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For a long time, themammalian brain has been perceived to be a static organ. However, the discovery of adult
neurogenesis inmostmammalian species, including humans,monkeys, and rodents, has disrupted this view.
As this continuous regeneration has an effect on establishedbehavioral patterns, it holds promising therapeu-
tic potential. However, before harnessing this potential regenerative power, wemust understandwhat effects
new neurons have on existing brain circuits. Ongoing research contributes to several important steps toward
bridging the gap between adult-born neurons, circuits, and behavior. The study of adult neurogenesis in
different neurogenic regions from a systems neuroscience perspective will pave the way to understanding
how it supports adaptive behavior and why its dysfunction correlates with some human brain disorders.
1. Introduction
The finding that neurogenesis continues throughout life in the

mammalianbrain hasgeneratedenormous interest amongneuro-

biologists and clinicians. While initially viewed with skepticism,

this process is now accepted to occur in most mammalian spe-

cies, including rodents, monkeys, and humans. Adult neurogene-

sis is restricted to specific neurogenic zones where neuroblasts

arecontinuously producedandmigrate to reach their targetedcir-

cuits anddifferentiate intoneurons, integrating into the network. In

mammals, this process occurs primarily in two regions: the sub-

ventricular zone of the lateral ventricles (SVZ) (Lledo et al., 2006)

and in the subgranular zone of thedentate gyrus (DG) in the hippo-

campus (Ming and Song, 2011; Gage and Temple, 2013). While

the latter gives rise to new glutamatergic granule cells (GCs) that

mature locally in the DG, the former produces new cells that

migrate rostrally to reach the first central relay of the olfactory

system, the olfactory bulb (OB), where they differentiate mostly

into GABAergic local interneurons, also called GCs. Some rare

adult-born neurons have also been reported in other regions,

notably the hypothalamus, striatum, amygdala, and olfactory cor-

tex (reviewed inArisi et al., 2012), although theextent and the func-

tional impact of this limited neurogenesis still remains debated.

Recent progress in the field of adult neurogenesis has greatly

advanced two different, yet complementary, research goals. The

first aim is to explore how the adult brain encodes and stores

representations of our external environment and of our internal

body states. In the two main neurogenic brain areas, the contin-

uous addition of new neurons represents an alternative mecha-

nism of neuronal plasticity that acts in parallel to the conventional

molecular, synaptic, and connectivity mechanisms of plasticity.

From a different perspective, interest in adult neurogenesis has

flourished because a growing number of clinical studies have

correlated mental and neurological disorders with changes in

the degree of adult neurogenesis (Jessberger and Gage, 2014).

For example, drug abuse and addiction; major mood disorders

such as chronic stress syndrome and depression; epilepsy;

and neurodegenerative diseases (such as Alzheimer’s disease
and Parkinson’s disease, AD and PD, respectively) correlate

with reduced adult neurogenesis (DeCarolis and Eisch, 2010;

Danzer, 2012; Ruan et al., 2014).

The second aim in the field is to decipher how new neurons

impact the functioning of pre-existing circuits. In the past

decade, evidence from physiological and behavioral studies

suggested that adult-born neurons are a unique neural type

that possesses peculiar physiology and connectivity (Carleton

et al., 2003; Marı́n-Burgin et al., 2012; Gu et al., 2012; Dieni

et al., 2013; Valley et al., 2013). The functional consequences

of continuously recruiting adult-born neurons in brain circuits

partially originate from the higher excitability, unique connectiv-

ity, and distinct synaptic plasticity. Recent work also suggests

that adult neurogenesis may produce not only young and excit-

able new neurons but also completely new neuronal subtypes

(Merkle et al., 2014). In addition, adult neurogenesis appears

to be essential for structural maintenance of the OB circuit

(Ninkovic et al., 2007; Imayoshi et al., 2008).

These new insights have shed light on how adult neurogenesis

contributes to circuit operation, how adult neurogenesis-

dependent circuit function correlates with cognitive-behavioral

outcomes, and how adult-born neurons respond to sensory

experience in healthy and diseased brains. Rather than being

comprehensive, this review intends to cover the major discov-

eries and future research that highlight the functional meaning

of adult neurogenesis from a systems neuroscience standpoint.

These new insights and emerging ideas highlight the function of

adult-born neurons in pre-existing brain circuits and point in new

directions to bridge the gap between neuron and cognition.

2. How Do Circuits Nurture the Development of
Adult-Born Neurons?
What makes neurogenesis in an adult brain so unique? It is prob-

ably the richness of content a developing neuron experiences

in the functioning brain by receiving fully developed external

inputs in combination with top-down contextual feedback.

Both OB and DG circuits have to encode novel, complex, and
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Figure 1. Circuit Development and Functional Maturation of Adult-Born GCs in the OB and DG
Top: identity, relative position, and time course of presynaptic inputs impinging onto adult-born GCs in the OB (left) and DG (right). Excitatory inputs are in blue,
inhibitory inputs are in red, and neuromodulatory inputs are in violet. Local inputs are in solid colors, and distant inputs are shaded with black lines. The output
targets of adult-born GCs are displayed in the center in bold. Bottom: schematic diagrams representing the relative changes in key maturation parameters such
as hyper-excitability, enhanced synaptic plasticity (such as long-term plasticity [LTP]), cell survival, and functional synaptic outputs for adult-born GCs in the OB
and the DG.
In the early phases, OB neuroblasts in the RMS are regulated by ambient glutamate released by surrounding regions such as the olfactory cortex. Once in the OB,
adult-born GCs first receive synaptic inputs in the GC layer (GCL) from distant projections originating from the olfactory cortex (mainly from the anterior olfactory
nucleus [AON]; anterior piriform cortex [APC]; tenia tecta [TT]; and, to a lesser extent, from posterior piriform cortex [PPC], entorhinal cortex [EC], and cortical
amygdala [C. Amyg; this latter structure mainly targets the accessory OB]), as well as from local GABAergic short-axon cells (SACs), which are bulbar in-
terneurons inhibiting others interneurons. Theymay also receive some non-synaptic neuromodulatory inputs releasing acetylcholine (Ach) from the diagonal band
of Broca (HDB), serotonin (5-HT) from the dorsal raphe (DR), and noradrenaline (NE) from the locus coeruleus (LC). In the second week, adult-born GCs start to
extend dendrites in the EPL, where they receive dendritic inputs from OB projection neurons, namely, M/T cells. Adult-born GCs then progressively start to
release GABA from their dendrites back onto M/T cells.
In the DG, early steps of maturation are regulated by extrasynaptic GABA, released from local DG interneurons. Then, DG adult-born GCs first receive synaptic
inputs from local GABAergic interneurons of the sub-granular zone (SGZ), such as parvalbumin-positive (PV+) basket cells and chandelier cells, followed by
inputs from local excitatory mossy cells.
As they extend their apical dendrites, adult-born neurons receive inputs from dendritic-targeting interneurons (such as somatostatin-positive hilar perforant path
[HIPP] interneurons, hilar commissural-associational pathway [HICAP] interneurons, and interneurons of the molecular perforant path [MOPP]), followed by
excitatory inputs from distant structures; from layer II lateral entorhinal cortex (Lat. EC; and, to a lesser extent, from perirhinal cortex [PRh] and subiculum) in the
lateral perforant path (LPP); and from the medial entorhinal cortex (MEC; and, to a lesser extent, from caudo-medial EC [CM EC] and mammilary bodies of the
hypothalamus) in themedial perforant path (MPP). Adult-born GCs also receive synaptic inputs from cholinergic cells of themedial septum and the Diagonal band
of Broca (HDB) aswell as non-synaptic inputs from neuromodulatory centers, in particular dopamine from the substancia nigra pars compacta (SNc) and from the
ventral tegmental area (VTA). Various studies have also described some transitory inputs from CA3 pyramidal cells.
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fine-detailed information, usually with contextual components

(Lepousez et al., 2013; Konefal et al., 2013). Since birth, adult-

born neurons are surrounded by developmental cues that

nurture their growth and orient their fate. Various cell types,

from ependymal cells that support neuronal proliferation to mi-

croglia that sculpt their dendritic arbor and eventually remove

apoptotic-pruned neurons, orchestrate these adult neurodeve-

lopmental processes (Figure 1).

2.1. Who Talks to Newborn Neurons?

In theOB, the vastmajority (�95%) of adult-born neuronsmature

morphologically and functionally into GABAergic GCs within
388 Neuron 86, April 22, 2015 ª2015 Elsevier Inc.
about 4 weeks (Petreanu and Alvarez-Buylla, 2002; Belluzzi

et al., 2003; Carleton et al., 2003), when the rate of synaptogen-

esis is maximal (Kelsch et al., 2008). It is interesting that these ju-

venile cells sense and react tomany brain areas, andmany types

of experiences could influence their integration. In theOB, recent

efforts sought to identify all the synaptic partners and to pre-

cisely describe the sequence of events of synapse formation

onto newborn neurons during their maturation. To tackle these

questions, a plethora of methods have been used: classical

immunocytochemistry (Whitman and Greer, 2007; Pallotto

et al., 2012), patch-clamp electrophysiology (Carleton et al.,
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2003; Belluzzi et al., 2003; Panzanelli et al., 2009; Katagiri et al.,

2011), viral expression of fluorescent synaptic markers (Kelsch

et al., 2008) and retrograde trans-synaptic tracers (Arenkiel

et al., 2011; Deshpande et al., 2013). From these studies, a pic-

ture of this orchestrated integration process has started to

emerge (Figure 1).

Along their migration in the so-called rostral migratory stream

(RMS), neuroblasts already express unclustered neurotrans-

mitter receptors (e.g., NMDA and GABAA receptors) that sense

extrasynaptic glutamate and GABA (Young et al., 2011). A large

portion of the RMS is surrounded by olfactory neocortical struc-

tures, opening the interesting possibility that neuroblast migra-

tion and survival may be regulated by olfactory cortex neuronal

activity. Once an immature neuron arrives into the OB, it imme-

diately receives GABAergic and glutamatergic synapses from

local and distant cells (mainly from the olfactory cortex). New

neurons start their maturation in the deep layers of the OB that

contain the highest density of top-down projecting inputs from

cortical, limbic, and subcortical areas (Lepousez et al., 2014).

During the first days of a young neuron’s life in the OB, the pre-

dominant synaptic activity is driven by the distant cortical struc-

tures (Katagiri et al., 2011; Arenkiel et al., 2011), as well as from

local and long-projecting GABAergic cells (Panzanelli et al.,

2009; Pallotto et al., 2012; Deshpande et al., 2013). In less than

2 weeks, the new cells extend their apical dendrites toward the

external plexiform layer (EPL) and receive dendro-dendritic api-

cal synaptic inputs from OB projection neurons, namely, mitral/

tufted (M/T) cells (Carleton et al., 2003; Whitman and Greer

2007; Nissant et al., 2009). Therefore, in the OB, adult-born

GCs first are guided by remote cortical structures before con-

necting with local intrinsic OB neurons.

In the DG, the sequence of these choreographed synaptic

events is almost completely opposite. The first synaptic input

reaching young maturing GCs cells originates from local

GABAergic interneurons (Figure 1). At this immature stage, these

GABAergic synapses have a depolarizing effect (Espósito et al.,

2005; Ge et al., 2006), unlike in the OB (Mejia-Gervacio et al.,

2011). The local inhibitory inputs in the DG also influence earlier

phases of adult hippocampal neurogenesis through dual regula-

tion of both stem cell activation and neuroblast survival (Song

et al., 2012, 2013). The first excitatory contacts are made a few

days later but originate from local excitatory mossy cells (Kuma-

moto et al., 2012; Chancey et al., 2014; Deshpande et al., 2013;

Vivar et al., 2012). On the other hand, the first extrinsic inputs

from the enthorinal cortex arrive much later, at between 2 and

5 weeks after cell birth. As a result, DG GCs appear to sense

the local network before listening to more remote brain areas

whose inputs gradually strengthen with age (Vivar et al., 2012;

Mongiat et al., 2009; Bergami et al., 2015). Although local inter-

neurons are among the first inputs onto adult-born neurons,

4-week-old GCs receive weak functional feedforward and feed-

back inhibition (Marı́n-Burgin et al., 2012; Temprana et al., 2015).

This transient high excitation/inhibition balance in 4-week-old

GCs coupled to an enhanced Hebbian plasticity of their inputs

makes adult-born neurons hyper-excitable andmore responsive

to inputs compared to the surrounding mature neurons (Li et al.,

2012; Marı́n-Burgin et al., 2012). In parallel to synaptic integra-

tion, astrocytes establish perisynaptic processes during
neuronal maturation, regardless of the target neuron’s age

(Krzisch et al., 2014); microglial cells participate in the phagocy-

tosis of apoptotic cells (Sierra et al., 2010), which may have

further impact on adult-born cell development. Recent studies

have also uncovered some functional heterogeneity within the

maturing adult-born cell population regarding their relative exci-

tation/inhibition balance and their input-output function (Dieni

et al., 2013; Brunner et al., 2014).

2.2. Activity-Dependent Control of Cell Development/

Survival

How does neuronal activity influence the process of adult

neurogenesis? The first attempts to answer this question were

conducted by manipulating the global activity within the whole

networks. Since the OB is the first central relay of the olfactory

system, it can be directly manipulated by changing the olfactory

environment. Using olfactory enrichment or deprivation, early

studies demonstrated that the level of sensory activity highly

correlates with cell survival (Rochefort et al., 2002; Petreanu

and Alvarez-Buylla, 2002; Winner et al., 2002; Mandairon et al.,

2006; Bovetti et al., 2009) and influences synapse formation

and structural dynamics (Kelsch et al., 2009; Livneh et al.,

2009). Moreover, genetically increasing adult-born neuron excit-

ability increases survival and restores normal synaptic integra-

tion of the cells while under sensory deprivation (Kelsch et al.,

2009; Lin et al., 2010).

The activity-dependent wiring of newborn GCs relies on the

ability of newborn neurons to dynamically connect highly active

presynaptic elements from M/T-cell and from top-down inputs

(Livneh and Mizrahi, 2011; Chow et al., 2012; Lepousez et al.,

2013). As a result, adult-born neurons display enhanced sensi-

tivity to network activity restricted to a specific critical window

(Magavi et al., 2005; Belnoue et al., 2011; Moreno et al.,

2009). Activity-dependent survival is controlled when the

cells are between 2 and 4 weeks old (Mouret et al., 2008) and

activity-dependent synaptic remodeling peaks between 1 and

2 months, and it may extend for several months after birth (Liv-

neh and Mizrahi, 2011; Figure 1). During that critical period,

adult-born neurons receive inputs from cortical and subcortical

areas that might convey important top-down information.

Therefore, certain studies have increased the sophistication of

network manipulation by controlling the behavioral contexts of

neuronal maturation. Survival of newborn neurons is signifi-

cantly increased when animals are subjected to reward associ-

ated olfactory discrimination (Alonso et al., 2006; Mouret et al.,

2008) or olfactory perceptual learning (Moreno et al., 2009).

Lesion studies suggest that these behavioral paradigms are

dependent on the integrity of top-down projections to the OB

(Martin et al., 2004; Kiselycznyk et al., 2006; Mandairon et al.,

2014).

In the hippocampus, manipulating activity by enriching the

environment, promoting voluntary exercise, or engaging spatial

learning increases the number of adult-born GCs integrating

the DG (Kempermann et al., 1997; van Praag et al., 1999) and in-

creases the innervation of both local and distant inputs (Bergami

et al., 2015). Direct in vivo high-frequency stimulation of the en-

thorinal cortex or the perforant path also promotes cell survival

(Bruel-Jungerman et al., 2006; Kitamura et al., 2010; Stone

et al., 2011). As in the OB, activity-dependent cell survival is
Neuron 86, April 22, 2015 ª2015 Elsevier Inc. 389
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Figure 2. Adult-Born Neuron Functions in
Networks: Toward a New Paradigm to
Study Adult Neurogenesis at the Systems
Level
Comparative analysis of adult-born neuron impact
on their surrounding network in the OB (top left)
and DG (top right).
In the OB, adult-born GCs (in green) are
GABAergic interneurons (circles) that provide
feedback and lateral inhibition onto M/T cells, the
excitatory output neurons (triangles) of the OB.
Adult-born GCs are also at the center of feedfor-
ward inhibitory circuits driven by excitatory top-
down cortical inputs (in red). Mature GCs are
indicated in gray circles.
In the DG, adult-born GCs (in green) are excitatory
output cells (triangles) and received extrinsic
excitatory inputs that exhibit long-term plasticity
(in red). Adult-born GCs drive local excitatory
mossy cells (gray diamond) and local interneurons
(circles), providing feedback and lateral inhibition
onto mature GCs (in gray) but not onto them-
selves. From one viewpoint, DG adult-born
GCs are thus positioned to efficiently transmit
information to CA3 while escaping to local DG
inhibition. From another viewpoint, the indirect net
output of DG adult-born neurons could be

considered as GABAergic inhibition, as in the OB. As a result, OB and DG adult-born neurons support comparable functions at the circuit level, such as pacing
network synchronization and fast oscillations, controlling the network excitation/inhibition balance, shaping network responsiveness and sensory coding, and
increasing the sparseness of the representation at the output cell population level. A new paradigm to analyze the impact of adult neurogenesis at the circuit level
in behaving animals is, therefore, needed to bridge the gap between cellular properties and behavioral outcomes (bottom). Thus, from a systems neuroscience
perspective, adult neurogenesis represents a unique chance to decipher the role of neuron and neuronal circuits in behavior.

Neuron

Review
restricted to a critical period (2–3 weeks), but during this period,

excitatory synapses have not yet formed (Figure 1). This effect is

likely to bemediated indirectly through network activity (Ge et al.,

2006; Song et al., 2012). On the other hand, experience-depen-

dent structural plasticity persists for several months (Lemaire

et al., 2012).

2.3. Formation of the Synaptic Output of Adult-Born

Neurons

In the OB, 3–4 weeks after their arrival, newborn GCs form

GABAergic contacts onto M/T cells after having received func-

tional synaptic inputs (Kelsch et al., 2008; Bardy et al., 2010;

Figure 1). To phrase this differently, newborn neurons ‘‘listen

before they talk.’’ However, during their migration, neuroblasts

release GABA in a non-synaptic manner (Bolteus and Bordey,

2004), although it is unknown whether the GABAergic volume

transmission takes place within the OB. In the OB, neuropeptide

expression by some adult-born neurons could be one way to in-

fluence the activity of surrounding network even before forming

actual output synapses (Lepousez et al., 2010). In addition,

because GABA is released from adult-born spines and because

GC spines display a high degree of structural plasticity, the

functional output of adult-born neurons is highly plastic and

sensitive to circuit activity (Livneh and Mizrahi, 2011). GABA

release from mature adult-born dendrites is also more reliable

than release from early postnatally derived GCs (Valley et al.,

2013). If mature adult-born GCs represent a functionally distinct

sub-population, this may be one of several unique adaptations

made by adult-born neurons to facilitate their integration into

adult circuits.

In the hippocampus, adult-born GC axons (i.e., mossy fibers)

are fully developed by 21 days after birth, with mossy-fiber bou-

ton density first appearing in the second week and reaching final
390 Neuron 86, April 22, 2015 ª2015 Elsevier Inc.
maximum density by 21 days post-injection (dpi) (Sun et al.,

2013). Adult-born GCs synapse onto inhibitory interneurons of

the hilus and onto local interneurons of the DG, providing feed-

back inhibition to the pre-existing GC population. This recruit-

ment of DG inhibitory circuits progressively increases as the cells

mature (Temprana et al., 2015). Within the DG circuit, these hy-

per-excitable neurons are thus positioned to impose feedback

inhibition onto the general GC population while also escaping

this inhibition. In the CA3, they activate local CA3 interneurons

as well as CA3 pyramidal cells (Toni et al., 2008; Gu et al.,

2012), and CA3 activity is altered after reduction of DG neuro-

genesis (Stone et al., 2011; Denny et al., 2012; Niibori et al.,

2012). It is interesting that this transient hyper-excitability be-

tween 4 and 6 weeks appears well after mossy-fiber boutons

reach their steady-state density (i.e., 3 weeks), suggesting an

important dynamic rewiring of the post-synaptic targets along

maturation. Though the impact of this feature on network activity

deserves additional investigation (e.g., Piatti et al., 2013), we

propose that the dynamic connectivity onto the various popula-

tions of interneurons may be an important aspect of adult-born

GC function (Figure 2).

3. The Contribution of Adult-Born Neurons to Circuit
Function
3.1. The Role of Immature Neurons in Network Dynamics

and Computation: New Insights on Pattern Separation

Although loss-of-function and gain-of-function experiments

have clearly highlighted a role of adult-born OB neurons in

different olfactory-related behaviors encompassing perceptual

learning, olfactory discrimination, and olfactory short- and

long-term memory (Lazarini and Lledo, 2011; Lepousez et al.,

2013), a direct involvement of adult-born neurons in neuronal
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coding was not explored until recently. Using targeted recording

of adult-born periglomerular cells in the OB, Livneh et al. (2014)

have found that adult-born neurons’ responsiveness increased

and peaked at 4 weeks after cell birth. At this point, the receptive

field is broader in immature neurons but then sharpens in an

experience-dependent manner as they mature (Livneh et al.,

2014). These results support previous findings showing that

adult-born neurons are more responsive to novel odors (Belnoue

et al., 2011; Magavi et al., 2005) and are preferentially activated

by recall of an odor-rewardmemory (Sultan et al., 2010; Figure 2).

Altogether, this form of hyper-excitability argues for a supralinear

role of adult neurogenesis in dynamically shaping network activ-

ity. In the OB, recent progress demonstrated that new interneu-

rons provide both feedforward and feedback inhibition to M/T

cells. As such, they may participate in stimulus normalization

and promote synchronization of output OB neurons (Chow

et al., 2012; Lepousez et al., 2013; Figure 2). Moreover, record-

ings in behaving mice have shown that the activation of newly

generated inhibitory interneurons in the OB can suppress the

contribution of spontaneous activity. This provides a dynamic

gain control of OB output cell activity (Alonso et al., 2012).

In the DG, recent efforts have assigned several computational

functions to adult-born neurons based on the associated behav-

ioral evidence: controlling DG responsiveness and population

sparseness (Burghardt et al., 2012; Ikrar et al., 2013), shaping

fast network oscillations (Lacefield et al., 2012), facilitating tem-

poral integration (Aimone et al., 2009, 2011), endowing circuits

with pattern separation, background suppression (Aimone

et al., 2009, 2011; Wojtowicz, 2012), and memory resolution

(Aimone et al., 2011). Although DG adult-born GCs are glutama-

tergic cells, most of these described functions are characteristic

of inhibitory networks (Isaacson and Scanziani, 2011), suggest-

ing that DG adult-born neurons predominantly recruit local

inhibition (Figure 2).

Regarding the functional consequences of olfactory and hip-

pocampal adult neurogenesis, one well accepted hypothesis is

that it enables the decorrelation of evoked activity patterns,

also referred as pattern separation. Pattern separation is a

computational concept that allows the disambiguation of con-

founding information by making initially similar patterns of neural

activity more distinct over time, using non-overlapping represen-

tations (Rolls and Kesner, 2006; Leutgeb and Leutgeb, 2007;

Aimone et al., 2011; Sahay et al., 2011; Yassa and Stark, 2011;

Nakashiba et al., 2012; Gu et al., 2012; Déry et al., 2013).

Although, only a small fraction of DG and OB neurons are acti-

vated by physiological stimuli (Piatti et al., 2013), pattern separa-

tion is a way to recode cortical or glomerular inputs, respectively,

into a sparse and orthogonal representation (Treves and Rolls,

1992). As such, this process may benefit learning and memory

by enabling the distinct storage of similar experiences (Aimone

et al., 2011). In other words, pattern separation is critical for

adapting the subject to a complex and changing environment

characterized by confounding signals.

Remarkably, both olfactory neurogenesis and hippocampal

neurogenesis seem to improve their respective neuronal

networks for discriminating between ambiguous and complex

stimuli. Since behavioral pattern separation has always been

analyzed using learning protocols, it is difficult to dissociate sen-
sory pattern discrimination per se from learning-associated

sensory representation. Studies of adult neurogenesis have re-

vealed that new GCs of the DG and the OB facilitate behavioral

discrimination. Recent data suggest that adult-born neurons

are critical for making fine discriminations between similar visual,

contextual, and spatial information in tests involving working

memory and for discriminating between similar odorants. In the

OB, direct optogenetic activation of adult-born OB neurons

enhanced olfactory discrimination learning only for a difficult

task (Alonso et al., 2012). Ablating adult DG neurogenesis im-

pairs mouse performance on a discrimination task between

two simultaneously presented adjacent stimuli (Niibori et al.,

2012; Clelland et al., 2009; Kheirbek et al., 2012). In contrast,

increasing the proportion of adult-born GCs in the DG enhances

spatial and contextual discrimination (Sahay et al., 2011; Naka-

shiba et al., 2012). Recent evidence suggests that young and

mature DG GCs may, in fact, hold opposite roles in pattern sep-

aration (Nakashiba et al., 2012). These findings demonstrate that

changing the ratio between young and mature GCs has impor-

tant functional consequences on information processing.

Up to now, pattern separation has only been addressed at the

computational and behavioral levels. Current research now chal-

lenges its role at the cellular and network levels. Current hypoth-

eses link pattern separation with the period of hyper-excitability

for newborn neurons and their associated synaptic plasticity.

The hyper-excitability for a given neuron might originate from

intrinsic cell properties and/or from network attributes. The latter

has been demonstrated by neurophysiological approaches high-

lighting enhanced activity-dependent potentiation of the synap-

tic inputs onto new neurons, thereby enhancing their plasticity

(Figure 1; Snyder et al., 2001; Ge et al., 2007; Schmidt-Hieber

et al., 2004; Nissant et al., 2009). In the DG, enhanced synaptic

plasticity results from the formation of new synapses endowed

with unique functions and from a delay in receiving proximal

inhibitory activity (Ge et al., 2006, 2007). Both events could

lead to a high excitation/inhibition ratio that endows immature

neuronswith low activation thresholds andweak input specificity

(Marı́n-Burgin et al., 2012; Piatti et al., 2013; but see also Dieni

et al., 2013).

In the OB, hyper-excitable new interneurons inhibit circuit

output. Because of this arrangement, sensory representations

are sparse (Rinberg et al., 2006) and thus amenable to pattern

separation (Rolls and Kesner, 2006; Leutgeb and Leutgeb,

2007). However, the principle of pattern separation raises a chal-

lenge in the hippocampus, where new immature excitatory GCs

with poor input specificity cannot contribute to sparse coding in

the DG. This could be explained by investigating the nature of the

message conveyed by adult-born neurons and by determining

how adult-born neurons recruit local inhibition (Figure 2).

A recent computational modeling suggests that the transition

from low to high inhibition coupling during cell maturation

together with a low input selectivity are a key feature for pattern

discrimination and encoding of novel inputs (Temprana et al.,

2015). In this circuit context, adult-born neurons turn out to be

preferential computational units for encoding and transmitting

information to downstream regions. From another viewpoint,

immature adult-born cells may impact the overall excitability of

the DG network by driving a significant portion of the feedback
Neuron 86, April 22, 2015 ª2015 Elsevier Inc. 391
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and lateral inhibition onto the GC layer while escaping from it,

due to transient uncoupling to the inhibitory network (Marı́n-Bur-

gin et al., 2012; Temprana et al. 2015). Increased activity in

mature GCs and enhanced gamma oscillations have been

observed after adult neurogenesis ablation (Lacefield et al.,

2012; Burghardt et al., 2012; Ikrar et al., 2013). These observa-

tions support the hypothesis that the indirect net output of these

hyper-excitable neurons of the DG would be GABAergic inhibi-

tion, a circuit feature that would ultimately reduce the general ac-

tivity of mature GCs, modulate the timing of inhibition and the

network synchronization, maintain some network homeostasis,

and increase the sparseness of the representation (Figure 2).

3.2. Adult Neurogenesis and Memory Engram

Another common feature of olfactory and hippocampal adult

neurogenesis is their facilitation of both learning and memory

processes. In the OB, ablation of adult neurogenesis using

chemical, irradiation-based, and genetic strategies have led to

heterogeneous results, with at least one common behavioral

impairment in olfactory memory (Lazarini and Lledo, 2011).

Recent optogenetic gain-of-function strategies have confirmed

that the selective activation of adult-born neurons improves

the speed of olfactory associative discrimination learning and fa-

cilitates long-term memory recall (Alonso et al., 2012). Olfactory

learning has also been shown to enhance input-specific synaptic

strength onto adult-born neurons (Lepousez et al., 2014), further

bridging synaptic plasticity in adult-born neurons and learning.

Consistent with the previous hypothesis that the DG is princi-

pally involved in memory encoding (Hasselmo et al., 1996), a

number of approaches have highlighted the role of new neurons

in encoding newmemories (Shors et al., 2001; Zhang et al., 2008;

Dupret et al., 2008; Winocur et al., 2006). To date, there are con-

flicting results in the literature showing that the ablation of adult

neurons can either impair or have no effect on the acquisition

during spatial learning. Most studies suggest that short-term/

long-term retention and recall are altered following adult neuro-

genesis reduction in spatial learning or in an associative memory

task (contextual fear conditioning, etc.). It is interesting that,

when dentate newborn neurons were optogenetically silenced

at 4 weeks of age, but not at 2 or 8 weeks, the retrieval of

previously learned spatial locations on the water maze and

the retrieval of learned fear-conditioned contexts were both

impaired (Gu et al., 2012; see also Denny et al., 2012). More

work is needed to characterize this restricted time window for

adult-born neurons and to determine the role that 4-week-old

neurons might play and that cannot be fulfilled by younger or

older neurons. Additionally, indirect stimulation of adult neuro-

genesis (using enrichment, running, etc.) leads to spatial and

associative memory enhancement, but the causal link between

these observations is still missing (Koehl and Abrous, 2011;

Marı́n-Burgin and Schinder, 2012).

If adult-born GCs act to separate ensemble patterns in the DG,

how would this pattern separation impact memory storage? The

answer relies on the fact that memory formation in the CA3 de-

pends on sparse coding and that memory discrimination at the

time of recall relies on adult neurogenesis. As a result, the pattern

separation ensuing from adult neurogenesis reduces the proba-

bility that a new episodic memory will interfere with existing

memories. This temporal separation partially results from the
392 Neuron 86, April 22, 2015 ª2015 Elsevier Inc.
ongoing recruitment of adult-born neurons, which may encode

new recent events during their transient window of hyper-excit-

ability, whereas mature cells encode older memories (Aimone

et al., 2011; Rangel et al., 2014). Once events have been en-

coded, the memory traces transfer from the hippocampus to

the cortex. Consolidation of memory occurs at this stage.

Remarkably, this process relies partly on hippocampal adult

neurogenesis (Kitamura and Inokuchi, 2014). Together, these

studies support the hypothesis that hippocampal neurogenesis

impacts different stages of memory formation. Lastly, adult-

born GCs have been shown to project to CA2 (Llorens-Martı́n

et al., 2015), a hippocampal field selectively involved in social

memory (Hitti and Siegelbaum, 2014). In addition to spatial and

contextual memories, hippocampal neurogenesis may influence

other forms of hippocampal-dependent memories.

3.3. Subregional Differences in Adult-Born Circuit

Contribution

Consistent with an early distinction between the ‘‘cognitive’’ and

‘‘emotive’’ hippocampus (Bannerman et al., 2004; Fanselow and

Dong, 2010), the discovery of adult neurogenesis in the DG was

initially thought, and then progressively demonstrated, to partic-

ipate both in learning and memory, as well as in emotion and

mood regulation.

Anatomical projections to the ventral and dorsal hippocampus

arise largely from non-overlapping downstream regions of the

entorhinal cortex and reach distinct subregions of the DG

(Dolorfo and Amaral, 1998; Ohara et al., 2013). In rodent, the dor-

sal subregion of the hippocampus receives multimodal informa-

tion originating from dorsolateral entorhinal cortices and is

mostly involved in spatial relational learning and memory (Moser

et al., 1995). This region is also highly active and contains a larger

pool of adult-born GCs (Piatti et al., 2011). Alternatively, the

ventral subregion in rodent shows less basal activity, with fewer

adult-born neurons that exhibit delayed maturation compared

to dorsal ones (Piatti et al., 2011). The ventral region receives

massive connections from affective brain areas, including the

medial prefrontal cortex, amygdala, and hypothalamus and is

intimately involved in anxiety, fear, and stress responses (Ban-

nerman et al., 2004). At the output level, differential axon target-

ing within CA3 between dorsal and ventral adult-born GCs (Sun

et al., 2013), as well as differential learning-induced recruitment

of CA3 interneurons by GC mossy-fiber terminals in ventral

and dorsal hippocampus (Ruediger et al., 2012), has been re-

ported. Notably, the transient high excitation/inhibition balance

observed in 4-week-old GCs of dorsal hippocampus (Marı́n-Bur-

gin et al., 2012) has not been observed in the ventral hippocam-

pus (Dieni et al., 2013), suggesting that the coupling to the

inhibitory network may also be different in these two subregions.

At the behavioral level, selective activation and inactivation of

these dentate sub-regions (Kheirbek et al., 2013) or subregional

adult neurogenesis ablation (Wu and Hen, 2014) indicates that

the dorsal domain is preferentially involved in modulation of

exploratory behavior, whereas the ventral part is more suited

for regulation of anxiety-related behavior. Nevertheless, this di-

chotomy might be oversimplified, since it was recently demon-

strated that exposing rats to moderate acute stress increased

neurogenesis only in the dorsal subregion (Kirby et al., 2013).

Also, in challenging contexts such as chronic exposure to
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glucocorticoids, both populations of adult-born GCs (ventral and

dorsal) contribute to the fluoxetine-induced anxiolytic effect (Wu

and Hen, 2014).

Similar to the subregional action of new hippocampal neurons,

OB neurogenesis occurs not only in the main OB but also in the

accessory OB (AOB). This brain region is a smaller structure

embedded within the main OB and is dedicated to encoding

pheromonal signals. In the AOB, SVZ-derived neuroblasts differ-

entiate into GCs that are localized within the inner region of the

GCL (Oboti and Peretto, 2014). Recent efforts have been pur-

sued to understand the contribution of adult-born cells in social

behavior or with endocrine modulators (Gheusi et al., 2009;

Feierstein et al., 2010).

Given the precise role of the hippocampal and olfactory sub-

networks, the aforementioned findings shed new light on the va-

riety of roles that adult neurogenesis may play in cognitive and

affective functions.

4. Bridging the Gap between Adult Neurogenesis and
Behavioral Outcomes
4.1. Adult Neurogenesis in the Hippocampus: Where Are

We Standing?

Collectively, hippocampal studies aiming at suppressing adult-

born neurons have yielded conflicting results on cognitive and

emotional impairments. The inconsistent findings and hypothe-

ses relate, in part, to the heterogeneity of experimental models

used. When deciphering the impact of adult-born neurons on

behavioral responses, adult neurogenesis has been altered us-

ing a number of different techniques including genetic ablation,

focal irradiation, and chemical tools that differ considerably in ef-

ficacy, specificity, and the nature of the targeted cells (e.g., Jess-

berger et al., 2009; Dupret et al., 2005; Monje et al., 2002) and

their respective off-target or compensatory effects. Furthermore,

variability between species, for instance between rats and mice,

makes it difficult to draw generalizable conclusions from distinct

models (Ray and Gage, 2006; Snyder et al., 2009). Recently, the

use of a rat genetic model to delete newborn neurons showed no

significant difference from controls in spatial pattern separation

on the radial maze, spatial learning in the water maze, and

contextual or cued fear conditioning (Groves et al., 2013). This

absence of effect is in contradiction to previous observations

that demonstrated the need of adult neurogenesis when animals

discriminated between similar stimuli (discussed in the earlier

section ‘‘The Role of Immature Neurons in Network Dynamics

and Computation’’). However, when Groves et al. (2013) con-

ducted a meta-analysis of all published results, they found no

significant effects in ablation of adult neurogenesis on spatial

memory, cue conditioning, or ethological measures of anxiety.

Their meta-analysis revealed remarkably high levels of heteroge-

neity among studies of hippocampal function, indicating that

only very sensitive tasks may capture the functional relevance

of adult-born neurons. For instance, altering adult DG neurogen-

esis impaired spatial pattern separation learning in a contextual

discrimination learning task (Sahay et al., 2011) and in a delayed

non-matching to place radial arm maze task (Clelland et al.,

2009). However, it did not impair it in a water maze task (Wojto-

wicz et al., 2008). This heterogeneity suggests that, in addition to

sensory and contextual information, adult-born GCs integrate
multiple parameters, such as the level of stress and vigilance

(Wu and Hen, 2014) that may affect their functional impact. On

that line, stress, which usually reduces neurogenesis, can also

increase neurogenesis when it persists after chronic social

defeat (Lagace et al., 2010). Further studies are necessary to

identify precisely the source of this heterogeneity and reveal

unique interaction pathways between behaviorally relevant pa-

rameters.

Most studies have focused on the functional roles of neuro-

genesis in memory acquisition, in particular, during early phases

of memory formation (Shors et al., 2001; Zhang et al., 2008;

Dupret et al., 2008; Winocur et al., 2006). However, theoretical

studies have postulated that the continuous integration of

newborn neurons into existing adult circuits could potentially

disturb the memory traces of previously stored contextual infor-

mation in the DG (Meltzer et al., 2005). For example, a study with

genetically modified mice lacking enrichment-induced neuro-

genesis in the DG showed that adult-born neurons play a key

role in hippocampal memory clearance (Feng et al., 2001).

Recently, a study revealed the retrograde function for adult

neurogenesis in forgetting. After a group of adult mice learned

how to find a hidden platform in awatermaze, their neurogenesis

was 2- to 3-fold enhanced. When tested later, mice with boosted

adult neurogenesis performed much worse than their non-

manipulated peers (Frankland et al., 2013; Akers et al., 2014).

Endowing adults with a high rate of neurogenesis deteriorates

otherwise stable memories, recapitulating the infantile amnesia

that accompanies early postnatal development (Frankland

et al., 2013). Increased neurogenesis may also support the

consolidation process during adulthood in which amemory trace

becomes progressively independent from the hippocampus

(McClelland et al., 1995). The decay of hippocampal depen-

dency is an active process that plays a role in clearing old mem-

ories out of the hippocampus once the memory has been stored

in cortical networks, thereby allowing the hippocampus to

continuously store new events (McClelland et al., 1995). This

erasing process may also be part of a more general systems-

level memory process in which information stored in the hippo-

campus is progressively transferred to distribute the cortical

network (Maviel et al., 2004).

4.2. Adult-Born Neurons in OB Circuits: A Hub that Links

Brain States with Sensory Representations

In the olfactory system, the OB is not merely a relay for olfactory

information. In addition to receiving sensory inputs from the

olfactory epithelium, it receives numerous ‘‘centrifugal’’ inputs

from different brain areas, such as cortical regions of the olfac-

tory cortex and limbic and neuromodulatory subcortical regions

(Figure 1). GCs are, therefore, perfectly located to integrate both

sensory and top-down information, adapting sensory process-

ing to the behavioral/internal context.

In which contexts do top-down inputs act on adult-born neu-

rons? Coarse lesioning of centrifugal afferents to the OB impairs

the animal’s ability to perform reward-associated olfactory

discrimination tasks or perceptual learning (Gray and Skinner,

1988; Martin et al., 2004; Kiselycznyk et al., 2006; Mandairon

et al., 2014). Active olfactory learning can enhance the survival

of adult-born cells (Alonso et al., 2006;Mouret et al., 2008; Sultan

et al., 2011), and adult-born GCs are selectively activated by
Neuron 86, April 22, 2015 ª2015 Elsevier Inc. 393
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memory recall (Belnoue et al., 2011). Reward-associated olfac-

tory learning induces a specific structural and synaptic remodel-

ing of cortico-bulbar inputs onto adult-born GCs, resulting in the

strengthening of top-down inputs (Lepousez et al., 2014). Along

the same line, slow-wave sleep has also been associated with

the specific activation of the cortico-bulbar top-down inputs

and to adult-born cell selection (Yokoyama et al., 2011).

Recently, the cortico-bulbar projection system has been shown

to link internal nutritional states (i.e., hunger) to olfactory percep-

tion and to modulate feeding behavior (Soria-Gómez et al.,

2014). These results illustrate that adult-born GCs are not only

sensitive to the sensory environment butmay also be highly influ-

enced by internal variables such as valence, sleep/arousal,

stress, nutrition status, attention, and motivation. These states

impact the development, synaptic function, and (ultimately) sur-

vival of adult-born neurons, producing an additional level of

metaplasticity. By encoding olfactory and contextual information

through the detection of the occurrence between sensory inputs

and top-down signaling, adult-born GCs thus act as efficient

coincidence detectors between the content of a message and

the context associated with it.

If GCs are key players in the cortico-bulbar loop, do adult-born

GCs hold a unique role in accepting this feedback? Adult-born

GCs exhibit distinct higher cell excitability, higher dynamic con-

nectivity, enhanced synaptic plasticity, and enhanced activity-

dependent survival (Figure 1). The expression of each of these

features in specific temporal windows could have precise func-

tional outcomes. For example, the olfactory cortex drives both

direct excitation and feedforward inhibition onto GCs (Boyd

et al., 2012; Markopoulos et al., 2012). The relative strength

and timing of excitation versus inhibition will strongly impact

the precision of spike timing and related plasticity rules in a

manner similar to what has been demonstrated for entorhinal

cortex inputs onto new neurons of the DG (Marı́n-Burgin et al.,

2012). Thereby, long-term modification of the synaptic strength

or connectivity could support learning and act as an enduring

mark to protect cells from death. Consequently, coincident sen-

sory and centrifugal inputs may be detected by newborn GCs

and be critical to their survival.

5. Some Open Issues: The Human Case
Understanding the extent of new neuron production and integra-

tion in the human brain is one of the most controversial topics in

the field of adult neurogenesis. Here, we discuss the status of hu-

man adult neurogenesis in the healthy and diseased brain.

5.1. Adult Neurogenesis in Humans

The first direct evidence supporting the notion of human adult

neurogenesis was discovered in 1998, when a chemical label

that permanently integrates into the DNA of dividing brain cells,

bromodeoxyuridine (BrdU), was given to cancer patients for

diagnostic purposes (Eriksson et al., 1998). However, since the

BrdU technique for newborn neuron identification does not pro-

vide quantitative information on the number of new neurons

generated and is no longer possible in humans due to safety con-

cerns, it has been difficult to compare neurogenesis in humans to

the same extent as previously reported in other mammals. How-

ever, a new technique has been developed to determine the

aggregate neuronal age in brain subregions using the natural
394 Neuron 86, April 22, 2015 ª2015 Elsevier Inc.
C14 abundance in genomic DNA in deceased patients (Spalding

et al., 2013). This study demonstrated that hippocampal neuro-

genesis occurs throughout adulthood, with a modest decline

during aging, in sharp contrast to rodents. In addition, the C14

data also revealed a nearly 100% turnover of dentate neurons

in humans, compared to the 10% reported in rodents (Spalding

et al., 2013).

When the same retrospective dating technique was applied

to quantify adult OB neurogenesis in postmortem brains, only a

few, if any,OBadult-bornneuronsweredetected. In infants, how-

ever, a small but significant level of postnatal bulbar neurogenesis

was reported (Sanai et al., 2004, 2011;Bergmannet al., 2012). It is

noteworthy that the declining healthy status of the human sub-

jects and the resolution of these techniques could be confound-

ing factors of reduced neurogenesis. Proliferating neuroblasts

have been reported in the adult humanSVZ using BrdU, histolog-

ical markers, and neurosphere generation (Curtis et al., 2007;

Wang et al., 2011; Sanai et al., 2011). Since adult-born neurons

are not detectable in the OB, the fate of SVZ neuroblasts is still

an unresolved issue. There is compelling evidence that the

RMS migratory pathway is organized differently than in the

rodent forebrain and substantially reduced after infancy (Sanai

et al., 2004, 2011). In contrast, other works have shown an exis-

tence of functional RMS (e.g., Curtis et al., 2007; Wang et al.,

2011) and were able to identify progenitors within the OB itself

(Pagano et al., 2000). An anatomical study of the human OB indi-

cates that it has a fundamentally distinct glomerular organization

compared to rodents (Maresh et al., 2008), additionally question-

ing the functional homology between humanand rodent olfactory

system. Thus, existence and functional significance of adult neu-

rogenesis in the human SVZwarrants further investigation. In this

quest, researchers will have to take into account that the natural

fate for SVZ neuroblast neurons might be either cell death or

migration into a different region. Using histological and C14

dating, Frisén and colleagues have found that new neurons inte-

grate in the human striatum, a brain region adjacent to the SVZ

and involved in movement and cognition (Ernst et al., 2014).

This shows that neuronal turnover in the striatum is restricted to

interneurons. Remarkably, this study also demonstrates that

postnatally generated striatal neurons are preferentially depleted

in patients with Huntington’s disease, thus linking impairment of

adult neurogenesis with neurodegenerative diseases.

5.2. Altered Adult Neurogenesis and Human Brain

Disorders

Some cognitive impairments and mental disorders have been

hypothesized to rely on the malfunction of neuronal production

in the hippocampus and on the adult neurogenesis-dependent

pattern separation. Not only does pattern separation play

a well-established role in spatial learning and memory, but

mounting evidence supports its role in mood control (i.e., Kheir-

bek et al., 2012). According to the neurogenic hypothesis of

mood disorders, new hippocampal neurons are required for

proper mood control and for the action of certain antidepressant

drugs (Eisch and Petrik, 2012). Insufficiency of new neurons re-

sults in an altered pattern separation that might generate diffi-

culties in distinguishing threatening from similar safe situations.

This difficulty in discrimination may contribute to anxiety and

to an over-generalization of fear perception observed in
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posttraumatic stress disorder. Because the expression of fear

responses and the regulation of stress responses are mediated

by other brain regions, such as the prefrontal cortex, the amyg-

dala, and the hypothalamus, future experiments will have to use

a systems-level approach to address how changes in hippocam-

pal neurogenesis affect communication with brain regions

outside the hippocampus.

While more work must be done in the field of adult neurogen-

esis and mood control, it is already noteworthy that the most

commonly prescribed antidepressant drugs today promote

hippocampal neurogenesis, and some of the effects of antide-

pressants in animal models are strictly dependent on increased

neurogenesis (Santarelli et al., 2003). This neurogenic hypothesis

of mood disorders might explain why depressed patients exhibit

decreased hippocampal volume (Small et al., 2011; Fotuhi et al.,

2012; Boldrini et al., 2012) and decreased neural progenitor cells

in the hippocampus (Boldrini et al., 2012, 2013). It might also

account for the increases in the prevalence of depression in

the elderly, since neurogenesis rates slowly decline with aging.

Accumulating evidence makes this framework very promising

for conceptualizing depression mechanisms, which eventually

may lead to the path for novel therapeutic strategies. Future

studies should elucidate how adult-born neurons, especially

those in the ventral hippocampal region, might impact the neural

pathways mediating emotional experience and affective states.

Similarly, impaired adult neurogenesis has been linked with

neurological disorders (and their animal models) such as AD,

stroke, epilepsy, and HD (DeCarolis and Eisch, 2010; Danzer,

2012; Ruan et al., 2014). For instance, while adult hippocampal

neural stem cells have lifelong activity in healthy humans, their

numbers diminish in AD patients (Haughey et al., 2002), thus

possibly accelerating learning and memory decline. Along these

lines, striatum neurogenesis is also reduced in patients with HD

(Ernst et al., 2014). Although the literature reporting on human

cases is sparse, numerous studies conducted in mice have

already highlighted several pathophysiological conditions in

which adult neurogenesis is concerned, including addiction, ep-

ilepsy, and neurodegenerative and neuropsychiatric disorders.

Currently, it is still unclear whether alteration of adult neurogen-

esis is a cause or a consequence of these pathologies.

The inflammatory status of the brain also strongly influences

the process of adult neurogenesis. Neurogenic zones show a

high density of microglia that phagocytose apoptotic adult-

generated neurons (Sierra et al., 2010). It is now also clear that

resting and activated microglia exert diverse (even adverse) ef-

fects on adult neurogenesis through the action of anti-inflamma-

tory or pro-inflamatory cytokines (Fuster-Matanzo et al., 2013).

The interaction between microglia and adult-generated neurons

appears to be extremely complex. One of the greatest chal-

lenges of the coming years is understanding the meaning of

this communication at every stage of the young neuron’s life.

Also, we will need to define the role of other glial or immune cells,

such as astrocytes or macrophages, as well as circulating

factors related to immune or allergic responses. With aging,

microglial regulation of oxidative stress also declines, while neu-

roinflammation increases (Fuster-Matanzo et al., 2013), which

could partially contribute to age-dependent reduction of neuro-

genesis. Recently, a striking study revealed that old mice in
heterochronic parabiosis with young animals developed some

juvenile brain features, in particular, the restoration of high levels

of neurogenesis in the SVZ-OB (Katsimpardi et al., 2008). This

recent finding is yet another example of how adult neurogenesis

integrates internal body states.

6. Key Questions and Future Directions
Understanding the role of adult neurogenesis in brain function

has been a major challenge and has recently benefited from

new technologies and new concepts. In this section, we point

to a number of important key questions and future directions

that will bring us closer to understanding the function of adult

neurogenesis from a systems neuroscience perspective.

6.1. Functional Connectivity

Thanks to the continuous addition of new computational units,

adult neurogenesis dynamically reformats the wiring of the

bulbar and hippocampal circuits. Notably, adult-born neurons

progressively integrate both inhibitory and excitatory inputs

from local interneurons as well as from distant structures. During

the critical period, experience can strongly remodel this presyn-

aptic connectivity (Bergami et al., 2015). From this general wiring

diagram (Figure 1), several questions emerge: How does the dy-

namic sequence of inhibitory and excitatory inputs shape the

development and the activity of adult-born neurons? How

does experience-dependent remodeling of presynaptic inputs

influence adult-born neuron activity? What types of messages

are conveyed by long-range versus local connections? How

does distant activity interact with the local network to shape

the development and function of new neurons? What are the

consequences of such different wiring sequences between DG

and OB neurogenesis?

Regarding the synaptic output of adult-born neurons, we still

don’t have a clear picture of how and when newborn neurons

functionally interact with their post-synaptic partners. How

does this connectivity dynamic impact network activity and the

excitation/inhibition balance? How do experience- and activity-

dependent processes shape postsynaptic connectivity? In the

DG, experiments are needed to further analyze the mossy-fiber

terminal complex and, particularly, its filopodia that support

activity-dependent feedforward inhibition in CA3 and learning-

induced inhibitory network plasticity (Caroni et al., 2012). The ac-

tivity pattern of adult-born GCsmay also be a decisive parameter

to control the functional recruitment of inhibitory circuits. The use

of optogenetics has provided some important answers on adult-

born GC output, but further effort is needed to understand the

impact of adult neurogenesis at the network level. Adult neuro-

genesis was shown to have distinct functional impacts accord-

ing to the subregions of the hippocampus, namely, dorsal versus

ventral hippocampus. Identifying the functional, cellular, and/or

network differences and the various postsynaptic targets

through which these subregions mediate their specific effects

constitutes another priority research goal.

6.2. Activity-Dependent Control of Survival

Intrinsic genetic factors and neuronal activity profoundly influ-

ence adult-born neuron survival. What are the factors defining

the critical periods for cell survival and regulating experience-

dependent circuit integration such as presynaptic connectivity?

Is it possible to extend or reopen a critical period? How do
Neuron 86, April 22, 2015 ª2015 Elsevier Inc. 395
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genetic and intrinsic factors interact with local and distant net-

works to control cell survival? To finally understand how wide-

spread neuronal activity orchestrates the development of new

neurons, it will be necessary to unravel the precise contribution

of all synaptic partners at every stage of the neuron’s life. To

do so, we will first need to characterize all the connections

morphologically and functionally and then manipulate them

in vivo. The combination of opto- and pharmaco-genetic strate-

gies with behavioral and electrophysiological monitoring will be

needed to achieve these goals.

6.3. Network Computations

Most of the computational functions of adult-born neurons have

been derived and validated using behavioral analysis. However,

extensive studies are needed to apply these functions to the cir-

cuits and system levels. Experimental work in awake, behaving

animals combined with state-of-the-art in vivo recording

techniques would refine our understanding of how new neurons

influence network processing and representations. These

techniques may answer questions such as the following: which

computational functions are supported by adult neurogenesis

in defined behavioral contexts? How do the olfactory and hippo-

campal newborn neurons shape the excitation/inhibition balance

and network synchronization, as well as spontaneous versus

evoked activities? What sensory or cognitive computations

may be unique to these interactions? In parallel to these experi-

mental approaches, biophysically realistic, large-scale models

may also enable new insights on the computational functions

of new neurons.

6.4. Behavioral Contribution

The precise contribution of immature adult-born neurons in the

memory engram warrants further investigation. Optogenetic

activation of a sparse population of dentate GCs active during

learning is sufficient for memory recall or false-memory crea-

tion (Ramirez et al., 2013). Given their high responsiveness

compared to mature neurons, adult-born neurons may have a

significant role in this process (Figure 2). In addition, further ef-

forts are required to chronologically analyze the activity of the

same adult-born neuron during the different phases of acquisi-

tion, retention, consolidation, and recall. For this, chronic imag-

ing of adult-born neurons in behaving animals will be fruitful.

Adult neurogenesis has recently been involved in disrupting pre-

vious memory traces stored in synaptic connections. At the

circuit level, which specific memory-related microcircuits and

connectivity patterns are altered by adult-born neurons? In the

ventral DG, further efforts are needed to investigate how ventral

adult-born GCs and their specific connectivity regulate mood

and emotional states. In the OB, a future challenge is to under-

stand how sensory activity and centrifugal inputs naturally

interact to support olfactory-driven behavior and control the

development and survival of adult-born neurons. To address

this, it will be necessary to control both centrifugal and sensory

inputs while monitoring GC activity in vivo in various behavioral

contexts.

6.5. Human Adult Neurogenesis

New neurons in humans may serve unique functions when

compared to those in other mammals. Differences in maturation

rates, newborn neuron proportion, destination, lifespan, and

anatomy between humans and other animal models are now be-
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ing investigated and will re-shape our understanding of human

adult neurogenesis over the coming decades. The strong DG

turnover observed in humans raises several questions. How

could the human DG process information with such a large

proportion of adult-born cells? Do human adult-born neurons

display an extended maturation phase, including a larger

critical window, as observed in macaque (Kohler et al., 2011)?

Although cognitive deficits in patients with reduced neurogene-

sis (following radiation therapy, aging, stress) have provided

interesting correlations (Jessberger and Gage, 2014), further ev-

idence is needed to demonstrate causally that human adult-born

neurons have a similar role as characterized in rodents and

represent a potential target to alleviate cognitive decline in

humans. The presence of striatal adult neurogenesis also raise

important questions from an evolutionary perspective: In the an-

imal kingdom, which other species share this feature? Is human

neurogenesis in the SVZ fundamentally different from that in ro-

dent? Are these adult-born striatal interneurons functionally rele-

vant? Why, in humans, is this local integration conserved in the

striatum but not feasible in the OB? For instance, striatal neuro-

genesis has been observed in rabbit (Luzzati et al., 2006) but not

in rodent. In mice, Notch signaling has been shown to prevent

striatal neurogenesis (Magnusson et al., 2014), indicating the

presence of a latent neurogenic program in the adult brain. How-

ever, reactive striatal neurogenesis has been reported in mice

following stroke but not in humans (Huttner et al., 2014). To

explain these discrepancies, recent studies hypothesized that

adult neurogenesis may have evolved to serve new functional-

ities to the targeted structures due to the socio-ecological pres-

sure (Konefal et al., 2013).

7. Conclusions
The past decade has seen a tremendous increase in regenera-

tive medicine research using stem cells for repairing damaged

brain circuits. For example, for PD patients, analysis of clinical

trials has identified several features of replacement cells that

are essential for favorable outcomes (Wijeyekoon and Barker,

2009; Lindvall and Björklund, 2011). The therapeutic use of

stem cells for neurological disorders includes either the modula-

tion of endogenous stem cells that are resident within the brain or

the introduction of exogenous stem cells. In this quest, the adult

SVZ is a promising source of neural stem cells for generation of

different neuronal subtypes (Merkle et al., 2014). In PD, for

example, dopaminergic neurons may be used for cell transplan-

tation (Cave et al., 2014). Harvesting adult-born neurons may

also be an alternative method to using embryonic stem cells or

induced pluripotent stem cells (Jessberger and Gage, 2014).

Though highly promising, this strategy still faces several impor-

tant challenges, including developing protocols with higher

efficiency for neuron production and specification, improving

migration and survival of engrafted cells, understanding how

new connections are formed in a complex brain circuit, and

removing the contaminating cell types responsible for tumor or

teratoma formation. Since adult neural stem cells can be endog-

enously harvested from patients, they are a potential autologous

source for cell therapy. Nonetheless, there are several basic con-

ceptual frameworks and important technical issues that need to

be tackled before creating favorable human clinical outcomes.
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Magnusson, J.P., Göritz, C., Tatarishvili, J., Dias, D.O., Smith, E.M., Lindvall,
O., Kokaia, Z., and Frisén, J. (2014). A latent neurogenic program in astrocytes
regulated by Notch signaling in the mouse. Science 346, 237–241.

Mandairon, N., Sacquet, J., Jourdan, F., and Didier, A. (2006). Long-term fate
and distribution of newborn cells in the adult mouse olfactory bulb: Influences
of olfactory deprivation. Neuroscience 141, 443–451.

Mandairon, N., Kermen, F., Charpentier, C., Sacquet, J., Linster, C., and Did-
ier, A. (2014). Context-driven activation of odor representations in the absence
of olfactory stimuli in the olfactory bulb and piriform cortex. Front. Behav. Neu-
rosci. 29, 8:138.

Maresh, A., Rodriguez Gil, D., Whitman, M.C., and Greer, C.A. (2008). Princi-
ples of glomerular organization in the human olfactory bulb—implications for
odor processing. PLoS ONE 3, e2640.

Marı́n-Burgin, A., and Schinder, A.F. (2012). Requirement of adult-born neu-
rons for hippocampus-dependent learning. Behav. Brain Res. 227, 391–399.

Marı́n-Burgin, A., Mongiat, L.A., Pardi, M.B., and Schinder, A.F. (2012). Unique
processing during a period of high excitation/inhibition balance in adult-born
neurons. Science 335, 1238–1242.

Markopoulos, F., Rokni, D., Gire, D.H., and Murthy, V.N. (2012). Functional
properties of cortical feedback projections to the olfactory bulb. Neuron 76,
1175–1188.

Martin, C., Gervais, R., Chabaud, P., Messaoudi, B., and Ravel, N. (2004).
Learning-induced modulation of oscillatory activities in the mammalian olfac-
tory system: the role of the centrifugal fibres. J. Physiol. Paris 98, 467–478.

Maviel, T., Durkin, T.P., Menzaghi, F., and Bontempi, B. (2004). Sites of
neocortical reorganization critical for remote spatial memory. Science 305,
96–99.

McClelland, J.L., McNaughton, B.L., and O’Reilly, R.C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: insights
from the successes and failures of connectionist models of learning and mem-
ory. Psychol. Rev. 102, 419–457.

Mejia-Gervacio, S., Murray, K., and Lledo, P.-M. (2011). NKCC1 controls
GABAergic signaling and neuroblast migration in the postnatal forebrain.
Neural Dev. 6, 4.

Meltzer, L.A., Yabaluri, R., and Deisseroth, K. (2005). A role for circuit homeo-
stasis in adult neurogenesis. Trends Neurosci. 28, 653–660.

Merkle, F.T., Fuentealba, L.C., Sanders, T.A., Magno, L., Kessaris, N., and
Alvarez-Buylla, A. (2014). Adult neural stem cells in distinct microdomains
generate previously unknown interneuron types. Nat. Neurosci. 17, 207–214.

Ming, G.L., and Song, H. (2011). Adult neurogenesis in the mammalian brain:
significant answers and significant questions. Neuron 70, 687–702.

Mongiat, L.A., Espósito, M.S., Lombardi, G., and Schinder, A.F. (2009).
Reliable activation of immature neurons in the adult hippocampus. PLoS
ONE 4, e5320.

Monje, M.L., Mizumatsu, S., Fike, J.R., and Palmer, T.D. (2002). Irradiation in-
duces neural precursor-cell dysfunction. Nat. Med. 8, 955–962.

Moreno, M.M., Linster, C., Escanilla, O., Sacquet, J., Didier, A., and Man-
dairon, N. (2009). Olfactory perceptual learning requires adult neurogenesis.
Proc. Natl. Acad. Sci. USA 106, 17980–17985.

Moser, M.B., Moser, E.I., Forrest, E., Andersen, P., and Morris, R.G. (1995).
Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad.
Sci. USA 92, 9697–9701.

Mouret, A., Gheusi, G., Gabellec, M.M., de Chaumont, F., Olivo-Marin, J.C.,
and Lledo, P.-M. (2008). Learning and survival of newly generated neurons:
when time matters. J. Neurosci. 28, 11511–11516.

Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L.,
McHugh, T.J., Rodriguez Barrera, V., Chittajallu, R., Iwamoto, K.S., McBain,
C.J., et al. (2012). Young dentate granule cells mediate pattern separation,
whereas old granule cells facilitate pattern completion. Cell 149, 188–201.

Niibori, Y., Yu, T.S., Epp, J.R., Akers, K.G., Josselyn, S.A., and Frankland, P.W.
(2012). Suppression of adult neurogenesis impairs population coding of similar
contexts in hippocampal CA3 region. Nat. Commun. 3, 1253.
Neuron 86, April 22, 2015 ª2015 Elsevier Inc. 399



Neuron

Review
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