(Gk, Extq(Alb(Xks),Lks ⊗ Gm)) +3

��

Extp+q(Alb(X),L⊗ Gm)

��
Hp(Gk,H

q
ét(Xks ,Lks ⊗ Gm)) +3 Hp+qét (X,L⊗ Gm)

we obtain a morphism of exact sequences:

0

��

0

��
Ext1(Alb(X),L⊗ Gm) //

��

H1ét(X,L⊗ Gm)

��
H0(Gk, Ext1(Alb(Xks),Lks ⊗ Gm))

∼ //

��

H0(Gk,H1ét(Xks ,Lks ⊗ Gm))

��
H1(Gk, Ext0(Alb(Xks),Lks ⊗ Gm))

∼ // H1(Gk,H0ét(Xks ,Lks ⊗ Gm))

By the five lemma we are then done.
Step 2: From now on, we assume our base field k to be separably closed. L, being torsion free, is a filtered colimit of free
lattices. We may thus assumeL to be the constant sheaf Z.
First prove the surjectivity of (2.4), i.e.,

Ext1(Alb(X),Gm) // H1ét(X,Gm) = Pic(X).

Let E1 be a line bundle on X . As X is NS1-local, we know that the class [E1] ∈ Pic(X) is algebraically equivalent to zero. By
Remark 2.4.3 there exist a smooth projective curve C with two points x0, x1 ∈ C(k) and a line bundle E on X ×k C such that
E|X×x0 is free and E|X×x1 ' E1.
Let us choose a trivialization t : OX×x0 ' E|X×x0 . We get then an element (E, t) ∈ Pic(X × C, X × x0) which by

Voevodsky [17] gives a correspondence (unique up to homotopy) α ∈ Cor(X, C − x0). Recall the construction of α. As X
is affine, X × x0 admits an affine neighborhood in X × C (for example X × (C − x) for any closed point x ∈ C different from
x0). It follows that it is possible to extend the trivialization t to a trivialization t ′ : O ' E over an open neighborhood of
X × x0. The Cartier divisor α defined by t ′ has support inside X × (C − x0). As it is closed in X × C , it is proper and affine
over X . This means that α is a finite correspondence from X to C − x0.
It follows from the construction of α that the image of [x1] ∈ Pic(C − x0) along the map α∗ : Pic(C − x0) → Pic(X) is

equal to [E1].
Now, α induces a section α ∈ Alb(C − x0)(X)which by the universality of the Albanese scheme factors:

X //

α

&&
Alb(X) // Alb(C − x0)

It is clear that [E1] is the image by:

Ext1(Alb(C − x0),Gm) // Ext1(Alb(X),Gm) // Pic(X)

of the class of the extension:

0 // Gm // Alb(C − {x0, x1}) // Alb(C − x0) // 0.

This proves that [E1] is in the image of Ext1(Alb(X),Gm)→ Pic(X) = H1ét(X,Gm).
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Step 3: Finally, we prove the injectivity of (2.4) (still forL = Z). Suppose given an extension:

0 // Gm // E // Alb(X) // 0.

E is then represented by a commutative group scheme. Suppose that the class of this extension goes to zero by (2.4). This
means that the Gm torsor X ×Alb(X) E splits. Fix a splitting X → X ×Alb(X) E and consider the composition:

X → X ×Alb(X) E → E .

By the universality of the Albanese scheme we get a morphism of group schemes Alb(X)→ E which is clearly a splitting of
our initial extension. �

Corollary 2.4.6. C(Shvtr(k)) admits enough Alb-admissible objects.

Proof. It is sufficient to show that any k-variety admits a Zariski hyper-cover by NS1-local affine varieties. As
NS1(Uks) // // NS1(Vks) is surjective for any open subscheme V of a smooth k-scheme U , it is sufficient to prove that

every smooth k-variety X can be covered by NS1-local varieties. Choose a system of generators a1, . . . , an of the finitely
generated module NS1(Xks) with ai representable by a very ample line bundle Li on Xks . For any point x ∈ X , one can find
divisors Di ⊂ Xks representing Li and which are disjoint from x⊗k ks. Denote by D′i the image of Di by Xks → X . It follows
that X − ∪i D′i is an NS

1-local neighborhood of x. �

Proof of Theorem 2.4.1. Corollary 2.4.6 shows the existence of a left adjoint LAlb to Rι by the general Proposition 2.1.6. Let
us shows that LAlb factors through the A1-localization functor LA1 . For this recall that:

LA1 : D(Shv
τ
tr(k)) // DMτ

eff(k)

identify DMτ
eff with the Verdier localization of D(Shv

τ
tr(k)) with respect to the triangulated subcategory I stable by infinite

sums and generated by the complexes:

QX = [ 0 // Ztr(A1X ) // Ztr(X) // 0 ].

Remark that I is also generated by QX with X supposed NS1-local. Indeed by the proof of Corollary 2.4.6, every smooth k-
variety admits a Zariski hyper-cover by NS1-local affine open subvarieties. By universality it suffices to show that LAlb sends
these complexes to 0. The result follows then from the well known fact that Alb(A1X ) = Alb(X).

To finish the proof, we show that the counit LAlb ◦ Rι
∼ // id is invertible with rational coefficients. As both LAlb and

Rι commutes with arbitrary sums we need only to check that:

LAlb(h0(C))
∼ // h0(C)

with C a smooth open curve (use that Rι ' ι with rational coefficients). Recall that Ztr(C) → hét0 (C) is an A1-weak
equivalence by [18]. As every affine smooth curve is NS1-local we are left to check that Alb(C) ' hét0 (C), which is clear.
�

Proposition 2.4.7. With rational coefficients, the functor LAlb takes compact objects to compact objects.

Proof. By the proof of Corollary 2.4.6, every k-variety admits a Zariski hypercover by NS1-local affine open subvarieties.
It follows that the triangulated category DMNiseff (k)Q is compactly generated by the motives of affine NS

1-local smooth k-
schemes X . But for such X , we have by construction LAlb(M(X)) = Alb(X) which is compact in D(HIét

≤1(k)). Indeed, with
rational coefficients Alb(X) is a direct factor of the motive of a smooth curve which is actually compact in DMNiseff (k)Q. Our
claim follows from the fact that the inclusion D(HIét

≤1(k)) ⊂ DMNiseff (k)Q commutes with infinite sums. �

Remark 2.4.8. By Proposition 2.4.7 we have, with rational coefficients, a functor LAlb : DMéteff,gm(k) // DMét
≤1,gm(k) .

This functor coincides with the one defined by a completely different method in [4, Section 5]. Indeed, they are both left
adjoint to the obvious inclusion.

Corollary 2.4.9. Let i : HIét
≤1(k) ⊂ Shv

ét
tr (k) be the obvious inclusion. Then Ri is a full embedding (even with Z[1/p]-coefficients).

Proof. With rational coefficients, this follows from Theorem 2.4.1 as Ri coincides with Rι up to the equivalence DMéteff(k) '
DMNiseff (k) (still with rational coefficients). By the Suslin rigidity theorem [10, Th. 7.20], the torsion objects of HI

ét
≤1(k) are

simply the σ ∗0 of torsion étale sheaves with transfers on (Sm/k)≤0. It follows from Lemma 2.3.1 that Ri restricted to torsion
objects is a full embedding. We conclude now using [4, B.2.4]. �
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Proposition 2.4.10. The cohomological dimension of the Z[1/p]-linear abelian category HIét
≤1(k) is bounded by 2 + cd(k).

Moreover, with rational coefficients, this cohomological dimension is 1.

Proof. Let us define cd′(k) to be 2+ cd(k) or 1 if the coefficients ring is Z[1/p] or Q. We need to show that Exti(A,B) = 0
forA andB two 1-motivic sheaves and i > cd′(k). We split the proof into two steps.
Step 1: Using the long exact sequences of Ext-groups associated to

0 // E0 // E // π0(E) // 0

for E = A and E = B we may assume that each of A and B is either 0-motivic or connected (we say that a sheaf Ď is
connected if π0(Ď) = 0).
The case where A and B are both 0-motivic follows immediately from the Hochschild–Serre spectral. We get actually

the more precise statement Exti(A,B) = 0 for i > cd′(k)− 1.
We now assume that one of the sheaves A or B is a connected 1-motivic sheaf. Let E be a connected 1-motivic sheaf

and Etor ⊂ E its maximal torsion subsheaf. Then by Suslin rigidity theorem [10, Th. 7.20] we know that Etor is a 0-motivic
sheaf. Moreover, using the fact that E is connected, we deduce that E ′ = E/Etor is uniquely divisible (i.e., takes values in the
category of Q-vector spaces). Using the long exact sequences of Ext-groups associated to

0 // Etor // E // E ′ // 0

for E ∈ {A,B} not 0-motivic, we may assume that each of A and B is either, 0-motivic or a uniquely divisible connected
1-motivic sheaf. The case where both A and B are 0-motivic has just been treated. We may then assume that at least one
ofA orB is a uniquely divisible connected 1-motivic sheaf.
Suppose thatA is a 0-motivic sheaf. ThenB is uniquely Q-divisible and we have Exti(A,B) = Exti(A⊗ Q,B). AsA is

a 0-motivic sheaf,A ⊗ Q decomposes of as a direct sum of simple 0-motivic sheaves of Q-vector spacesA ⊗ Q = ⊕α Aα

where Aα is a direct summand of some Qtr(Spec(lα)) with lα/k a finite separable extension. Using that Exti(A,B) =∏
α Ext

i(Aα,B) we may assume that A = Qtr(Spec(l)) for some finite separable extension l/k. But then we get (using
Corollary 2.4.9):

Exti(Qtr(Spec(l)),B) = Hiét(l,B) = 0

for i > 0 (and in particular for i > cd′(k)− 1) asB is uniquely divisible.
Step 2: By Step 1, we may assume thatA is a uniquely divisible and connected 1-motivic sheaf.
LetL = Hom(Gm,A). This is a 0-motivic sheaf by Corollary 1.3.9. Consider the exact sequence of étale sheaves

0→ N → L⊗ Gm → A→ Ab → 0.

ThenN is 0-motivic andAb is a birational, uniquely divisible and connected 1-motivic sheaf. Using the long exact sequence
of Ext-groups we need to consider the following two cases:

(1) A = L⊗ Gm/N withL andN two uniquely divisible 0-motivic sheaves,
(2) A = Ab is a birational, uniquely divisible and connected 1-motivic sheaf.

Using other long exact sequences of Ext-groups, one easily sees that (1) and (2) follow from the following properties:

(i) IfN is 0-motivic and uniquely divisible then Exti(N ,B) = 0 for i > cd′(k)− 1,
(ii) IfL is 0-motivic and uniquely divisible then Exti(L⊗ Gm,B) = 0 for i > cd′(k),
(iii) IfA is a birational, uniquely divisible and connected 1-motivic sheaf then Exti(A,B) = 0 for i > cd′(k).

Property (i) has been proved in Step 1. For (ii), we canwriteL as a direct sumL = ⊕α Lα whereLα are direct summand
of Qtr(Spec(lα)) with lα/k finite separable extensions. It is then sufficient to show that Exti(Qtr(Spec(l))⊗ Gm,B) = 0 for
l/k finite and separable and i > cd′(k). Consider now the exact sequence

0 // Zéttr (l)⊗ µ∞ // Zéttr (l)⊗ Gm // Qtr(l)⊗ Gm // 0

where we wrote l in place of Spec(l) and µ∞ for the torsion subsheaf of Gm. Using the case whenA is 0-motivic, settled in
Step 1, we are reduced to show that Exti(Zéttr (l) ⊗ Gm,B) = 0 for i > cd′(k). Consider now the curve C1 = (A1k − o)⊗k l.
The sheaf Zéttr (l)⊗ Gm is a direct summand of the motive M(C1). Using Corollary 2.4.9, it is sufficient to show that

HomDMéteff(k)
(M(C1),B[i]) = Hiét(C1,B) = 0

for i > 2 + cd(k) (resp. i > 1 with rational coefficients). The integral case follows from [1, X, Cor. 4.3] as C1 has Krull
dimension 1. With rational coefficients, we use that Hiét(C1,−) = H

i
Nis(C1,−) and the well known fact that the Nisnevich

cohomological dimension is bounded by the Krull dimension.
For (iii), we use Theorem 1.3.10 to get an exact sequence

0 // T // A′ // A // 0
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with T a uniquely divisible 0-motivic sheaf and A′ a direct sum of abelian varieties tensored by Q. Using the long exact
sequence of Ext-groups and the case of 0-motivic sheaves, settled in Step 1, we may assume thatA = ⊕β Aβ ⊗ Q with Aβ
abelian varieties. We then have Exti(A,B) =

∏
β Ext

i(Aβ ⊗Q,B) so we may assumeA = A⊗Q for some abelian variety
A. One can find an irreducible smooth and projective curve C2 having a rational point c such that A⊗ Q is a direct factor of
hét0 (C, c)⊗ Q. Using the exact sequence

0 // hét0 (C, c)tor // hét0 (C, c) // hét0 (C, c)⊗ Q // 0

and the fact that hét0 (C, c)tor is a direct factor of M(C), we reduce to show (by Corollary 2.4.9) that

HomDMéteff(k)
(M(C2)⊗ Q,B[i]) = Hiét(C2,B) = 0

for i > 2+ cd(k) (resp. i > 1 with rational coefficients). We then argue as for (ii). �

Remark 2.4.11. With Z[1/p]-coefficients (and τ = Nis), Rι is not the composition of the right derived functors of the
inclusions i : HIét

≤1(k) ⊂ Shv
ét
tr (k) and j : Shv

ét
tr (k) ⊂ Shv

τ
tr(k). Let us suppose for simplicity that k is separably closed

and pick a prime ` invertible in k. We will prove that Rι(Z/`) is a bounded complex, whereas Rj ◦ Ri(Z/`) is unbounded.
Let X be an affine smooth and NS1-local k-scheme. We have by adjunction Hi(RΓ (X, Rι(Z/`))) = Exti(Alb(X),Z/`).

By Proposition 2.4.10, these groups vanish for i > 2. It follows that the complex Rι(Z/`) is bounded above by 2 as
h−i(Rι(Z/`)) is the Zariski sheaf associated to U  Hi(RΓ (U, Rι(Z/`))) and every smooth scheme U can be covered
by NS1-local open affine subschemes. On the other hand, Ri(Z/`) = Z/` and Rj(Z/`) is the object of DMNiseff (k)
that represents étale cohomology. This object is unbounded. Indeed there are varieties Y of dimension d such that
colimV⊂YHd(RΓ (V , Rj(Z/`))) = Hdét(k(Y ),Z/`) 6= 0.

2.5. The non-existence of a left adjoint for n ≥ 2

Hereweworkwith rational coefficients.We take τ = Nis and drop the corresponding indexing in the notations. A natural
generalization of the previous construction is the following. Consider the smallest triangulated subcategory DM≤n(k) of
DMeff(k) stable under infinite sums and containingM(X) for X smooth of dimension≤n. Is there a left adjoint to the obvious
inclusion? Unfortunately, the answer is negative as pointed out (without proof) by Voevodsky cf. [18, Section 3.4].
In this section we provide a proof of this fact, which is probably similar to Voevodsky’s. Note however, that our argument

does not use the motivic conjectural picture. We assume that such an adjoint exists and denote it by Φn : DMeff(k) →
DM≤n(k).Wewill derive a contradiction. As for the casesn = 0, 1, the functorΦn takes constructiblemotives to constructible
motives. Indeed, the obvious inclusionDM≤n(k) ⊂ DMeff(k)which is right adjoint toΦn commuteswith arbitrary sums. Note
the following:

Lemma 2.5.1. Assume our base field k is algebraically closed and of infinite transcendence degree over Q. Let M be a constructible
motive. If Φn exists then for any finitely generated extension k ⊂ K the obvious mapΦn(MK )→ (Φn(M))K is invertible.

Proof. Note that the obvious morphism is the one we get by adjunction from the pull-back along k ⊂ K ofM → Φn(M). By
replacingM by the cone ofM → Φn(M)we may assume thatΦn(M) = 0. We then need to prove thatΦn(MK ) = 0.
Consider the universal map u : MK → Φn(MK ). As both MK and Φn(MK ) are constructible, this map is defined over

a smooth variety V with generic point Spec(K). This means that there exists an object A ∈ DM≤n(V ) and a morphism
ũ : MV → A in DMeff(V )whose pull-back to k(V ) is u.
Now remark that for any closed point x ∈ V , the pull-back along x of ũ is a morphism ũx : M → Ax with Ax ∈ DM≤n(k).

As Φn(M) = 0, the map ũx is necessarily zero. As k has infinite transcendence degree over Q and because M and A are
constructible this implies that u = 0. This forcesΦn(MK ) to be zero. �

We have:

Corollary 2.5.2. Assume that k is algebraically closed with infinite transcendence degree over Q. Let M be a constructible motive.
If Φn exists then the obvious morphism M → Φn(M) induces an isomorphism

Hom(Φn(M),Z(r))→ Hom(M,Z(r))

for r ≤ n.

Proof. To prove this, it suffices to show that for any finitely generated extension k ⊂ K and any n ∈ Z the morphism:

Hom(Spec(K),Hom(Φn(M),Z(r)))→ Hom(Spec(K),Hom(M,Z(r)))

is invertible. By adjunction and Lemma 2.5.1, the above map is the same as:

HomDMeff(K)(Φn(MK ),Z(r))→ HomDMeff(K)(MK ,Z(r)).

As Z(r) is in DM≤r(K) ⊂ DM≤n(K) this is true by the universality ofMK → Φn(MK ). �
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Having this, it is easy to provide a contradiction. Indeed, for a smooth and projective variety X of dimension≤n one has

Hom(M(X),Z(n)[2n]) ' M(X)(n− dim(X))[2n− 2 dim(X)]

by [18, Cor. 4.3.4]. As the triangulated subcategory of constructible motives in DM≤n(k) is generated by motives of smooth
and projective varieties of dimension less than n, we obtain that Hom(M,Z(n)) is constructible for any constructible object
of DM≤n(k). We deduce from Corollary 2.5.2 that for any constructible motive M , Hom(M,Z(n)) is constructible. This is
false forM = M(X) with X a generic quintic in P4 and n = 2. Indeed, the complex Hom(M(X),Z(2)[4]) is concentrated in
(homological) positive degree and its zero homology sheaf h0(Hom(M(X),Z(2)[4])) is CH2/X (see 3.1.1). By Theorem 3.1.4,
we get that L0π0(Hom(M(X),Z(2)[4])) ' L0π0(CH2/X ) = NS

2
/X . The latter is not finitely generated. For more details, see [3].

Despite the above negative result, we expect that the following conjecture is true but also quite difficult.

Conjecture 2.5.3. With rational coefficients, DM≤n(k) is exactly the full subcategory of motivic complexes whose homology
sheaves are n-motivic in each degree. In other words, the homotopy t-structure onDMeff (k) restricts to a homotopy t-structure on
DM≤n(k)whose heart is HI≤n(k). Moreover, DM≤n(k) has cohomological dimension≤n with respect to the homotopy t-structure,
i.e., for F and G n-motivic sheaves, we have HomDM(F ,G[i]) = 0 for i > n.

3. Computations and applications

One of the main tasks of this work is to extend the functor LAlb defined in [4] to not necessarily constructible motives in
order to apply it to motives of the form Hom(Z(n),M(X)). Note that such motives are not constructible in general (e.g., X
a generic quintic in P4 and n = 1, cf. [3]). In this section we use the functors Lπ0 and LAlb to produce some invariants of
algebraic varieties. We begin with some computations.

3.1. Chow and Néron–Severi sheaves

Let X be a smooth scheme. Recall that CHr(X) denotes the group of codimension r cycles in X up to rational equivalence.
A cycle α ∈ CHr(X) is said algebraically equivalent to zero if there exist a smooth connected variety U , a zero cycle

∑
i ni[ui]

in U of degree zero and an element β ∈ CHr(U ×k X) such that α =
∑
i ni(ui × idX )∗(ui × idX )

∗β .

3.1.1
Recall that the Néron–Severi group NSr(X) of codimension r cycles in X is the quotient CHr(X)/CHr(X)alg with CHr(X)alg

the subgroup of algebraically equivalent to zero cycles. We denote by CHr,τ/X the τ -sheaf associated the presheaf U  

CHr(U ×k X). We define also a τ -sheaf NS
r,τ
/X in the following way:

Definition 3.1.2. Suppose that U is connected. A cycle α ∈ CHr(U ×k X) is algebraically equivalent to zero relatively to U (or
U-algebraically equivalent to zero for simplicity) if there exist a smooth connectedU-scheme V → U , a finite correspondence∑
i ni[Ti] ∈ Cor(V/U) of degree zero and β ∈ CH

r(V ×k X) such that α =
∑
i ni(ti × idX )∗(ti × idX )

∗β with ti the finite
surjective projection Ti → U . When U is not connected, we say that α is algebraically equivalent to zero relatively to U if
this is the case of the restrictions to U0×k X for U0 any connected component of U .
We denote by NSr,τ/X the τ -sheaf associated to the presheaf

U  CHr(U ×k X)/CHr(U ×k X)U-alg

where CHr(U ×k X)U-alg is the subgroup of cycles that are algebraically equivalent to zero relatively to U .

Proposition 3.1.3. The morphism CHr,τ/X → π0(CH
r,τ
/X ) factors uniquely:

CHr,τ/X //
&&

NSr,τ/X
s // π0(CH

r,τ
/X )

Proof. The uniqueness of s is clear as the first map is surjective. Let us prove the existence. For this, we need to show that for
any smooth U the subgroup CHr(U ×k X)U-alg goes to zero by the map CH

r,τ
/X (U)→ π0(CH

r,τ
/X (U)). Let α ∈ CH

r(U ×k X)U-alg.
By definition, there exists a smooth connected U-scheme V , a 0-correspondence

∑
i ni[Ti] ∈ Cor(V/U) of degree zero and

an element β ∈ CHr(V ×k X) such that β =
∑
i ni(ti × idX )∗(ti × idX )

∗β with ti the finite surjective projection Ti → U .
The cycles α ∈ CHr(U ×k X) and β ∈ CHr(V ×k X) induce morphisms of τ -sheaves:

hτ0(U)→ CHr,τ/X and hτ0(V )→ CHr,τ/X .
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Moreover, the finite correspondence
∑
i ni[Ti] gives a morphism h

τ
0(U)→ hτ0(V ) and the equality α =

∑
i ni(ti× idX )∗(ti×

idX )∗β is exactly the commutativity of the triangle:

hτ0(U) //

��

CHr,τ/X

hτ0(V )

<<xxxxxxxx

We need to show that the composition

hτ0(U) // CHr,τ/X // π0(CH
r,τ
/X )

is zero. For this, we can show that the composition

hτ0(U) // hτ0(V ) // hτ0(π0(V ))

is zero. This follows immediately from the fact that
∑
i ni[Ti] is of degree zero and that V is connected. �

Theorem 3.1.4. Under one of the following assumptions:
(a) k is separably closed and the exponential characteristic of k is inverted,
(b) τ = ét and the exponential characteristic of k is inverted,
(c) we work with rational coefficients and τ = Nis,

the morphism s : NSr,τ/X
∼ // π0(CH

r,τ
/X ) is invertible.

Proof. Remark that it suffices to show that NSr,τ/X is a 0-motivic sheaf. Indeed, if this is true we get by universality an inverse
π0(CH

r,τ
/X )→ NSr,τ/X from the map CH

r,τ
/X → NSr,τ/X .

To check that NSr,τ/X is strongly 0-generated we might extend the situation to the separable closure of k using one of the
assumptions. Given a smooth variety U we will show that NSr(X) → CHr(X ×k U)/CHr(X ×k U)U-alg is an isomorphism.
This map is obviously injective as it has a section given by any rational point of U . We will show the surjectivity,
i.e., every [Z] ∈ CHr(U ×k X) is U-algebraically equivalent to a ‘‘constant cycle’’. For this, fix a point u ∈ U and consider

V = U ×k U
pr1 // U together with the finite correspondence of degree zero [∆] − [U × u] ∈ Cor(V/U). If [W ] =

pr∗2 [Z] ∈ CH
r(U × U × X) then we have a U-algebraically equivalent to zero cycle:

[W ∩ (∆× X)] − [W ∩ (u× U × X)] = [Z] − [U × Zu].

This shows that [Z] is U-algebraically equivalent to [U × Zu]. �

3.2. The higher Néron–Severi groups

Here we work only with the Nisnevich topology. We will write DMeff(k) instead of DMNiseff (k).

Definition 3.2.1. Let X be a smooth k-scheme. We define a family of abelian groups NSr(X, s) by:

NSr(X, s) :=
{
Lsπ0Hom(M(X),Z(r)[2r])(k) for r ≥ 0,
0 for r < 0.

Lemma 3.2.2. For r > dim(X) we have NSr(X, s) = 0. Moreover, under one of the following hypotheses:
(a) k is algebraically closed,
(b) k is separably closed and the exponential characteristic of k is inverted,
(c) we work with rational coefficients,
there is a canonical isomorphism NSr(X, 0) ' NSr(X) with the usual Néron–Severi group.
Proof. To prove the vanishing of NSr(X, s) = 0 for r > dim X = d we remark that Hom(M(X),Z(r)[2r]) '
Hom(M(X),Z(d)[2r])⊗ Z(r − d). So it suffices to show more generally that Lπ0(M ⊗ Z(1)) = 0 for any motiveM . We are
reduced to check this forM = M(U)with U smooth. The result follows then from the fact that π0(U) = π0(U × (A1k − o)).
The complex Hom(M(X),Z(r)[2r]) is concentrated in positive homological degree, i.e., the homology sheaf

hNisi (Hom(M(X),Z(r)[2r])) = 0 for i < 0. Moreover, we know that hNis0 (Hom(M(X),Z(r)[2r])) is the Nisnevich sheaf
CHr/X associated to the presheaf U  CH

r(U × X). We thus have:

L0π0Hom(M(X),Z(r)[2r]) = π0(CHr/X ).

So we need only to show that π0(CHr/X ) = NS
r
/X which is true by Theorem 3.1.4. �
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Proposition 3.2.3. Given a closed embedding of smooth schemes Y ⊂ X of pure codimension c we have a long exact sequence:

NSr(X − Y , s+ 1)→ NSr−c(Y , s)→ NSr(X, s)→ NSr(X − Y , s).

Proof. This follows immediately from the exact triangle:

M(X − Y ) // M(X) // M(Y )(c)[2c] //

in DMNiseff (k). �

Lemma 3.2.4. There exists a morphism CHr(X, s) → NSr(X, s) natural in X and compatible with the long exact sequences of
Proposition 3.2.3.

Proof. By [18, Prop. 4.2.9 and Th. 4.3.7], we have

CHr(X, s) = hNiss (Hom(M(X),Z(r)[2r]))(k).

The morphism of the lemma is obtained by applying hNiss to

Hom(M(X),Z(r)[2r])→ Lπ0Hom(M(X),Z(r)[2r])

and then taking k-rational points. �

Definition 3.2.5. We can also define a homological version:

NSr(X, s) :=
{
Lsπ0Hom(Z(r)[2r],M(X))(k) for r ≥ 0,
Lsπ0(M(X)⊗ Z(−r)[−2r])(k) for r < 0.

Remark 3.2.6. Using the formalism of the Grothendieck six operations (cf. [2]) we think it is possible to extend NSr(X, s) to
a cohomology theory with support H∗NS,Z (X, ·) together with a Borel–Moore homology theory HNS,∗(X, ·) and a pairing such
that these data satisfy the Bloch–Ogus axioms [5]. In particular, we would have a Gersten resolution for NSr(X, s) (cf. [5,7]).
This deserves a separate treatment.

3.3. The higher Picard and Albanese 1-motivic sheaves

Here we still work with DMNiseff (k) = DMeff(k).

Definition 3.3.1. Let X be a k-scheme. Define the higher Picard sheaves by:

Picr(X, s) :=
{
LsAlb Hom(M(X),Z(r)[2r]) for r ≥ 0,
0 for r < 0.

These are objects of HIét
≤1(k).

Proposition 3.3.2. We have Picr(X, ∗) = 0 when r > dim(X) + 1 or if r = 1 and ∗ 6= 0, 1. Moreover if k is algebraically
closed and X smooth, then Pic1(X, 0)(k) is the usual Picard group of X. If X is also projective then Pic1(X, 0) is represented by
the Picard scheme of X.

Proof. For r > dim(X)+ 1 we have

Hom(M(X),Z(r)) = Hom(M(X),Z(dim(X)))⊗ Z(r − dim(X))

It is then sufficient to show that for anyM ∈ DMeff(k)we have LAlb(M ⊗ Z(2)) = 0.
We may assume thatM = M(U)with U affine and NS1-local. The result follows then from the decomposition:

Alb(U × (A1k − 0)× (A
1
k − 0)) = Alb(U)⊕ Alb(U × (A

1
k − 0, 1))

⊕Alb(U × (A1k − 0, 1))⊕ Alb(U × (A
1
k − 0, 1)

∧2)

and the fact that Alb(V ×V ′) = Alb(V )⊗π0(V ′)⊕π0(V )⊗Alb(V ′)which in particular implies that Alb(U× (A1k−0, 1)) =
π0(U)⊗ Gm. �

Proposition 3.3.3. Given a closed embedding of smooth schemes Y ⊂ X of pure codimension c we have a long exact sequence:

Picr(X − Y , s+ 1)→ Picr−c(Y , s)→ Picr(X, s)→ Picr(X − Y , s)

in HIét
≤1(k).
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Proof. Same proof as Proposition 3.2.3. �

Definition 3.3.4. For a smooth scheme X define the higher Albanese sheaves by:

Albr(X, s) :=
{
LsAlb(Hom(Z(r)[2r],M(X))) for r ≥ 0
LsAlb(M(X)⊗ Z(−r)[−2r]) for r < 0.

These are objects of HIét
≤1(k).

Proposition 3.3.5. We have Albr(X, s) = 0 for r < −1 or r = −1 and s 6= 0. Moreover Alb0(X, 0) is the usual Albanese
scheme Alb(X) and Alb−1(X, 0) = Gm ⊗ π0(X).

Proof. To prove the vanishing of Albr(X, s) = 0 for r < −1 we argue as for Proposition 3.3.2. �

Remark 3.3.6. Assume X projective of dimension d. Then one has Albr(X, 0) = Alb(h0Hom(Z(r)[2r],M(X))) = Alb(CHd−r/X )
whichmost probably, over k = C, will be providingWalter’smorphic Abel–Jacobimap (cf. [19]) on the r-dimensional cycles.
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