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Abstract

Properties of the eigenvalues of the distance matrix of a one-dimensional point set are derived from
identities involving the characteristic polynomial and some related polynomials called the Ant, Sym, Din
and Sof polynomials of the point set. Let A⊕ B denote the concatenation of the lists A and B and MS [i, j ] =
M[m+ 1− i, n+ 1− j ] the spin of the m by n matrix M . The Ant and Sym polynomials come from a
factorization of the characteristic polynomial of the distance matrix of the set−AS ⊕ A obtained by reflecting
A about the origin. The roots of Ant are the eigenvalues with antisymmetric eigenvectors and the roots of
Sym are the eigenvalues with symmetric eigenvectors. Given a square matrix M and a vector A, we say
that v /= 0 is an eigenvector of M relative to A iff Mv = λv + kA and A · v = 0. Some basic properties of
relative eigenvectors are developed. The roots of Din are the eigenvalues of the distance matrix of A relative
to the vector of 1’s and the roots of Sof are the eigenvalues relative to A itself. Some simple recursions for
these polynomials obtained using expansion by minors are elaborated into an extensive series of identities
relating polynomials of lists to polynomials of concatenations of the lists. These identities are then used
to derive a linear time algorithm for computing the polynomials and proving some results about location,
distinctness and interlacing of eigenvalues.
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1. Introduction

Distance matrices and their generalizations have now been applied in several different contexts
and several different constructs are called by the name distance matrix. After some preliminary
definitions we will define the version used here. The basic data structure is a list of points taken
from a metric space. For this paper, the metric space will be the Euclidean space of dimension
one. Since our points are just real numbers, we will often endow our lists with the additional
structure of being a column vector. If v and u are given as column vectors, their dot product can
be written as a matrix product vTu. When we do not want to bother with coercing a list into a
column vector and then transposing it, we will simply write u · v for the dot product. Although
the distance between p and q is just |p − q|, we write ‖p − q‖ to keep in mind the general
context and to distingush distance from the length of a list A,which will be written |A|. The
concatenation of two lists A and B will be written A⊕ B. The ith entry of the list A will be
denoted by A[i] and the i, j th entry of the matrix M by M[i, j ]. A list, A, is increasing iff i < j

implies A[i] < A[j ]. Given a list, A, its distance matrice is Dist(A)[i, j ] = ‖A[i] − A[j ]‖. An
important tool for this paper, developed in Section 2, is relative eigenvectors. Given an n by n

matrix, M , and a nonzero vector, A, of length n; we say that a vector v is an eigenvector of M

relative to A for eigenvalue λ iff Mv = λv + kA and v /= 0 but A · v = 0. A bordered matrix
construction produces the analog for relative eigenvalues of the characteristic polynomial for
standard eigenvalues. Given a column vector, A, with |A| = n, an n by n matrix M , we use a
block matrix to define

bord(M, A) =
(

0 AT

A M

)
.

The characteristic polynomial of an n by n matrix M is χ(M, x) = Det(xIn −M). With this
definition χ(M, x) has leading coefficient 1. Since a distance matrix is necessarily symmetric, its
eigenvalues are all real. We will also need two analogs of the characteristic polynomial for relative
eigenvectors . If we define Jn as the length n vector whose entries are all 1, then these polynomials
are Din(A, x) = −Det(bord(xI − Dist(A), J )) and Sof(A, x) = −Det(bord(xI − Dist(A), A).
The properties of the din polynomial are developed in Section 3 and those of the sof polynomial
in Section 7. In this paper we will show that the eigenvalues and relative eigenvalues of the
Dist matrix have a rich structure that is expressed by an extensive set of identities involving
characteristic polynomials and the Din and Sof polynomials.

In his 1937 paper [10] on isometric embeddings, Schoenberg showed that the points of A

(from Rn) being distinct implies that Dist(A) is nonsingular. In fact he showed that the points
of A distinct implies that Dist(A) has exactly one positive eigenvalue and the rest negative. His
approach used complex valued integrals and proved a result more general than the one just stated.
Powell [8] proved similar results using similar techniques and his exposition clearly showed that
a key step is to show that if v ∈ R|A| with v · J|A| = 0 then vTDist(A)v < 0. To be more precise,
if vTDist(A)v < μ(vTv) for v · J|A| = 0 then, except for a single positive one, the eigenvalues of
Dist(A) are all less than μ. As a result of our analysis of relative eigenvalues, in Corollary 12.1
we will identify the best possible bounds for vTDist(A)v when v · J|A| = 0.

A reflection symmetry of the point set imparts symmetries to the distance matrix and that
produces a factorization of its characteristic polynomial. We need some more notation to describe
the matrix symmetries. The resulting factorization wll be derived in Section 4. We need a transpose
like operation on matrices which we will call the spin. See Good [3], Andrew [1], Weaver [11]
and Holladay [5] for expositions of the spin operation, not always with our name or notation. We
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will follow the notation of the predecessor [5] to this paper, which we now review. See Section 2
of that paper for more details.

Definition 1.1. The spin AS of an m by n matrix A has AS[i, j ] = A[m+ 1− i, n+ 1− j ]. AS

is also m by n.

The S operation is a half turn about the center of A. A centrosymmetric matrix is defined as
a matrix that satisfies AS = A. A vector (or list) of numbers, v, is symmetric iff vS = v, and
antisymmetric iff vS = −v. The n by n matrix exchange matrix En is defined by

En[i, j ] =
{

1 if i + j = n+ 1,

0 otherwise.

As with the identity matrix In and with Jn, we will omit the size subscript n of En when conve-
nient. Note that E is a symmetric, centrosymmetric involution and that for A an m by n matrix,
we have AS = EmAEn. For square matrices this shows that the spin is a similarity. Note that
(AB)S = ASBS so spin does not reverse products the way transpose does. We bounce between
lists and vectors freely in the observation that (A⊕ B)S = BS ⊕ AS . See Golub and Van Loan [2,
p. 125] for the name exchange matrix. They also define a third type of matrix symmetry as follows:
a square matrix is persymmetric iff A = ATS . Toeplitz matrices are an example of persymmetric
matrices. Persymmetry is reflective, like ordinary symmetry, but with respect to the off diagonal.
Note that a (square) matrix with any two of the symmetries also has the third: Reid called such
matrices bisymmetric, and his paper [9] gives results along the lines of Section 4. A matrix of
central importance to this paper, Dist(−AS ⊕ A), is bisymmetric.

Since the distance matrix is constructed from the distances between points, applying a transla-
tion or any other Euclidean motion to the point set does not affect the distance matrix. Applying
a similarity with factor t would just multiply all the distances by a factor of t and hence scalar
multiply the distance matrix by t . Also straightforward is the effect of reordering the points.
Suppose we have a permutation, σ , of the numbers 1 to |A|. The permuted list, σ(A), is defined
by σ(A)[i] = A[σ(i)]. The distance matrix Dist(σ (A)) of σ(A) can be computed from Dist(A)

using a permutation matrix Pσ , defined by Pσ [i, j ] = 1 if σ(i) = j and 0 otherwise. Then we have
Dist(σ (A)) = Pσ Dist(A)P T

σ by an easy calculation. See the remarks of Marcus and Smith in [6].
Note that Dist(A)S = Dist(AS) is a instance of this result since in this case the matrix P is just
E. Since Dist(A) and Dist(σ (A)) are similar, their characteristic polynomials are the same. Since
the similarity is by a permutation matrix, the eigenvectors of Dist(σ (A)) will be permutations
of the corresponding eigenvectors of Dist(A). In view of these results, in the following we will
translate, dilate and re-order the points as convenient. Typically that means the point set will be
put in increasing order.

Given an increasing list of positive numbers, A, we may constuct the set −AS ⊕ A which has
a reflection symmetry about 0. In Section 4 we will use a factorization χ(Dist(−AS ⊕ A), x) =
Ant(A, x)Sym(A, x) to define two more polynomials, Ant and Sym, to go along with Din and Sof.
The properties of Ant polynomials are developed in Section 5 and those of Sym polynomials in
Section 6. The Ant and Sym polynomials are themselves characteristic polynomials for matrices
that collect the eigenvalues of Dist(−AS ⊕ A) with antisymmetric and symmetric eigenvectors
respectively. With all four polynomials in hand, we prove a series of identities relating them in
Section 8. As a application, in Section 9 we give some results on the effect on the polynomials
of translating all or part of the point set. Using these results, a linear time algorithm for all of the
polynomials is the topic of Section 10. Finally, in the last two sections we give some basic results
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on distinctness and interlacing of roots as the last application. Due to the length of this paper, the
results of the last two sections are but a preview of more extensive results that will be developed
in a sequel.

2. Background on relative eigenvalues

In a 1986 paper [4] pointed out by the referee, S.P. Han defined a relative eigenvalue of a matrix
M with respect to a subspace S as a number λ such that there is a nonzero vecter v satisfying
v ∈ S and Mv − λv ∈ S⊥. Apparently independent of Han, in 1990 Neumaier [7] defined what
he called the derived eigenvalues of a symmetric matrix, M , as the roots of the polynomial
Det(bord(xI|M| −M, J|M|)) = 0. It is easy to see that the determinant of Neumaier’s bordered
matrix produces an analog for relative eigenvalues of the characteristic polynomial. We have
λ is an eigenvalue of M relative to J⊥ iff Det(bord(λI −M, J)) = 0. So Neumaier’s derived
eigenvalues are just Han’s relative eigenvalues when S = J⊥. We too are interested in relative
eigenvalues for which the space S is the perp of a single vector and so our definition is phrased
in terms of this vector rather than its perp. Unlike Neumaier we must allow the vector to be
arbitary since we want to use a vector other than J to define the Sof polynomial. Repeating the
definition from Section 1, if M is an n by n matrix, v and A (A /= 0) are column vectors and k

and λ are real numbers, we say that v is an eigenvector for M relative to A with eigenvalue λ

iff

Mv = λv + kA and v /= 0 but A · v = 0.

There are some cases where this characteristic polynomial analog is easy to compute. Scalar
matrices give Det(bord(xIn − k In, A)) = −(A · A)(x − k)|A|−1 since the n− 1-dimensional
subspace v · A = 0 is composed of true eigenvectors. The reader may prove that diagonal matrices
give a nice result relative to J : if M is a diagonal matrix then Det(bord(xI −M, J)) = − dχ(M,x)

dx
.

Since applying a similarity need not preserve the subspace S, applying a similarity to M need
not preserve relative eigenvectors. The following easily proved result for orthogonal similarities
is all that we will need in this paper.

Proposition 2.1. Suppose v is an eigenvector for M relative to A and Q is orthogonal. Then Qv

is an eigenvector for QMQ−1 relative to QA and the same eigenvalue. Furthermore, bord(xI −
M, A) is similar to bord(xI −QMQ−1, QA), so they have the same determinant.

Han points out that if X is a matrix whose columns form an orthonormal basis of S then the
relative eigenvalues of M with respect to S are the actual eigenvalues of X∗MX , where ∗ is
the Hermitian conjugate. This means that for M Hermitian, the relative eigenvalues are real and
relative eigenvectors for different relative eigenvalues are orthogonal. Also using this idea, the
referee points out that in our case where M is real symmetric and S = A⊥, the interlacing theorem
for Hermitian matrices shows the following corollary. Neumaier’s proof of the same result for
A = J easily generalizes to arbitary A and so either way we have

Corollary 2.1. Let M be symmetric and A /= 0. The roots of Det(bord(λI −M, A)) = 0 are real
and weakly interlace the eigenvalues of M.

For the purposes of this paper the problem with this result is the word weakly. Coincident
eigenvalues, either multiple roots or common roots of two polynomials, are geometrically
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meaningful facts that we wish to identify and explain. The approaches above cannot rule
out coincident eigenvalues because they can occur. Indeed, the distance matrix of a unit
equilateral triangle has eigenvalues 2, −1 and −1 and its eigenvalues relative to J are −1
and −1. The last two sections of this paper begin the task of identifing when eigenvalues
can be equal.

3. The Din polynomial

We are ready to define the first of our four polynomials. The Din polynomial may be deemed
the characteristic polynomial of the eigenvalues of the distance matrix relative to J.

Definition 3.1. Define Din(�, x) = 0, and for |A| � 1 define

Din(A, x) = −Det(bord(xI|A| − Dist(A), J|A|)).

Since the distance matrix is a congruence invariant, so is the Din polynomial. Thus translates
and reflections of a list have the same Din polynomial. Unlike the other polynomials to be defined
below, the definition of the Din polynomial does not place much of a restriction on the list A. The
entries of A could be from any metric space and, in particular, from any dimension Euclidean
space. For the remainder of this paper we will deal only with one-dimensional sets, and save
for other papers the generalization of these ideas to higher dimensional spaces. Since J is fixed
by every permutation matrix and permutation matrices are orthogonal, Proposition 2.1 and the
discussion on permuting the list for a distance matrix at the end of section 1 show that permuting
A merely correspondingly permutes the entries of the relative eigenvectors and does not change
the relative eigenvalues or Din(A, x). Therefore we can sort A into increasing order whenever
that is needed.

Theorem 3.1 below allows an easy recursive calculation of Din(A, x) provided A is increasing.
The first few Din polynomials can also be easily calculated directly from the definition. If we regard
the entries of A as variables, we find that Din(A, x) is a polynomial in the entries of A as well as
x. In fact it is clear that each term in Det(bord(xI − Dist(A), J ) has total degree |A| − 1. We can
make this count since, except for the first row and column, every entry of bord(xI − Dist(A), J )

is of first degree, either a difference of A entry variables or x on the diagonal. Every term in the
determinant has a 1 from the first row and from the first column (but not simultaneously since
the 1,1 entry is 0) and the other |A| − 1 factors are first degree. In order to state some results
correctly, especially the one relating the Ant and Sym polynomials, we define the following
extended notation. The format is Din(A, n, x) where x is variable, n is a non-negative integer and
A is a list of length at least n.

Definition 3.2. Din([a1, a2, . . . , an], x) is computed under the assumption that a1 < a2 < . . . <

an and then Din(A, n, x) results when we make the replacements ai → A[i] for i = 1 to i = n.

Thus we have that if A is increasing then Din(A, |A|, x) = Din(A, x). If A is not increasing
then Din(A, |A|, x) need not equal Din(A, x); for example, Din([2, 3, 1], 3, x) = 3x2 − 4x − 8
whereas Din([2, 3, 1], x) = 3x2 + 8x + 4 = Din([1, 2, 3], x). The following table gives the first
four Din polynomials computed directly from this definition. Theorems 3.1 or 3.2 allow the
recursive calculation of larger formulae of this type but they rapidly get quite long and these are
all we will need for starting inductions and the like in this paper.
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Din(�, 0, x)= 0 Din([p1], 1, x) = 1

Din([p1, p2], 2, x)= 2x + 2(p2 − p1)

Din([p1, p2, p3], 3, x)= 3x2 + 4(p3 − p1)x + 4(p3 − p2)(p2 − p1)

Because of the contrast with the Ant and Sym polynomials, we remark that if A is increasing,
then so is −AS . Therefore since −AS is congruent to A, we have

Observation 3.1. If A is increasing

Din(−AS, |A|, x) = Din(−AS, x) = Din(A, x).

The two fundamental recursive results about the polynomials Din(A,x) are obtained by expand-
ing the defining matrix by minors from the beginning of A and from the end. We do the end
first.

Theorem 3.1. Let A⊕ [p, q] be increasing. Then

Din(A⊕ [p, q], x) = 2(x + (q − p))Din(A⊕ [p], x)− x2Din(A, x).

Proof. The result for A = � follows immediately from the values given in the table above. Let
A = [a1, a2, . . . , an] be increasing. The next to last row of bord(xI − Dist(A⊕ [p, q], J|A|+2))

is [1, a1 − p, a2 − p, . . . , an − p, x, p − q] and the next to last column is the transpose of this.
The last row is [1, a1 − q, a2 − q, . . . , an − q, p − q, x] and the last column is the transpose of
this. Add (q − p) times the first row to the last row and (q − p) times the first column to the
last column. The new last row will be [1, a1 − p, a2 − p, . . . , an − p, 0, x + 2(q − p)] and the
new last column will be the transpose of this. The new next to last row will be [1, a1 − p, a2 −
p, . . . , an − p, x, 0] and the new next to last column is the transpose. We subtract the next to
last row from the last row and the next to last column from the last column. Now the last row
is [0, 0, 0, . . . , 0,−x, 2x + 2(q − p)] and the last column is the transpose. None of these row
operations have altered the determinant and we now expand by minors along the last row getting

Det(xI − bord(A⊕ [p, q], J|A|+2))

= 2(x + (q − p))Det(bord(xI − A⊕ [p], J|A|+1))+ xDet(Matrix1).

Matrix1 is the same as Det(bord(xI − A⊕ [p], J|A|+1)) except the last column is the transpose
of [0, 0, 0, . . . , 0,−x]. If we now expand by minors along the last column of Matrix1 we get a
minor which is bord(xI − A, J|A|) since the only entries that have changed are those in the last
row and column of the original matrix. �

Theorem 3.2. Let [p, q] ⊕ A be increasing. Then

Din([p, q] ⊕ A, x) = 2(x + (q − p))Din([q] ⊕ A, x)− x2Din(A, x).

Proof. A proof using minors, like the one above, can be given; but we would like to demonstrate
a proof by reflection. First we convert Theorem 3.1 into a multivariable polynomial identity
by substituting a list of variables [a1, . . . , a|A|+2] = V ⊕ [a|A|+1, a|A|+2] into the multivariable
forms of Din so that the two sides of the equality

Din(V ⊕ [a|A|+1, a|A|+2], |A| + 2, x)

= 2(x + (a|A|+2 − a|A|+1))Din(V ⊕ [a|A|+1], |A| + 1, x)− x2Din(V , |A|, x)
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are polynomials in the |A| + 3 variables {a1, . . . , a|A|+2, x}. These two polynomials are known to
be equal for x an arbitrary real and ai’s any list of reals satisfying a1 < a2 < · · · < a|A|+2. Since
this subset of R|A|+3 contains a nonempty open set, the two polynomials are equal everywhere
and we may substitute any values into them. If we substitute the entries of the list

−([p, q] ⊕ A)S = −[p, q, a1, . . . , a|A|]S = [−a|A|, . . . ,−a1,−q,−p]
into the polynomials we get

Din(−AS ⊕ [−q,−p], |A| + 2, x)

= 2(x + ((−p)− (−q)))Din(−AS ⊕ [−q], |A| + 1, x)− x2Din(−AS, |A|, x).

If [p, q] ⊕ A is increasing then so is −([p, q] ⊕ A)S and we may derive valid Din values from
this polynomial identity. Using Observation 3.1 we obtain

Din([p, q] ⊕ A, x) = Din(−AS ⊕ [−q,−p], x)

= 2(x + (q − p))Din(−AS ⊕ [−q], x)− x2Din(−AS, x)

= 2(x + (p − q))Din([q] ⊕ A, x)− x2Din(A, x). �

In this proof, the list−([p, q] ⊕ A)S actually fell within the original domain of validity of the
polynomial identity and we did not really need to extend the identity to all values of the variables.
But theorems involving Ant and Sym will have a positivity restriction on the domain of validity.
Since a list like −AS will contain negative numbers, we must give the argument that extends the
polynomial identity to all values. When the extension can not be made, the reflection proof fails.
See Example 5.1 from the section on Ant polynomials. Theorem 3.1 gives a routine proof by
induction on |A| of the following. One of its corollaries is that if the entries of A are distinct, then
0 is not an eigenvalue of Dist(A) relative to J.

Proposition 3.1. Let A be increasing and |A| � 1, then the leading coefficient of Din(A, x) is
J|A| · J|A| = |A|. Also Degree(Din(A, x)) = |A| − 1 and

Din(A, 0) = 2|A|−1
|A|−1∏
i=1

(A[i + 1] − A[i]).

4. Reflecting the set

The next two polynomials, Ant and Sym, arise from the eigensystem of the distance matrix of
the list−AS ⊕ A composed of the list A and its reflection−AS . Think of the roots of Ant and Sym
as eigenvalues that appear when a list is used as a part in the construction of a larger list. Theorems
11.1 and 11.2 illustrate this idea. The roots of Ant are eigenvalues of Dist(−AS ⊕ A) whose
eigenvectors are antisymmetric and the roots of Sym those whose eigenvectors are symmetric.
We will see that these eigenvectors of Dist(−AS ⊕ A) are also eigenvectors of other matrices, and
that expansion by minors of these matrices gives recursions for the Ant and Sym polynomials.
Their recursions, along with those for Din and Sof, provide the means to build the system of
identities connecting the four kinds of polynomials. In this section we develop the basic facts
needed for the following sections on Ant and Sym. We start with an operation that comes from
combining lists in a distance matrix.
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Definition 4.1. Let A and B be nonempty lists of numbers. The rank 2 sum of A and B, written
A � B, is the |A| by |B| matrix given by(A � B)[i, j ] = A[i] + B[j ].

Some relevant properties of rank 2 sum are recorded in this lemma. The easy proofs are left
for the reader.

Lemma 4.1. Let A, B be lists of numbers and v a vector with |B| = |v|.
(A � B)T = B � A, (A � B)S = AS � BS, E(A � B) = AS � B,

(A � B)E = A � BS, (A � B)v = (J|B| · v)A+ (B · v)J|A|.

The following lemma is the motivation for the definition of the rank 2 sum. Its proof is also
easy.

Lemma 4.2. Let [0] ⊕ A be increasing and |A| � 1. Then

Dist(−AS ⊕ A) =
[

Dist(A)S AS � A

A � AS Dist(A)

]
.

The matrix Xn given in block matrix form by

Xn = 1√
2

[
In En

En −In

]

is a symmetric involution. Thus the following similarity to a block diagonal matrix

XnDist(−AS ⊕ A)Xn =
[
(Dist(A)+ A � A)S 0

0 Dist(A)− A � A

]

gives a factorization of the characteristic polynomial

λ(Dist(−AS ⊕ A), x)= χ(Dist(A)+ A � A, x)χ(Dist(A)− A � A, x)

= Sym(A, x)Ant(A, x).

Since −AS ⊕ A is antisymmetric, the points of the list (−AS ⊕ A)S correspond by a reflec-
tion to the points of the list −AS ⊕ A, and the two lists have the same distance matrix. We
have Dist(−AS ⊕ A)S = Dist((−AS ⊕ A)S) = Dist(−AS ⊕ A) and so Dist(−AS ⊕ A) is bi-
symmetric. Since bisymmetry is equivalent to commuting with E, bisymmetric matrices share E’s
invariant subspaces and we obtain the block diagonalization of Dist(−AS ⊕ A). The factorization
shows that an eigenvalue of Dist(−AS ⊕ A) must be an eigenvalue of Dist(A)+ A � A or of
Dist(A)− A � A. The entries of these matrices are readily computed.

Lemma 4.3. Let [0] ⊕ A be increasing and |A| � 1. Then

(Dist(A)− A � A)[i, j ] = −2A[min(i, j)],
(Dist(A)+ A � A)[i, j ] = 2A[max(i, j)].

Proof. (Dist(A)±A � A)[i, j ]=|A[i] − A[j ]| ± (A[i] + A[j ]). Since A is increasing, the mi-
nus gives −2A[min(i, j)] and the plus gives 2A[max(i, j)]. �
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We now show that eigenvalues of Dist(A)+ A � A and Dist(A)− A � A do give symmetric
and antisymmetric eigenvectors of Dist(−AS ⊕ A). A question that we will leave for another
paper is whether all the eigenvectors of Dist(−AS ⊕ A) arise this way. In Section 12 we will find
that Ant(A, x) and Sym(A, x) each have |A| distinct roots; so the only way to have an eigenvector
that is not symmetric or antisymmetric is for Ant(A, x) and Sym(A, x) to have a common root,
allowing eigenvectors that are linear combinations of symmetric and antisymmetric eigenvectors.
The proof of Lemma 4.4 follows from Lemmas 4.1 and 4.2.

Lemma 4.4. Let [0] ⊕ A be increasing, |A| � 1 and v an eigenvector of Dist(A)± A � A for
eigenvalue λ. If w = vS ⊕ (±v) then the vector w is an eigenvector of Dist(−AS ⊕ A) for
eigenvalue λ. For plus w is symmetric; for minus, it is antisymmetric.

We finish this section with a lemma we will need later.

Lemma 4.5. Let [0] ⊕ A be increasing and |A| � 1.

Det(bord(xI − Dist(A)± A � A, J )) = −Din(A, x).

Proof. Since the proofs are the same; we will do Det(bord(xI − Dist(A)+ A � A, J ) Note that

(xI − Dist(A)+ A � A)[i, j ] = (xI − Dist(A))[i, j ] + A[i] + A[j ].
In bord(Dist(A)+ A � A, J ) subtract A[i] times the first row (which is [0, 1, 1, . . . , 1]) to row
i + 1 for i = 1 to i = |A|. That gets rid of the A[i]. Then subtract A[j ] times the first column
to column j + 1 for j = 1 to j = |A|. That gets rid of the A[j ] and leaves us with just bord
(xI − Dist(A), J ). �

5. The Ant polynomials

In this section we introduce the Ant polynomial and develop some of its basic properties.
More properties will follow once we have all four functions and some identities for them. Unlike
the Din polynomials, the Ant polynomials are not congruence invariants. This is because of the
appearance of A in the definition. Since the Ant and Sym polynomials arise from a construction
reflecting the set about 0, it is no surprise that the result would depend on the distance to 0. In
Section 9 we will calculate the effect on Ant(A, x) of translating A. For now, we emphasize that
the definition of Ant(A, x) requires [0] ⊕ A to be increasing. The format of Ant(A, x) is that A

is a list and x a variable.

Definition 5.1. Define Ant(�, x) = 1. If |A| � 1 and [0] ⊕ A is increasing, the antisymmetric
polynomial of A, written Ant(A, x), is defined as

Ant(A, x) = Det(xI|A| − Dist(A)+ A � A).

Since it is a characteristic polynomial, Ant(A, x) is monic of degree |A|. Since Dist(A)−
A � A is a symmetric matrix, the roots of Ant(A, x) are all real. In Theorem 12.2 we will show
that they are all negative and that they are distinct. As was the case for Din(A, x), Ant(A, x)

can be considered to be a polynomial in the entries of A as well as x. As we did for Din(A, x)

we define an extended notation to abstract a multivariable polynomial from the matrix definition.
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The format is similar to that for Din(A, n, x), that is Ant(A, n, x) where x is a variable, n a
non-negative integer and A a list of length at least n.

Definition 5.2. Ant([a1, a2, . . . , an], x) is computed under the assumption that 0 < a1 < a2 <

· · · < an and then Ant(A, n, x) results when we make the replacements ai → A[i] for i = 1 to
i = n. Thus we have that if [0] ⊕ A is increasing then Ant(A, |A|, x) = Ant(A, x).

The following table gives the first three Ant polynomials computed directly from the definition.
Theorem 5.1 allows the recursive calculation of larger formulae of this type but, as was the case
for Din, they rapidly get quite long.

Ant(�, 0, x)= 1 Ant([p1], 1, x) = x + 2p1,

Ant([p1, p2], 2, x)= x2 + 2(p1 + p2)x + 4p1(p2 − p1).

The following recursions, derived from expansions by minors, provide the tools needed for the
inductive proofs of all the results on the Ant polynomial.

Theorem 5.1. Let [0] ⊕ A⊕ [p, q] be increasing,

Ant(A⊕ [p, q], x) = 2(x + q − p)Ant(A⊕ [p], x)− x2Ant(A, x).

Proof. For A = � the result can be checked using the table values. Write A = [a1, a2, . . . , an] and
B = A⊕ [p, q]. The last row of xI|B| − Dist(B)+ B � B is [2a1, 2a2, . . . , 2an, 2p, x + 2q]
and the next to last row is [2a1, 2a2, . . . , 2an, x + 2p, 2p]. We write Det(xI|B| − Dist(B)+
B � B) as a sum by breaking the last row into

[2a1, 2a2, . . . , 2an, 2p, 2p] + [0, 0, . . . , 0, x + 2(q − p)].
Expanding the second determinant by minors along the last row gives (x + 2(q − p))Ant(A⊕
[p], x). In the first determinant, subtract the last row from the next to last row yielding the new
next to last row [0, 0, . . . , 0, x, 0]. If we now expand by minors along the next to last row, we get
x times a determinant whose last row is [2a1, 2a2, . . . , 2an, 2p] We write this determinant as a
sum by breaking the last row into

[2a1, 2a2, . . . , 2an, x + 2p] + [0, 0, . . . , 0,−x].
The first determinant is Ant(A⊕ [p], x) and expanding the second by minors along the last row
gives (−x)Ant(A, x). �

Theorem 5.2. Let [0, p] ⊕ A be increasing.

Ant([p] ⊕ A, x) = (x + 2p)Ant(A, x)− 4p2Din(A, x).

Proof. The equation follows from the table for A = �. For |A| � 1 note that the first row of

xI − Dist([p] ⊕ A)+ ([p] ⊕ A) � ([p] ⊕ A)

is [x + 2p, 2p, . . . , 2p]. Let us write this determinant as a sum by breaking this row into

[x + 2p, 0, . . . , 0] + [0, 2p, . . . , 2p].
Expanding by minors along the first row shows the first determinant is (x + 2p)Ant(A, x). We
can factor a 2p out of the first row and the first column of the second determinant to leave a
bordered matrix which is
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Det(bord(xI − Dist(A)− A � A, J )) = −Din(A, x)

by Lemma 4.5. �

Theorem 5.3. Let [0] ⊕ A be increasing,

Ant(A, x) = Din([0] ⊕ A, x)− xDin(A, x).

Proof. The proof is by induction on |A|. The cases |A| = 0, 1, 2 are easily checked by the tables.
The induction hypotheses are the result for |A| = n, n+ 1, we take |A| = n and will prove the
result for A⊕ [p, q]. Using the equation of Theorem 3.1, take the instance for [0] ⊕ A⊕ [p, q]
minus x times the instance for A⊕ [p, q] to get

Din([0] ⊕ A⊕ [p, q], x)− xDin(A⊕ [p, q], x)

= 2(x + q − p)(Din([0] ⊕ A⊕ [p], x)− xDin(A⊕ [p]), x)

−x2(Din([0] ⊕ A, x)− xDin(A, x))

= 2(x + q − p)(Ant(A⊕ [p], x)− x2Ant(A, x)) = Ant(A⊕ [p, q], x).

The last steps are by the induction hypothesis and Theorem 5.1. �

Note that Theorem 5.3 cannot be reflected. One of the variables is restricted to the value 0 so
that the domain of validity of the polynomial identity does not contain an open set. Therefore the
polynomial identity cannot be extended to all values.

Example 5.1. Take A = [p, q] with 0 < p < q in Theorem 5.3. Since the list argument of
Din([0] ⊕ A, x) starts with a 0, we must start the list argument of A with the variable a2 so
that the entries of A go to the same variables in all three functions. The multivariable polynomial
identity is

x2 + 2(a2 + a3)x + 4a2(a3 − a2)

= 3x2 + 4(a3 − a1)x + 4(a3 − a2)(a2 − a1)− x(2x + 2(a3 − a2))

= x2 + 2(a2 + a3)x + 4a2(a3 − a2)− 4a1(x + a3 − a2)

and this becomes valid when we replace a1 → 0, a2 → p, a3 → q. However the set of valid
values does not contain an open subset of R4 and we cannot infer that the polynomial identity
is valid for all values of a1, a2, a3 and x. And indeed it is not valid unless a1 = 0 or x + a3 −
a2 = 0. Note that a possible next step of a reflection proof would be to make the replacements
a1 → 0, a2 →−q, a3 →−p and this would produce Ant([−q,−p], 2, x) = Sym([p, q], x)

and Din([−q,−p], 2, x) = Din([p, q], x]. But Din([0,−q,−p], 3, x) cannot be appropriately
interpreted because [0,−q,−p] is not an increasing (or decreasing) list.

We conclude the section with a formula for Ant(A, 0) obtained by setting x = 0 in theorem
5.3, and a result that will be needed to start an induction in Section 8. Note that we now have
enough tools to prove this last theorem without expansion by minors or induction.

Corollary 5.1. Let [0] ⊕ A be increasing and |A| � 1

Ant(A, 0) = 2|A|A[1]
|A|−1∏
i=1

(A[i + 1] − A[i]) = 2A[1]Din(A, 0).



K.W. Holladay / Linear Algebra and its Applications 428 (2008) 2614–2638 2625

Theorem 5.4. Let [0, p] ⊕ A be increasing

Din([p] ⊕ A, x) = (x − 2p)Din(A, x)+ Ant(A, x).

Proof. By Theorem 3.2

Din([0, p] ⊕ A, x) = 2(x + p − 0)Din([p] ⊕ A, x)− x2Din(A, x).

By Proposition 5.3

Ant([p] ⊕ A, x)= Din([0, p] ⊕ A, x)− xDin([p] ⊕ A, x)

= (x + 2p)Din([p] ⊕ A, x)− x2Din(A, x).

By Theorem 5.2 Ant([p] ⊕ A, x) = (x + 2p)Ant(A, x)− 4p2Din(A, x). Setting these expres-
sions equal and rearranging gives

(x + 2p)Din([p] ⊕ A, x) = (x2 − 4p2)Din(A, x)+ (x + 2p)Ant(A, x)

and dividing by (x + 2p) completes the proof. �

6. The Sym polynomials

This section on the Sym polynomials is parallel to the previous section on the Ant polynomials.
The Sym polynomials are not congruence invariants for the same reason as the Ant polynomials;
and, like them, the Sym polynomial is only defined for [0] ⊕ A increasing. The format is in the
pattern of Din and Ant. In Sym(A, x), A is a list and x is a variable.

Definition 6.1. Define Sym(�, x) = 1. If |A| � 1 and [0] ⊕ A is increasing, the symmetric poly-
nomial of A, written Sym(A, x), is defined as

Sym(A, x) = Det(xI|A| − Dist(A)− A � A).

Since it is a characteristic polynomial, Sym(A, x) is monic of degree |A|. Since Dist(A)+
A � A is a symmetric matrix, the roots of Sym(A, x) are all real. In Theorem 12.3 we will show
that one root is positive and the rest are negative and that they are distinct. We have the basic
relation χ(Dist(−AS ⊕ A), x) = Ant(A, x)Sym(A, x). As we did for Din and Ant, we define
a multivariable polynomial extended notation for Sym. The format is Sym(A, n, x) with x a
variable, n a non-negative integer and A a list of length at least n.

Definition 6.2. Sym([a1, a2, . . . , an], x) is computed under the assumption that 0 < a1 < a2 <

· · · < an and then Sym(A, n, x) results when we make the replacements ai → A[i] for i = 1 to
i = n. Thus we have that if [0] ⊕ A is increasing then Sym(A, |A|, x) = Sym(A, x).

The following table gives the first three Sym polynomials computed directly from the definition.

Sym(�, 0, x)=1, Sym([p1], 1, x) = x − 2p1,

Sym([p1, p2], 2, x)=x2 − 2(p1 + p2)x − 4p2(p2 − p1).

Now that we have both Ant and Sym, we can give the relation between their multivariable poly-
nomials.
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Theorem 6.1. Let [0] ⊕ A be increasing

Ant(−AS, |A|, x)= Sym(A, x),

Sym(−AS, |A|, x)= Ant(A, x).

Proof. The two proofs are parallel; we will prove the first statement. Say |A| = n. In the definition
of Ant(A, x) we take the characteristic polynomial of a matrix whose ij th entry is, by Lemma 4.3,
(Dist(A)− A � A)[i, j ] = −2A[min(i, j)]. When we replace ai by (−AS)[i] = −A[n+ 1− i]
in Ant([a1, a2, . . . , an], x) to get Ant(−AS, |A|, x), we get a matrix whose first row and column
entries are all 2A[n], and, excluding the first entries, whose second row and column entries are all
2A[n− 1], etc. Also by Lemma 4.3, Sym(A, x) is the characteristic polynomial of a matrix with
ij th entry is (Dist(A)+ A � A)[i, j ] = 2A[max(i, j)]. This matrix has its last row and column
entries all 2A[n], its next to last row and column 2A[n− 1], etc. This is just the spin of the matrix
for Ant(−AS, |A|, x) and hence they have the same characteristic polynomials. �

We may now use this theorem and reflection to produce theorems on Sym from theorems on
Ant.

Theorem 6.2. Let [0] ⊕ A⊕ [p] be increasing

Sym(A⊕ [p], x) = (x − 2p)Sym(A, x)− 4p2Din(A, x).

Proof. The equation follows from Theorem 5.2 by reflection. �

An easy induction using this theorem gives Sym(A, 0). Note that it is negative since Sym has
a positive root.

Corollary 6.1. Let [0] ⊕ A be increasing and |A| � 1

Sym(A, 0) = −2|A|A[|A|]
|A|−1∏
i=1

(A[i + 1] − A[i]) = −2A[|A|]Din(A, 0).

7. The Sof polynomial

The last of our four polynomials, Sof(A, x), may be deemed the characteristic polynomial of
the eigenvalues of Dist(A) relative to A. This makes Sof somewhat analogous to Din and we will
see that the Sof polynomial often pairs up with the Din polynomial in theorems and proofs in
much the same way that the Ant and Sym polynomials do. Unlike Din, Sof is not a congruence
invariant since the actual values of A appear in the definition. For this same reason Sof does not
immediately generalize to higher dimensions the easy way Din does. The format of Sof(A, x) is
that A is a list and x is a variable.

Definition 7.1. Define Sof(�, x) = 0. If |A| � 1 define

Sof(A, x) = −Det(bord(xI − Dist(A), A)).

In the definition of Sof(A, x) we do not require that A be increasing or that its entries be
positive. When the list A has negative or zero entries, some of the following theorems about
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Sof(A, x) are no longer true. Also, in theorems involving Sof with Ant or Sym, we will need the
list entries to be positive and increasing because of the requirements of Ant and Sym. As was the
case for Din, we may permute the list A with out affecting Sof(A, x). Note that an instance of
the following lemma is Sof(AS, x) = Sof(A, x).

Lemma 7.1. If σ : A→ A is a permutation of A, then Sof(σ (A)), x) = Sof(A, x).

Proof. In the second to last paragraph of Section 1 we defined a permutation matrix Pσ such that
Pσ A = σA and Pσ Dist(A)P T

σ = Dist(σA). Appealing to Proposition 2.1 we have

Sof(σ (A), x)= −Det(bord(xI − Dist(σ (A)), σ (A)))

= −Det(bord(xI − Pσ Dist(A)P T
σ , Pσ A))

= −Det(bord(xI − Dist(A), A)) = Sof(A, x). �

As we did for Din, Ant, and Sym, we define a multivariable polynomial extended notation for
Sof. The format is Sof(A, n, x) with x a variable, n a non-negative integer and A a list of length
at least n.

Definition 7.2. Sof([a1, a2, . . . , an], x) is computed under the assumption that a1 < a2 < · · · <
an and then Sof(A, n, x) results when we make the replacements ai → A[i] for i = 1 to i = n.
Thus we have that if A is increasing then Sof(A, |A|, x) = Sof(A, x).

The following table gives the first three Sof polynomials computed directly from the definition.

Sof(�, 0, x)= 0, Sof([p1], 1, x) = p2
1,

Sof([p1, p2], 2, x)= (p2
1 + p2

2)x + 2p1p2(p2 − p1).

The following observation, when added to Observation 3.1 and Theorem 6.1, completes the
catalog of correspondences for reflecting identities involving the four functions. Ant and Sym
interchange, and Din and Sof go to themselves. Since −AS is increasing when A is we have

Observation 7.1. If A is increasing

Sof(−AS, |A|, x) = Sof(−AS, x) = Sof(AS, x) = Sof(A, x).

The second equality follows because Dist(−AS) = Dist(AS) and we can factor a minus out
of the first row and column of the determinant of bord(xI − Dist(AS),−AS). The following
identity provides the basis for a simple algorithm for computing distance matrix characteristic
polynomials that is given in Section 10.

Proposition 7.1. Let [0] ⊕ A be increasing and |A| � 1

χ(Dist([0] ⊕ A), x) = xχ(Dist(A), x)− Sof(A, x).

Proof. Let A = [a1, a2, . . . , an] and break the first row of xI − Dist([0] ⊕ A) into

[x, 0, . . . , 0] + [0,−a1, . . . ,−an].
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Expanding the first determinant by minors along the first row gives xχ(Dist(A), x). We can
factor−1 out of the first row and of the first column of the second matrix and we are left with the
determinant that gives −Sof(A, x). �

We will need one expansion by minors identity for Sof to use in the next section.

Theorem 7.1. Let [0] ⊕ A⊕ [p] be increasing

Sof(A⊕ [p], x) = Sof(A, x)Sym([p], x)+ Ant(A, x)Sof([p], x).

Proof. Let A = [a1, a2, . . . , an]. In−Det(bord(xI − Dist(A⊕ [p]), A⊕ [p])) multiply the first
row and column by −1 and then split the last row into

−[−p,−p, . . . ,−p, p] − [0, a1, . . . , an, x − p].
In the second of these matrices add the first row to the new last row to get [0, 0, . . . , 0, x − 2p]
and expand by minors along this last row to get (x − 2p)Sof(A, x) = Sof(A, x)Sym([p], x).
Factor a −p out of the new last row of the first matrix and then add the first column to the last
column to get a new column [−p,−p, . . . ,−p, 0] and factor a −p of this last column. We now
have −p2 times a matrix that in block form is[

bord(xI − Dist(A),−A) J

J 0

]
.

Add a1 times the last row to the second row, add a2 times the last row to the third row, and so on.
Then do the same for the columns. The result in block form is[

bord(xI − Dist(A)+ A � A, 0) J

J 0

]
.

We now expand by minors along the first row and then along the first column to get−p2 times−1
from the two expansions by minors times Det(Dist(A)− A � A). The result is p2Ant(A, x) =
Ant(A, x)Sof([p], x). �

This theorem enables an easy induction proof of the following results.

Corollary 7.1. Let [0] ⊕ A be increasing and |A| � 1. Then the leading coefficient of Sof(A, x)

is A · A, Degree(Sof(A, x)) = |A| − 1, and

Sof(A, 0) = 2|A|−1A[1]A[|A|]
|A|−1∏
i=1

(A[i + 1] − A[i]) = A[1]A[|A|]Din(A, 0).

8. Identities for the four functions

Now that all of the polynomials are defined and some basic identities proved, we are ready
to prove the main results of this paper, Theorems 8.1, 8.2 and 8.3. Theorems 8.1 and 8.3 relate
functions of concatenations of lists to algebraic combinations of functions of the lists. We will use
these identities for some simple applications in the last four sections. More elaborate applications
involving the functions of repetitive lists will be deferred to a sequel.
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Theorem 8.1. Let [0] ⊕ A⊕ B be increasing.

Ant(A⊕ B, x)= Ant(A, x)Ant(B, x)− 4Sof(A, x)Din(B, x),

Sym(A⊕ B, x)= Sym(A, x)Sym(B, x)− 4Din(A, x)Sof(B, x),

Din(A⊕ B, x)= Sym(A, x)Din(B, x)+ Din(A, x)Ant(B, x),

Sof(A⊕ B, x)= Ant(A, x)Sof(B, x)+ Sof(A, x)Sym(B, x).

Proof. If A = �, or B = � the results are trivial. We will use a nested induction with the outer
induction hypothesis being all four identities and the induction variable being |A⊕ B| = n. The
cases n = 1 and n = 2 are easily checked. Each identity has already been proved for either |A| = 1,
or |B| = 1. Let A⊕ B = [a1, a2, . . . , an]. For each of the four identities the inner induction will
move elements between A and B. In the first formula we will start from |A| = 1, which is Theorem
5.2. We must move elements from B to A. Assume we already have k elements in A and we are
now ready to move ak+1 from B to A. Let us write B = [ak+1] ⊕ C so that we are starting with

Ant(A⊕ B, x) = Ant(A, x)Ant([ak+1] ⊕ C, x)− 4Sof(A, x)Din([ak+1] ⊕ C, x).

We use the induction hypothesis (that the identities are true for lesser n and any size A and B) to
break off ak+1 from B.

= Ant(A, x)(Ant([ak+1], x)Ant(C, x)− 4Sof([ak+1], x)Din(C, x))

−4Sof(A, x)(Sym([ak+1], x)Din(C, x)+ Din([ak+1, x], x)Ant(C, x))

= Ant(C, x)(Ant(A, x)Ant([ak+1], x)− 4Sof(A, x)Din([ak+1], x))

−4Din(C, x)(Ant(A, x)Sof([ak+1], x)+ Sof(A, x)Sym([ak+1], x))

= Ant(A⊕ [ak+1], x)Ant(C, x)− 4Sof(A⊕ [ak+1], x)Din(C, x)

For the second identity we start with Theorem 6.2 which is |B| = 1 and move elements from A

to B. For the third identity start with Theorem 5.4 which is |A| = 1. For the fourth identity start
with Theorem 7.1 which is |B| = 1. Note that the second identity is the reflection of the first and
that the third and fourth reflect to themselves. �

The following remarkable identity relates all four functions and will be used to prove results
about relations of their roots in Section 11.

Theorem 8.2. Let [0] ⊕ A be increasing.

x2|A| = Ant(A, x)Sym(A, x)+ 4Din(A, x)Sof(A, x).

Proof. If A = �, the result is trivial and |A| = 1 is easily checked. We proceed by induction on
|A| using Theorem 8.1 to split the functions.

Ant(A⊕ [p], x)Sym(A⊕ [p], x)+ 4Din(A⊕ [p], x)Sof(A⊕ [p], x)

= (Ant(A, x)Ant([p], x)− 4Sof(A, x)Din([p], x))

(Sym(A, x)Sym([p], x)− 4Din(A, x)Sof([p], x))

+4(Sym(A, x)Din([p], x)+ Din(A, x)Ant([p], x))

(Ant(A, x)Sof([p], x)+ Sof(A, x)Sym([p], x))

= (Ant(A, x)Sym(A, x)+ 4Din(A, x)Sof(A, x))
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(Ant([p], x)Sym([p], x)+ 4Din([p], x)Sof([p], x))

= x2|A|x2 = x2|A⊕[p]|. �

Reflecting the identities of the following lemma provides four more identities that also will be
used in the proof of the main theorem below.

Lemma 8.1. Let [0] ⊕ A⊕ B be increasing.

Ant(A⊕ B, x)Sof(B, x)=Sof(A⊕ B, x)Ant(B, x)− x2|B|Sof(A, x),

Sym(A⊕ B, x)Din(B, x)=Din(A⊕ B, x)Sym(B, x)− x2|B|Din(A, x),

−4Din(A⊕ B, x)Sof(B, x)=Sym(A⊕ B, x)Ant(B, x)− x2|B|Sym(A, x),

−4Sof(A⊕ B, x)Din(B, x)=Ant(A⊕ B, x)Sym(B, x)− x2|B|Ant(A, x).

Proof. If A = �, or B = � the results are either trivial or Theorem 8.2. The proofs are similar;
we will do the first formula. If we multiply the first result of Theorem 8.1 by Sof(B, x) we get

Ant(A⊕B,x)Sof(B,x)=Ant(A, x)Ant(B, x)Sof(B, x)−4Sof(A, x)Din(B, x)Sof(B, x).

Replacing 4Din(B, x)Sof(B, x) using Theorem 8.2 gives

=Ant(A, x)Ant(B, x)Sof(B, x)− (x2|B| − Ant(B, x)Sym(B, x))Sof(A, x)

=Ant(B, x)(Ant(A, x)Sof(B, x)+ Sof(A, x)Sym(B, x))− x2|B|Sof(A, x)

=Ant(A, x)Sof(A⊕ B, x)− x2|B|Sof(A, x).

The last line uses the Sof result of Theorem 8.1. �

The next theorem has 16 identities all of similar structure, so we will devise a compact notation
that gives only the variable information – to save space and make the patterns stand out. The identity

h1(A⊕ B ⊕ C)h2(B) = h3(A⊕ B)h4(B ⊕ C)± x2|B|h5(A)h6(C)

will be denoted by Tp(L(h1)L(h2)L(h3)L(h4)L(h5)L(h6)) for the plus sign and T n for the
minus. The possible functions hn and their L values are

L(Ant(−))=A, L(Sym(−)) = S,

L(2Din(−))=D, L(−2Sof(−)) = F.

Thus T n(FDASAS) means

−4Sof(A⊕ B ⊕ C)Din(B) = Ant(A⊕ B)Sym(B ⊕ C)− x2|B|Ant(A)Sym(C).

Theorem 8.3. Let [0] ⊕ A⊕ B ⊕ C be increasing.

T n(DDDDDD) T n(ADADAD) T n(SDDSDS) T n(FDASAS)

T n(FFFFFF) T n(SFSFSF) T n(AFFAFA) T n(DFSASA)

Tp(AAAAFD) Tp(FAAFFS) Tp(DADASD) Tp(SADFSS)

Tp(SSSSDF) Tp(DSSDDA) Tp(FSFSAF) Tp(ASFDAA)

Proof. The proofs all follow the same pattern; we will do T n(FDASAS) in detail. If A = �,
this is the reflection of formula 4 of Lemma 8.1; if B = �, the result is trivial; and if C = �, this
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is formula 4 of Lemma 8.1. We start the proof by multiplying the fourth formula of Lemma 8.1
by Sym(C, x).

−4Sof(A⊕ B, x)Din(B, x)Sym(C, x)

= Ant(A⊕ B, x)Sym(B, x)Sym(C, x)− x2|B|Ant(A, x)Sym(C, x).

Next use Theorem 8.1 to replace Sym(B, x)Sym(C, x) to get

= Ant(A⊕ B, x)(Sym(B ⊕ C, x)+ 4Din(B, x)Sof(C, x))− x2|B|Ant(A, x)Sym(C, x).

Transferring a term, we get

−4(Sof(A⊕ B, x)Sym(C, x)+ Ant(A⊕ B, x)Sof(C, x))Din(B, x)

= Ant(A⊕ B, x)Sym(B ⊕ C, x)− x2|B|Ant(A, x)Sym(C, x).

Last we use Theorem 8.1 to replace

Sof(A⊕ B, x)Sym(C, x)+ Ant(A⊕ B, x)Sof(C, x)

by Sof(A⊕ B ⊕ C, x). �

If we allow all combinations of the four letters, there are 4096 possible identities of type
Tn and Theorem 8.3 asserts eight of them. Similarly there are 4096 identities of type Tp and
the theorem asserts eight of them. A computer algebra system may be used to show that the
other 8176 possible identities are all false. In fact, they are all already false for |A| = |B| =
|C| = 1.

9. Sliding theorems

As an application of the above we now derive some of the simpler results on the effects of
translations of all or part of the list on our four functions. These results are used in the derivation
of the algorithm for the functions given in the next section. We define the slide A+ s of a list A

by

Definition 9.1. For |A| � 1 the slide of A by s, written A+ s, is a list of length |A| with (A+
s)[i] = A[i] + s.

The simplest sliding theorems are χ(Dist(A+ s), x) = χ(Dist(A), x) and Din(A+ s, x) =
Din(A, x). We now show how the other three functions change when their argument slides.

Theorem 9.1. Let [0] ⊕ A be increasing and |A| � 1. For s > −A[1]
Ant(A+ s, x) = Ant(A, x)+ 2sDin(A, x).

Proof. The proof is by induction on |A|. The cases |A| = 1 and |A| = 2 can be verified from the
tables. The induction hypotheses are

Ant(A+ s, x)=Ant(A, x)+ 2sDin(A, x),

Ant((A⊕ [p])+ s, x)=Ant(A⊕ [p], x)+ 2sDin(A⊕ [p], x).
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Using Theorem 8.3 T n(ADADAD) with A→ A+ s, B → [p + s] and C → [q + s] gives

Ant((A⊕ [p, q])+ s, x)=2(x + (q + s)− (p + s))Ant((A⊕ [p])+ s, x)− x2Ant(A+ s, x),

=2(x + q − p)(Ant(A⊕ [p], x)+ 2sDin(A⊕ [p], x))

− x2(Ant(A, x)+ 2sDin(A, x)),

=2(x + q − p)(Ant(A⊕ [p], x)− x2Ant(A, x))

+ 2s(Din(A⊕ [p], x)− x2Din(A, x)),

=Ant(A⊕ [p, q], x)+ 2sDin(A⊕ [p, q], x). �

We may use a similar calculation for Sym or reflect the result for Ant.

Theorem 9.2. Let [0] ⊕ A be increasing and |A| � 1. For s > −A[1]
Sym(A+ s, x) = Sym(A, x)− 2sDin(A, x).

The result for Sof is the most complicated since a term appears that is quadratic in s.

Theorem 9.3. Let [0] ⊕ A be increasing and |A| � 1. For s > −A[1]
Sof(A+ s, x) = Sof(A, x)+ s

2
(Ant(A, x)− Sym(A, x))+ s2Din(A, x).

Proof. The induction proof is a bit tedious here, but we have an alternative using Theorem 8.2:

x2|A| = Ant(A, x)Sym(A, x)+ 4Din(A, x)Sof(A, x) and also

x2|A| = Ant(A+ s, x)Sym(A+ s, x)+ 4Din(A+ s, x)Sof(A+ s, x)

= (Ant(A, x)+ 2sDin(A, x))(Sym(A, x)− 2sDin(A, x))

+ 4Din(A, x)Sof(A+ s, x).

If we set the two expressions equal, expand the product, subtract Ant(A, x)Sym(A, x) from both
sides, and then divide by 4Din(A), we get

Sof(A, x) = s

2
Sym(A, x)− s

2
Ant(A, x)− s2Din(A, x)+ Sof(A+ s, x). �

There is an extensive set of increasingly elaborate results about translating parts of the list. We
will give just the two simplest.

Theorem 9.4. Let [0] ⊕ A⊕ B be increasing and |B| � 1. For s > A[|A|] − B[1]
Din(A⊕ (B + s), x)=Din(A⊕ B, x)+ 2sDin(A, x)Din(B, x),

Ant(A⊕ (B + s), x)=Ant(A⊕ B, x)+ 2sAnt(A, x)Din(B, x).

Proof. By Theorem 8.1 we have

Din(A⊕ (B + s), x) = Sym(A, x)Din(B + s, x)+ Din(A, x)Ant(B + s, x).
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Using Theorem 9.1 gives

=Sym(A, x)Din(B, x)+ Din(A, x)(Ant(B, x)+ 2sDin(B, x))

=Din(A⊕ B, x)+ 2sDin(A, x)Din(B, x).

The last line is by Theorem 8.1 again. The calculation for Ant is similar. �

10. Algorithm for the functions

The various identities show that the characteristic polynomial and the four functions can be
recursively computed in linear time. Since the distance matrix is a translation invariant function
of the list, there is no loss of generality in the condition that list consist of positive numbers. This
algorithm will compute the full polynomial functions if x is left as a symbolic variable and the
operations are done as polynomial arithmetic. The operation count for this algorithm is clearly
linear in n.

Algorithm 10.1. Let [0, p[1], p[2], . . . , p[n]] = [0] ⊕ A be increasing and x a real number.
At the end of the following algorithm c = χ(Dist(A), x), a = Ant(A, x), d = Din(A, x), s =
Sym(A, x), and f = Sof(A, x)

Initialize: c← 1, a← 1, d ← 0, s ← 1, f ← 0
For i = n downto i = 1 do

c ←xc + p[i]a/2− p[i]2d − p[i]s/2− f,

t ←a a← (x + 2p[i])t − 4p[i]2d d ← t + (x − 2p[i])d,

t ←s s ← (x − 2p[i])t − 4f f ← p[i]2t + (x + 2p[i])f.

Proof. We claim that at the end of the pass through the loop where the loop variable is i;
if Ai = [p[i], . . . , p[n]], we have c = χ(Dist(Ai), x), a = Ant(Ai, x), d = Din(Ai, x), s =
Sym(Ai, x), and f = Sof(Ai, x). The tables show that the initialization is correct for a starting
list of �. The updates for a, d , s, and f follow from the case |A| = 1 of Theorem 8.1. Using the
slide notation, the update for c follows from Proposition 7.1 and Theorem 9.3 by

χ(Dist([p] ⊕ A), x) = χ(Dist([0] ⊕ (A− p)), x)

= xχ(Dist(A− p), x)− Sof(A− p, x)

= xχ(Dist(A), x)− Sof(A, x)+ p

2
(Ant(A, x)− Sym(A, x))− p2Din(A, x). �

11. Common roots

The identities allow us to relate roots of one function of one list to another function of another
list. In the last two sections we will work out some basic instances of this, but of course much
more can be said. We will take up these topics in a sequel. In this section we will examine cases
where functions do or do not have common roots. In the last section we will look at cases where
the roots of one function interlace the roots of another. We start with cases were the functions do
not have common roots. This first proposition is the basic tool.



2634 K.W. Holladay / Linear Algebra and its Applications 428 (2008) 2614–2638

Proposition 11.1. Let [0] ⊕ A be increasing. Then

GCD(Ant(A, x), Din(A, x)) = GCD(Ant(A, x), Sof(A, x)) = 1,

GCD(Sym(A, x), Din(A, x)) = GCD(Sym(A, x), Sof(A, x)) = 1.

Proof. The failure of any of these GCD’s to be 1 would give an common root to both terms of the
RHS in Theorem 8.2. None of the functions have 0 as a root but 0 is the only root of the LHS. �

We may now use this proposition and the identities to show that other pairs of functions do
not have common roots. The technique is to use identities to propagate a common root from one
function to another and eventually reach functions that are already known to have no common
roots. Of course, the more results of this type that you have, the easier it is to prove new ones.
Here are some examples.

Corollary 11.1. Let [0, p] ⊕ A⊕ [q] be increasing. Then

GCD(Ant(A, x), Ant([p] ⊕ A, x))=1,

GCD(Ant(A, x), Ant(A⊕ [q], x))=1.

And similarly for Sym, Din, and Sof.

Proof. |A| = 1 in the first formula of Theorem 8.1 gives

Ant([p] ⊕ A, x) = (x + 2p)Ant(A, x)− 4p2Din(A, x).

Therefore a common root of Ant(A, x) and Ant([p] ⊕ A, x) would also be a root of Din(A, x),
contradicting Proposition 11.1. The other seven proofs are similar. �

In Theorem 12.2 we will improve this result by showing that the roots of Ant(A, x) interlace
the roots of Ant(A⊕ [q], x) and similarly for the other functions. In the next result we show
that sliding the list changes the roots of Ant and Sym. Of course it does not change the roots of
Din. When the list slides, each root of Sof typically has one slide distance that causes that root to
reappear.

Corollary 11.2. Let [0] ⊕ A be increasing, |A| � 1, s > −A[1], and s /= 0. Then

GCD(Ant(A+ s, x), Ant(A, x))=1,

GCD(Sym(A+ s, x), Sym(A, x))=1.

Proof. A common root of Ant(A+ s, x) and Ant(A, x) would, by Theorem 9.1, also be a root
of Din(A, x) contradicting Theorem 11.1. The statement for Sym follows similarly. �

Now we consider two cases where functions do have common roots. Common roots often
indicate an identifiable common factor. For example Theorems 11.1 and 11.2 show that

GCD(χ(−AS ⊕ A, x), Din(−AS ⊕ A, x))= Ant(A, x), (1)
GCD(χ(−AS ⊕ A, x), Sof(−AS ⊕ A, x))= Sym(A, x),

so χ can share roots with Din and with Sof. The characteristic polynomial of an antisymmetric set,
χ(−AS ⊕ A, x), was factored as Ant(A, x)Sym(A, x). Eq. (1) results from similar factorizations
for Din(−AS ⊕ A, x) and Sof(−AS ⊕ A, x).
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Theorem 11.1. Let [0] ⊕ A be increasing.

Din(−AS ⊕ A, x) = 2Din(A, x)Ant(A, x).

Proof. Writing |A| = n, Theorem 8.1 shows that the multivariable polynomial form of the third
formula is true for a set of values containing a nonempty open set and hence is true for all values.
Thus we may replace A⊕ B by −AS ⊕ A and get

Din(−AS ⊕ A, 2n, x)

= Sym(−AS, n, x)Din(A, n, x)+ Din(−AS, n, x)Ant(A, n, x).

Since −AS ⊕ A is increasing and A is positive Din(−AS ⊕ A, 2n, x) = Din(−AS ⊕ A, x),
Din(−AS, n, x) = Din(A, x) and Ant(A, n, x) = Ant(A, x). By theorem 6.1 Sym(−AS, n, x) =
Ant(A, x). �

Theorem 11.2. Let [0] ⊕ A be increasing and |A| � 1.

Sof(−AS ⊕ A, x) = 2Sof(A, x)Sym(A, x).

Proof. Use the fourth formula of Theorem 8.1. �

The final two lemmas show that the geometry of the eigenvectors parallels the algebra of
these factorizations. Lemma 11.1 shows that eigenvectors of Dist(A) relative to J give rise to
symmetric eigenvectors of Dist(−AS ⊕ A) relative to J . The antisymmetric eigenvectors, v, of
Dist(−AS ⊕ A) that come from Ant(A, x) are also eigenvectors relative to J since v · J = −vS ·
J = −(vS · J S) = −(v · J ) gives v · J = 0. Lemma 11.2 shows that eigenvectors of Dist(A)

relative to A give rise to antisymmetric eigenvectors of Dist(−AS ⊕ A) relative to −AS ⊕ A.
The symmetric eigenvectors, vS ⊕ v, of Dist(−AS ⊕ A) that come from the roots of Sym(A, x)

are also eigenvectors relative to−AS ⊕ A because (−AS ⊕ A) · (vS ⊕ v) = −AS · vS + A · v =
−A · v + A · v = 0. The distinct roots results from the next section show that these arguments
have accounted for all of the roots of the various polynomials.

Lemma 11.1. Let [0] ⊕ A be increasing, |A| � 1, and λ an eigenvalue with eigenvector v for
Dist(A) relative to J. If w = vS ⊕ v, then λ an eigenvalue with eigenvector w for Dist(−AS ⊕ A)

relative to J.

Proof. We are assuming Dist(A)v = λv + kJ with v · J = 0. First note that vS · J = vS · J S =
(v · J )S0 and so(

vS

v

)
·
(

J

J

)
= vS · J + v · J = 0.

We also have AS · vS = A · v so that Lemmas 4.1 and 4.2 give

Dist(−AS ⊕ A)

(
vS

v

)
=

[
λvS + kJ S + (J · v)AS + (A · v)J

(J · vS)A+ (AS · vS)J + λv + kJ

]

=
[
λvS + (k + (A · v))J

λv + (k + (A · v))J

]
= λw + (k + (A · v))J. �
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The proof of this lemma parallels that of the lemma above.

Lemma 11.2. Let [0] ⊕ A be increasing, |A| � 1, and λ an eigenvalue with eigenvector v for
Dist(A) relative toA. Ifw = vS ⊕ (−v), thenλan eigenvalue with eigenvectorw for Dist(−AS ⊕
A) relative to −AS ⊕ A.

12. Interlacing roots

In this the final section we will begin to probe the structure of the roots of the four polynomials
and how they change as the list is enlarged. We will find that all four polynomials have simple
roots and that in each case they interlace the roots of the polynomial obtained by adding a point to
either end of the list. We will take up considerably more elaborate interlacing results in a sequel.
Some would use the name strict interlace for the following definition, but we will deal with no
interlacing that is not strict and so we simplify our nomenclature.

Definition 12.1. Let A and B be increasing lists with |A| + 1 = |B|. We say that A interlaces B

iff

B[1] < A[1] < B[2] < A[2] < · · · < A[|A|] < B[|B|].
Sets are said to interlace iff the corresponding increasing lists interlace.

Theorem 12.1. Suppose |A| � 1 and A⊕ [p] is increasing. Then Din(A, x) has distinct roots
that are all negative. They interlace the roots of Din(A⊕ [p], x).

Proof. The interlace statement is vacuously true if |A| = 1 and easily shown for |A| = 2. Now let
us suppose that the roots of Din(A, x) = Din([p1, p2, . . . , pn]; x) are rn−1 < · · · < r2 < r1 < 0
and the roots of Din([p1, p2, . . . , pn−1]; x) are zi , where by induction

rn−1 < zn−2 < · · · < z2 < r2 < z1 < r1.

Setting x = ri in Theorem 3.1 and remembering that Din(A, ri) = 0 gives Din(A⊕ [p], ri) =
−r2

i Din([p1, p2, . . . , pn−1]; ri). Since this is not zero, none of the ri are roots of Din(A⊕ [p], x).
To complete the proof we need the claim that sign(Din([p1, p2, . . . , pn−1]; ri))=(−1)i−1.
Din([p1, p2, . . . , pn−1]; r1) > 0 because Din([p1, p2, . . . , pn−1]; x) has a positive lead coef-
ficient and r1 is bigger than all of its roots. Since Din([p1, p2, . . . , pn−1]; x) has distinct roots,
it alternates its sign between successive roots; and so it alternates its sign at the ri , since they are
in successive regions between the zi . We now have

sign(Din(A⊕ [p], 0))=1,

sign(Din(A⊕ [p], ri))=(−1)i for i = 1 to i = n− 1,

lim
x→−∞ sign(Din(A⊕ [p], x))=(−1)Degree(Din(A⊕[p],x)) = (−1)n.

This gives n sign alternations and hence n roots of Din(A⊕ [p], x) between −∞ and 0. Since
the degree of Din(A⊕ [p], x), is n, this is all of its roots; they are real, negative, distinct, and
they interlace the ri without equaling any of them. �

A similar proof using Theorem 3.2 shows that Din(A, x) also interlaces Din([p] ⊕ A, x) if
A[1] > p.
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Theorem 12.2. Suppose |A| � 1 and [0] ⊕ A⊕ [p] is increasing. Ant(A, x) has distinct roots
that are all negative and they interlace the roots of Ant(A⊕ [p], x).

Proof. The proof is much like that of Theorem 12.1. We check the small cases using the table
and then use Theorem 8.3 T n(ADADAD) with |B| = |C| = 1 to relate the sign of roots of Ant
for A with one point removed off the end to Ant of A with p added to the end. �

A similar proof using Theorem 8.3 T n(AFFAFA) with |A| = |B| = 1 shows that Ant(A, x)

also interlaces Ant([p] ⊕ A, x) if A[1] > p.

Theorem 12.3. Suppose |A| � 1 and [0] ⊕ A⊕ [p] is increasing. Sym(A, x) has distinct roots,
one positive the rest negative, and they interlaced the roots of Sym(A⊕ [p], x).

Proof. The proof is like those of Theorems 12.1 and 12.2 except that we use Theorem 8.3
T n(SFSFSF) with |B| = |C| = 1. There is a positive root because Sym(A, 0) < 0. �

A similar proof using Theorem 8.3 T n(SDDSDS) with |A| = |B| = 1 shows that Sym(A, x)

also interlaces Sym([p] ⊕ A, x) if A[1] > p.

Theorem 12.4. Suppose |A| � 1 and [0] ⊕ A⊕ [p] is increasing. Sof(A, x) has distinct roots
that are all negative and they interlace the roots of Sof(A⊕ [p], x).

Proof. The proof is like the others; we use Theorem 8.3 T n(FFFFFF) with |B| = |C| = 1. �

A similar proof using Theorem 8.3 T n(FFFFFF) with |A| = |B| = 1 shows that Sof(A, x)

also interlaces Sof([p] ⊕ A, x) if A[1] > p.
The next level of interlace results concerns the roots of one function interlacing those of another.

By Corollary 2.1 the roots of Din and Sof interlace the eigenvalues of Dist(A). We will take up
this topic in a sequel, but we do note the following simple counterexample.

Example 12.1. A = [1, 6, 7, 8] shows that the roots of Din(A, x) and Sof(A, x)need not interlace
each other. It also shows that the roots of Sym(A, x) need not interlace the eigenvalues of Dist(A).

Theorem 12.1 allows us to determine the possible values of the Rayleigh–Ritz ratio for a
distance matrix when the vectors are restricted by J · v = 0. Corollary 2.1 shows that the largest
root of Din(A, x) is an upper bound for the negative eigenvalues of Dist(A). Thus the corollary
below shows that the largest Rayleigh–Ritz ratio for vectors orthogonal to J also bounds the
negative eigenvalues of Dist(A). Using the result below it is easy to construct examples (indeed,
they are the typical case) where the largest root of Din(A, x) is strictly greater than the largest
negative eigenvalue of Dist(A), so that the Rayleigh-Ritz ratio method cannot give a sharp bound.
Of course this is only for a single list. Taking bounds over sets of lists can still give a best possible
result.

Corollary 12.1. Let A be increasing and |A| = n > 1. There is a complete set of n− 1
distinct eigenvalues of Dist(A) relative to Jn. The corresponding relative eigenvectors are mutu-
ally orthogonal and form a basis for W = {v|J · v = 0}. Let λmin be smallest relative eigenvalue
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and λmax the largest. If v ∈ W and v /= 0 then the range of possible values for the Rayleigh–Ritz
ratio

vTDist(A)v

vTv

is exactly the interval [λmin, λmax].

Proof. Theorem 12.1 shows that we have enough relative eigenvectors for a basis and that they
are mutually orthogonal. Select a unit length relative eigenvector vi for each relative eigenvalue
λi . If v ∈ W is written v =∑

aivi , then an easy calculation shows

vTDist(A)v

vTv
=

∑
i

a2
i∑

j a2
j

λi .

This is a convex combination of the λi and hence must fall within [λmin, λmax] with all values in
this interval possible. �
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