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A curvilinear pattern among a series of visual items (e.g., dots) can be regarded as a kind. of 
probabilistic inference, in which each consecutive angle, regarded independently, is more nearly 
collinear than would be expected by chance alone. This paper investigates judgments of 
curvilinearity as a function of the joint distribution of successive inter-dot angles. Subjects were 
asked to classify 4- and 5-dot confim~rations as having been generated by a curvilinear generating 
process, vs independently. Their results are distributed as a gaussinn over the inter-dot angles with 
mean 0 deg (collinear), with a negative correlation between successive angles, but negligible 
correlation between nan-successive angles. This suggests that curvilinearity is evaluated in a 4-dot 
window moving along the chain of dots, evaluating collinearity and smoothness but ignoring higher- 
order rdation~hlps. Moreover, the probabilistic model provides a rema~-ably precise numeric 
prediction of the magnitude of the correlation. Subjects also showed a reliable preference for equal 
spacing of dots along the virtual curve. © 1997 Elsevier Science Ltd 

Grouping Collinearity Curvature 

THE INTERPRETATION OF COLLINEARITY AND 
CURVILINEARITY 

One of the most salient effects in perceptual grouping is 
that coUinear or nearly collinear visual items tend to 
cohere, for example causing virtual lines and curves to 
emerge perceptually from a random field of dots. This 
tendency, called "good continuation" by the Gestaltists, 
has never been fully understood. It has been linked to 
orientation-tuned local operators in the visual system 
(Glass, 1969; Stevens, 1978; Caelli & Julesz, 1978; 
Prazdny, 1984; Brookes & Stevens, 1991), as well as to 
larger conglomerations of cells (Dodwell, 1983; Field et 
al., 1993). Nevertheless, a theoretical account of the 
coUinearity preference, for example, predicting the exact 
magnitude of the response to various deviations from 
perfect collinearity, has been elusive. 

Theoretical attention has focused on the inference of a 
virtual curve or trace underlying the discrete dots in the 
chain (Zucker & Davis, 1988), especially in computer 
vision, where such an inference is a necessary component 
of the integration of contours from sparse image data 
(Zucker, 1985; Parent & Zucker, 1989). Collinear or 
nearly collinear dots can be regarded as a proximate cue 
to the presence of a distal generating curve. In this view a 
collinear or curvilinear pattern amounts to a kind of 
"regularity," a special configuration to which the visual 
system is especially attuned, not unlike mirror symmetry 
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(Barlow & Reeves, 1979), skewed symmetry (Wage- 
mans, 1993), and other higher-order patterns (Wagemans 
et al., 1993). 

A probabilistic approach 

To fully understand the interpretation of collinearity, 
one would like to be able to precisely quantify the 
relationship between proximate collinearity and the 
presence of a distal curve--that is, how straight is 
straight "enough" to justify inferring a curve? When 
viewed as a Bayesian probabilistic problem, a necessary 
component of the answer is the prior distribution of dot 
configurations that obtains when a curve is actually 
present---or, at least, the observer's subjective expecta- 
tions about this distribution. This distribution was 
investigated for the minimal case of three dots in 
Feldman (1993) and Feldman (1996). Of course, subjects 
have no conscious knowledge of these distributions; 
rather, the idea is that the probabilistic machinery 
captures mathematically the tacit expectations that are 
physically realized in the relevant neural hardware. 
Despite this added layer of abstraction, the probabilistic 
approach provides an extreme numerically precise 
account of observers' collinearity judgments in the 3- 
dot case. The current study extends this analysis to four 
and more dots. 

To illustrate the approach, consider a group of dots in a 
curvilinear pattern (Fig. t). Because each individual dot 
conveys no directionality, the curvilinearity is only an 
interpretation placed on the dots' relative positions, and 
does not correspond in any simple way to physical 
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FIGURE 1. A group of dots arranged in an apparently curvilinear 
pattern, and the resulting series of inter-dot angles a~, a2 and a3. 

structure present in the image. Rather, the curvilinearity 
resides in a series of apparent coincidences: the angles 
between successive dots, a~, a2, and a3, are each nearer to 
collinear than one would expect "by chance alone." More 
specifically, if these dots were all generated indepen- 
dently, then this series of nearly collinear angles would 
have to be regarded as a highly suspicious coincidence; 
whereas if they were generated by some kind of 
organized curvilinear process, then the observed pattern 
is about what one would expect. The logic is similar to 
that of "non-accidental features" (Binford, 1981; Lowe, 
1987). From a probabilistic standpoint, each potentially 
independent event (here, the angle formed by each 
contiguous group of three dots) would be regarded as a 
single trial, with angle drawn from some distribution; 
while the overall pattern would be regarded as a series of 

*More precisely, the distribution turns out to be the most-nearly 
gaussian among the family of posterior functions with gaussian 
priors. This function can be closely approximated as a gaussian 
with a free height term. In the context of a maximum-likelihood 
interpretation, this function then plays the role of both prior and 
posterior. Hence, in what follows we ignore this distinction, and 
assume that judgment distributions can be regarded as likelihood. 

tAll  inter-dot angles in this paper are measured from straight, as in 
Fig. 1. 
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such trials (with n dots, n - 2  trials). Foster (1983) has 
shown that human perception of curvilinear segments 
exhibits categorical effects, even when the underlying 
stimulus space is carefully arranged to be metrically 
uniform. In the current case of discrete dots, the 
"curvilinear" category can be thought of as, in effect, a 
probability distribution defined over the series of inter- 
dot angles (see Ashby & Perrin, 1988 and Nosofsky, 
1991). There are then two straightforward research 
questions conceming dot patterns that are perceived as 
curvilinear: 

1. What is the expected distribution of each individual 
angle (three dots)? 

2. What is the joint distribution of multiple angles 
(n > 3 dots)? 

The first question, the distribution of judgments in the 
minimal 3-dot case, was addressed in Feldman (1993) 
and Feldman (1996). Subjects were asked whether three 
dots were generated by a curvilinear generating process, 
as opposed to having been generated independently 
(translated into suitably comprehensible terms; see 
Procedure, below). The probability of a "yes" (curvi- 
linear) response as a function of angle can be taken to 
represent their model of the likelihood function due to a 
curvilinear dot-generating process--that is, the expecta- 
tion of each successive angle in the curvilinear sequexnce 
of Fig. 1. The distribution turns out to be approximately 
gaussian,* centered at 0 deg (stralght¢), with a standard 
deviation of about 53 deg, tailing off to minimum at 
about 120 deg (Fig. 2). This shape makes sense, by the 
following argument. The 0 deg case represents the modal 
outcome from a curvilinear process, in which the 
inference to a curvilinear process is maximally justified. 
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FIGURE 2. Probability of a "curvilinear" response as a function of angle, in the 3-dot case (Feldman, 1996). 
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On the other hand, the 120 deg case (i.e., an equilateral 
triangle), because of its symmetry, represents the 
completely ambiguous case where the order in which 
the three dots were generated is completely unrecover- 
able, and hence evidence for the curvilinear interpretation 
is maximally weak. Thus, 0 and 120 deg are maximally 
distant in the underlying space of hypotheses (in a sense 
that does not depend on the choice of metric). Note, 
however, that the mean judgment was not unity at 0 deg 
and was not zero at 120 deg, reflecting some residual 
uncertainty about the classification of even these most 
extreme cases. 

In this account, subjects treated 120deg as the 
prototype for generic triplets. This is remarkable because 
120 deg is not, in fact, the modal case when three dots are 
generated randomly and independently [Kendall & 
Kendall, 1980; see Feldman (1996) for discussion)], but 
rather is quite unlikely even then. In effect, subjects 
sought to create a maximally extreme contrast between 
two hypotheses: regularity (collinearity) and genericity 
(non-regularity or independence). To achieve this, they 
confabulated a prior distribution for the independent 
hypothesis based on the idea of maximum distance from a 
coUinear configuration--maximum genericity. In the 
end, they can be regarded as performing Bayesian 
inference only by appeal to some extra-Bayesian 
principles: (a) for the curvilinear prototype, the angle 
distribution is centered on the case for which the 
inference or regularity is most justified; while (b) for 
the "random" (generic) prototype, the angle distribution 
is centered on the case in which the inference of 
regularity is least justified. These "regularity principles" 
are worth emphasizing, because, as will be seen below, 
they can be used to derive numeric predictions for the 
case of n > 3. 

This paper addresses the second question: with more 
than three dots, and hence more than one angle in the 
sequence, what is the joint distribution of successive 
angles? The key idea intuition here is that in a coherent, 
curvilinear process such as an edge, one would not expect 
successive angles to be independent. Rather, within a 
genuine curvilinear pattern, successive near-collinear 
angles tend to follow one after another, suggesting some 
kind of predictive power from one to the next--i.e., some 
degree of covariance among successive angles. By 
contrast, in an unstructured cluster of dots, one would 
expect the various angles to be independent, by 
definition. It is often remarked that perceptual hypotheses 
of "structure" depend in some way on covariation among 
distal variable in the environment. Here is the potential to 
establish a concrete link between one such hypothesis, 
that of collinearity, and the literal mathematical notion of 
covariance. 

The critical experiment is exactly like the 3-dot 
experiment, except with more dots. Results for 4- and 
5-dot cases are reported below. Again, the task is to judge 
whether the given dots were generated by a curvilinear 
process, or independently. 
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FIGURE 3. Examples of worms (left) and flatfish (right) shown to 
subjects (4-dot case). 

EXPERIMENT 

Method 

Subjects. Subjects were naive paid volunteers drawn 
from the university community, mostly undergraduate 
students from a variety of disciplines. There were 20 
subjects in the 4-dot experiment, and 16 (different) 
subjects in the 5-dot experiment. 

Procedure. Subjects were instructed that they were to 
be presented with configurations of four (five) dots, to be 
interpreted as markings on two equinumerous species of 
bottom-dwelling ocean creatures: a kind of worm, whose 
four (five) markings were randomly placed along its 
curvilinear body; and an approximately round flatfish, 
whose four (five) marking were randomly placed on its 
surface (Fig. 3). The instructions explicitly drew 
subjects' attention to the fact that any configuration 
could be either type of creature: worms can curl up 
arbitrarily, while the dot markings on flatfish might just 
"happen" to fall nearly in a line. As illustration, subjects 
were shown two worms and two flatfishes, arranged so 
that exactly the same two-dot configurations were given 
as an example of both categories (see Fig. 3). 

Thus, subjects understood that their task was to rate 
each dot configuration for how likely it was to have been 
generated by by a curvilinear process. On each trial, 
subjects responded by choosing a number from 1 to 5, 
meaning (1) "almost definitely a flatfish"; (2) "probably a 
flatfish"; (3) "either one, with about equal probability"; 
(4) "probably a worm"; and (5) "almost definitely a 
worm". The experimental session was preceded by eight 
practice trials. 

Design. There are two variables for each configuration: 
angle profile and inter-dot distance profile. For the 4-dot 
case the angle profile consists of two angles, a~ and a2, 
and three inter-dot distances LI,/-,2, and/-,3 [Fig. 4(a)]. For 
the 5-dot case the angle profile consists of three angles, 
al, a2 and a3, and four inter-dot distances, L1, L2, L3, and 
L4. 

4-dot case. There were 13 levels of angle (from - 9 0  to 
90 deg in increments of 15 deg) in each of al and az, 
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FIGURE 5. Results for n = 4 plotted by angle: (a)surface plot; (b) contour plot. Here the data have been reflected about the 
al=a2 axis to facilitate the contour plot. Contour levels shown range from 0.125 through 0.875 (inclusive) in increments of 0.125 

(corresponding to one-half unit in the subjects' response). 

using each possible pair only once, for a total of 
91(= 13+(13)(12/2)) distinct types of angle profile 
(angle by angle). To keep the total number of trials 
down to a reasonable level, only five types of inter-dot 
distance levels were used: same-same-same (i.e., 

L] = L 2 = L3), d i f f e r e n t - s a m e - s a m e  (i.e., L1 5~L2 = L3, 

etc.),  s a m e - d i f f e r e n t - s a m e ,  s a m e - s a m e - d i f f e r e n t ,  and 

d i f f e r e n t - d i f f e r e n t - d i f f e r e n t .  T h e s e  f ive  types  can  

be  c lass i f ied  by  h o w  m a n y  i n d e p e n d e n t  equa l  re la t ion-  

ships  they  inc lude:  0 (ddd), 1 (dss, sds, and  ssd), and 
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FIGURE 6. Theoret ical model  o f  4-dot angle results: (a) surface plot; (b) contour plot. Contour levels are as in Fig. 5. 

TABLE 1. Estimated parameters of the model fitted to the 4~dot angle 
data 

Parameter Estimate Standard error 95% confidence interval 

h 0.9415 0 . 0 0 9 9  0.9218-0.9611 
s 74.80 0.9452 72.92-76.67 
r -0.2634 0.01783 -0.2988--0.2280 

2 (sss).* "Same" inter-dot distances were  all a standard 
length (80 pixels, subtending 3.68 deg of visual angle), 
while "different" inter-dot distances were different from 

*Note that though s s s  includes three sames, only two of them are 
independent. 

standard by some non-zero integral power of 1.2, chosen 
randomly from the interval [ - 4 ,  4]. 

The angle scheme was crossed with the length-profile 
scheme for a total of 455( = 91 x 5) trials. Each subject 
saw all trials. 

5-dot case, There were 7 levels of angle (from - 7 2  to 
72 deg in increments of 24 deg) in each of al,  a2 and a3. 
All distinct pairs of al and a2 times all levels of  a3 were 
used, for a total of 196[ = (7 + (7)(7/2)) x 7] distinct types 
of angle profile (angle by angle by angle). Because of this 
large number of angle levels, only two types of inter-dot 
length profile were used: same and different. As above, 
"same" inter-dot distances were all a standard length (80 
pixels, 3.68 deg of visual angle), while "different" inter- 
dot distances were different from standard by some 
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FIGURE 7. Frequency histograms of individual subjects '  values of  (a) h (b) s (c) r and (d) R 2 (4-dot case). 

non-zero integral power of 1.2, drawn randomly from 
[ -3 ,  3]. (The smaller range was in order to limit the 
maximum size of the objects.) 

The angle scheme was crossed with the length profile 
scheme for a total of 392( = 196 × 2) trials. Each subject 
saw all trials. 

Viewing distance was 35 cm. Dots were black circular 
patches 0.23 deg wide on a white screen with high 
contrast. On each trial, the configuration was rotated in 
the plane by a random angle. Subjects were free to take as 
long as they wanted to respond, and were allowed to 
move their eyes freely. 

RESULTS 

The results for angle and the results for inter-dot 
distance will be discussed separately. 

Angle  results 

4-dot case. The  results for the 4-dot case are shown in 
Fig. 5, plotted by a 1 and az, collapsing over all inter-dot 
distances. The vertical axis is subjects' average response, 
normalized to the interval (0, 1) (i.e., converted to a 
probability judgment). Hence, the plot can be regarded 
as the probability distribution of "worms" as a function 

of the two angles: that is, the joint distribution of a~ and 

a2.  
The distribution was modeled as a bivariate gaussian 

with a free height parameter and equal standard 
deviations: 

p(al ,  a2) = h e x p ( -  ~ a t ~ - l a )  (1) 

in which Z is the 2-by-2 covariance matrix, a is the vector 
of angles 

a = [al a2], (2) 

and a t is its transpose. This model assumes that each a i 

has an expected mean of 0 deg, as one would expect for 
the "worm" distribution. This model has 3 deg of 
freedom: the free height h, the single standard deviation 
s, and the correlation coefficient r. The model was fit to 
the data by Levenburg-Marquardt. Estimates, standard 
errors, and 95% confidence intervals for each of the 
parameters are given in Table 1. The estimated model, 
shown in Fig. 6, fit the data extremely well, 
F(3,87) = 912.169, P < 0.0001, R2= 0.9692.* The sub- 

*Note that this R 2, a measure of fit between the data and the model, is 
unrelated to r, which here is a parameter of  the model. 
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FIGURE 8. Results for n = 5 plotted by angle: (a) by al,a2 (b) by al, a3 (C) by a2, a3. 

jects' mental "worm" distribution very closely approx- 
imates a gaussian centered on al = a2 = 0 deg (fits to 
individual subjects' data are discussed below). This result 
is quite striking when one considers the total freedom 
subjects had to invent arbitrary decision criteria for what 
is, after all, a completely subjective task. 

The significant correlation (r =-0 .2634)  means that 
subjects effectively treated collinearity as a covariance 
between successive angles. Intriguingly, the correlation is 
negative; this will be explained by a model presented 
below. 

Variation among subjects. The gaussian model can be 
fitted to each individual subject's data as well, yielding 
individual estimates of the model parameters. Figure 7 
shows frequency histograms for each of the parameters h, 
r, and s, as well as for the measure of fit RC For each of 
the three parameters, the plot shows a fairly narrow 
spread about the value fitted overall. In addition, the 

*Notice that individual R2s, unlike individual model parameters, do 
not need to be clustered about the overall value for all subjects. 
Instead, the overall fit will tend to regress towards a gausslan, 
inevitably yielding lower R2s for individual subjects. 

range of fits to the model is quite good, with most at about 
R 2 = 0.8 or above. This confirms that the overall fit of the 
gaussian model was in fact due mostly to individual 
subjects fitting it, with only a small amount of the fit 
(about 10%) being due to regression to a gaussian 
stemming from the Central Limit Theorem.* 

5-dot case. In the 5-dot case, there are three angles al, 
a2, and a3, so their joint distribution cannot be plotted in 
three dimensions. Instead, each of the three pairwise joint 
distributions is plotted (Fig. 8). The three-way joint 
distribution was modeled as a trivariate gaussian: 

p(al ,  a2, a3) = h exp ( -  ~ a tE- la )  (3) 

in which a is now the three-component vector of angles, 
and again Z is the covariance matrix with equal standard 
deviations. This model has five degrees of freedom: the 
free height h, the standard deviation s, and the three 
pairwise correlation coefficients r12, r23, and r13. This 
model again fit the data extremely well, 
F(5,190) = 577.53, P < 0.0001, R 2 = 0.9383. Estimates, 
standard errors, and 95% confidence intervals for each of 
these parameters are given in Table 2. Note that the 
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TABLE 2. Estimated parameters of the model fitted to the 5-dot data 

Parameter Estimate Standard error 95% confidence interval 

h 0.9586 0 . 0 0 9 1  0.940~0.9766 
s 91.90 1 . 3 6 0  89.213-94.579 
r12 -0.2955 0.0195 . . . .  0.3340- 0.2571 
rs~ -0.3167 0.0200 -0.3561- 0.2773 
r13 -0.0613 0.0231 -0.1069- (I.(/157 
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FIGURE 9. Curvilinearity is evaluated within a moving 4-dot window. 

Here, as in the 4-dot case, subjects modeled the worm 
distribution as a gaussian centered on al = ae = a3 = 0. 
Again curvilinearity took the form of  a correlation 
between successive angles (rn 2 = -0 .2955 ,  
r 2 3 = - 0 . 3 1 6 7 ) .  Intriguingly, the correlation between 
non-successive angles (q3 = - 0 . 0 6 1 3 )  is significantly 
lower (though still significantly different from 0 at the 
0.05 level, and just barely different f rom 0 at the 0.01 
level). This suggests that human observers classify a 
chain of  dots as curvilinear if (a) each individual angle in 
the chain is near enough to collinear; (b) each pair of  
adjacent angles is near enough to curvilinear. This means 
curvilinearity is evaluated using a 4-dot window, while 
any higher-order relationships are (almost completely) 
ignored* (Fig. 9). In other words, the sequence of  dots is 
evaluated for local t  straightness and local smoo thnes s - -  
the vanishing of  the first and second derivatives of  the 
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FIGURE 10. Frequency histograms of individual subjects' values of (a) h; (b) s; (c) r12, r23, r13; and (d) R 2 (5-dot case). 

standard deviations are generally somewhat  higher than 
those in the 4-dot case, which in turn were higher than the 
original 3-dot case. This trend presumably reflects the 
strengthening of  the curvilinear interpretation (entailing a 
wider curvilinear distribution) warranted by increasing 
numbers o f  dots. 

tangent vec to r - -bu t  higher-order derivatives are disre- 
garded. 

*At least any higher-order l oca l  relationships: see Kovacs & Julesz 
(19931 for evidence concerning a global factor, closure. 

f"Local" here means in a neighborhood along along the dot chain, not 
at a single dot. 
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FIGURE 11. Results for n = 4 plotted by inter-dot distances. The abscissa measures  degree of  regularity in the inter-dot 
distances: 0 = ddd, 1 = {dss, sds, ssd}, and 2 = sss. 

This finding is particularly intriguing in the light of the 
finding by Wagemans et al. (1993) that 4-dot groups play 
a central role in the detection of symmetry and other 
kinds of regularity. In their studies, subjects were better 
able to detect various types of "regular structure" in dot 
configurations--mirror symmetry, translational symme- 
try, and rotational symmetry--when the patterns con- 
tained structure involving more than two dots at a time. 
Pair-wise regularities among dots by themselves were not 
sufficient to allow observers to detect the structure 
effectively. In particular, Wagemans et al. argue that sets 
of four dots---defining a "virtual quadrilateral"--suffice 
to allow the observer to bootstrap the impression of 
regularity rapidly across the image. The current findings 
have a very similar flavor. A chain of dots is regarded not 
as a concatenation of simple pair-wise collinearities, but 
rather is analyzed in overlapping groups of four dots, 
allowing an accurate assessment of "curve goodness" to 
propagate rapidly along the dot chain (cf. Field et al., 
1993). The use of more than two dots at a time 
immediately suggests that the visual system is calculating 
not only local tangents but local curvature as well, an idea 
that will play a central role in the model presented below. 

Variation among subjects. Figure 10 shows frequency 
histograms of the individual 5-dot subjects' parameters, 
as well as of the fits (REs) to the gaussian model. Again, 
most of the individual subjects fit the model well, though 
not as tightly as in the 4-dot case, with most R2s at 0.6 or 
better. As in the 4-dot case, each of the parameters shows 
a fairly fight distribution about the overall estimate 
(somewhat broader for s). Particularly striking is the case 
of the three correlations (lower left). The two successive 
correlations, r12 and r23, are each clustered around the 
overall estimates of about -0 .3  in each case; while the 

non-successive correlation r13 is clumped near zero. This 
plot makes a strong case that the moving 4-dot window 
described above is actually a universal strategy among 
the subjects. 

Inter-dot distance results. Figure 11 shows inter-dot 
distance results for the 4-dot case. Probability of a worm 
response increases monotonically with the number of 
independent "same" lengths, i.e., with degree of 
regularity (F(2,38)=4.112, P=0.024).  On the other 
hand, as expected, there was no significant variation 
within the "1" group (dss=0.5545, ssd=0.5511, 
sds = 0.5508), F(2,38) < 1. 

Figure 12 shows the corresponding effect in the 5-dot 
case. Here, the inter-dot length profiles were simply 
"same" vs "different". Again, "same" configurations 
were judged more likely to be a worm F(1,15) = 6.613, 
P = 0.021. 

In both cases, note that the effect of inter-dot length 
regularity is very small in magnitude compared with the 
corresponding angle effect. Nevertheless, it is statisti- 
cally reliable, and goes in the expected direction: equality 
of inter-dot distances is interpreted as evidence of 
generation by a curvilinear process. That is, regular 
behavior of image items is taken to imply common 
origins. This effect is quite telling, because unlike the 
corresponding angle effect, it appears to have no rational 
basis--"worm" configurations cannot, in general, be 
expected to have more symmetric inter-dot distances than 
"flatfish" configurations. Rather, the effects signal a 
purely heuristic preference for regularity. 

Model 

The negative correlation between successive angles 
(approximately the same value in the 4-dot case as in 
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FIGURE 12. Results for n = 5 plotted by inter-dot distances. 

each of the two successive angle pairs in the 5-dot case) is 
crucial. In a sense, this one number captures everything 
there is to say about the human probabilistic model of 
collinearity. Hence, we would like to be able to explain 
why it takes on the particular value it does. In particular, 
why is it negative? 

An answer to this question, including an accurate 
numerical retrodiction of the magnitude of the correla- 
tion, is provided by a generalization of the argument used 
in Feldman (1993, 1996) to account for the corresponding 
question in the 3-dots case (namely, what is the standard 
deviation of the angle distribution?). Motivating the 
argument requires delving in some depth into the 
geometry of the 4- and 5-dot situations. 

What are the regularities? As discussed above. 
judgments in the 3-dot case revolved about the question 
of what dot configurations are most and least prototypical 
of the curvilinear generating process: the former being a 
"regularity" and the latter a "generic" or non-regular 
configuration (Jepson & Richards, 1992; Richards et al., 
1996; Feldman, 1997a, b). To account for the value of the 
correlation, we need to generalize this idea to the 4-dot 
case. (Notice that by the argument given above, we do not 
then need to move on to the 5-dot case, because observers 
treat it as two adjoined 4-dot cases.) Clearly, 
al = a2 = 0 deg is the regularity, the modal form for a 
prototypical 4-dot worm, and hence is the maximum in 
subjects' distribution. But the argument also requires 
knowledge of the maximally non-regular case. Where is 
the maximally generic point in (al, az)-space? 

Consider a reparameterization of (al, az)-space, a 
simple change of variables that rotates the coordinate 
system by 45 deg (Fig. 13). The new parameters, al+a2 
and a] -a2 ,  reflect the relationship between the two 
angles, rather than the individual angles themselves. 

Thinking of the dots as having been generated by a 
curve, each individual angle corresponds to (an approxi- 
mation of) curvature at the point. Curvature is well 
known to be perceptually important (Attneave, 1954; 
Koenderink & Richards, 1988) and to exhibit categorical 
effects (Foster, 1983). Small differences in curvature are 
very sensitively computed by human observers (Watt & 
Andrews, 1982; Wilson, 1985; Foster et al., 1993), even 
manifesting hyperacuity effects (Fable, 1991). In the new 

a2 

al  +a2  

(0,0) ~- a 1 

FIGURE 13. The i-ew coordinate system, (al + a2, a l -  a2). Also 
shown is an ellipse with principal axes ct and fl, which is an isoprobable 

contour for a bivariate gaussian. 
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/ 

! 1 
FIGURE 14. The reasoning behind the values of/q~x and Akmx given in the text. A maximally regular prototype "worm" (top) 
is deformed in the km~x direction (left) and in the ~ direction (right) until it reaches an ambiguous configuration (bottom). 

parameterization, it is easy to see that a~ + a z  corresponds 
to the total curvature k (i.e., total excursion of the tangent 
direction) and al - a2 corresponds to change in curvature 
Ak: 

k - -  a l  + a2, (4) 
Ak = al - a2. 

What is the modal form for a "worm," i.e., the 
configuration optimally indicative of having been 
generated by a curve, expressed in this new coordinate 
system? It seems quite reasonable to suppose that the 
answer would be zero total curvature, zero change in 
curvature, i.e., the worm that bends as little and as 
consistently as possible. This gives: 

a l  + a2 ---- 0 ° 

a l  -- a2 ---- 0 °, (5) 

hence al = az = 0 deg, our original origin. But unlike the 
original coordinate system, the new system makes a 
prediction about the least regular configurations as well. 
Recall that in the 3-dot case, this turned out to be the 
equilateral triangle, apparently because in this configura- 
tion the curve has bent so much that, because of the 
symmetry, it is no longer even possible to recover the 
sequence in which the dots were generated. 

Now, with a bit of mathematics, the same argument 
provides a numeric prediction about the value of the 
correlation r in the 4-dot case. To see how, consider the 

contour plot of a bivariate gaussian [e.g., Fig. 6(b), also 
shown in Fig. 13]. The isoprobable contour is an ellipse, 
whose principal axes 0t and fl lie along the eigenvectors of 
the covariance matrix, which point exactly in the 
directions of our new parameters al + a2 and a l -  a2 
(Fig. 13). Hence, the reparameterization is a particularly 
convenient one, though nothing in the following analysis 
depends on the choice. As in the 3-dot case, the 
distribution degrades in each of these directions until it 
reaches a minimum out at the maximally generic point. 
Hence, we need to identify just bow far in t h e  a l  + az  

direction and in the a l -  a2 direction a configuration 
must deform before it becomes completely generic. Call 
these two extreme points km~x and Akmax, respectively. It 
is clear from consideration of Fig. 13 that the ratio of 
these two distances is precisely the ratio of the principal 
axes of the ellipse, (i.e., its aspect ratio): 

kmax oL 
(6) 

Akmax /3 

This ratio completely determines the shape of the 
gaussian, and thus must depend on its one free shape 
parameter, the correlation r. In particular: 

o~ /l+r_. (7) 
3 r 
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(A derivation of this fact can be found in the Appendix) 
Solving for r in terms of kmax and Akmax, w e  have 

(kmax) 2 - (Akmax) 2 

/" = (kmax) 2 ~- (mkmax)2 • (8)  

Hence in order to predict the expected correlation, it 
remains only to identify kn,ax and Akmax numerically. 

As in the 3-dot case, these values are determined by 
considerations of symmetry. For kmax, the question is: as 
one bends a straight configuration (Fig. 14, top) in the 
direction of increased total curvature (Fig. 14, left), at 
what point is the bend so great that the virtual curve can 
no longer be identified unambiguously? As can be seen in 
the figure, the answer is a square, with total bend 180 deg. 
At this point, the second dot and the fourth dot are both 
equidistant from the starting dot. For Akmax, the question 
is the same except one bends in the direction of increased 
change in curvature (Fig. 14, right). Here the answer is a 
equilateral rhombus (i.e., adjoined equilateral triangles), 
where the total change in curvature is 240 deg. 

Inserting the values kmax = 180deg and Akmax= 
240 deg into Eq. (8) gives a predicted value of: 

r : -0.28. (9) 

This value is very close to the empirical value 
(-0.2634) of r from the 4-dot case, as well to the 
contiguous correlations r~2 and r23 from the 5-dot case 
(-0.2955 and -0.3167, respectively). The average of r, 
r~2, and rz3 is -0.2919, only about 0.01 off from the 
estimate. 

It should be noted that subjects' performance cannot be 
attributed solely to learning the range of the stimuli 
presented. One can imagine that subjects might learn over 
the course of the experiment the extremes of the stimulus 
set, and use these as estimates of kmax and Akm~x. 
However, the inter-dot angles in the 4-dot case ranged 
from - 9 0  to 90 deg, yielding a kmax = Akmax = 180 deg, 
entailing r = 0 by Eq. (8). Similarly, in the 5-dot case, the 
angles ranged from - 7 2  to 72 deg, yielding kmax = 
Akm~ = 144 deg, and again r = 0. Hence, the significant 
non-zero rs in both cases rule out any explanation 
stemming solely from the observed stimuli. 

In summary, the human model of curvilinearity can be 
regarded as an expectation of correlation between 
successive angles in a series of visual items. The strength 
of the expected correlation is not based on environmental 
factors, about which the observer has no independent 
knowledge. Rather it is based on the geometry of how a 
prototype distorts, which constrains the way the observed 
configuration is mapped into "worm space". The 
configuration's location in this space is always defined 
relative to two opposite poles: the ideally regular form-- 
the worm prototype--and the ideally non-regular form-- 
the generic configuration. 

It should be understood that subjects presumably have 
no conscious knowledge of these complex geometric and 
probabilistic considerations. Rather the mathematical 
machinery is an attempt to explain the precise character 
and magnitude of human observers' unconscious judg- 

ments. These very computations might well be realized in 
some simpler neural substrate--just as in edge detection, 
where computations that can only be understood 
completely in the language of calculus are actually 
carried out using simple combinations of receptive fields. 
In particular, the neural computation of local curvature 
has been attributed to endstopped cells (Dobbins et al., 
1988; Dobbins et al., 1989); the k and Ak parameters in 
the current model could easily correspond to excitatory 
summation and lateral inhibition, respectively, of such 
cells. The model, complex though its derivation may be, 
simply describes how such a simple neural computation 
might correspond to the perceived degree of coherence or 
regularity of a dot chain. 

Hence, while the principal thrusts of the calculation are 
explained at this "competence" level, it is indeed quite 
possible that certain aspects of human performance 
actually depend on details of the physical or algorithmic 
realization. For example, the geometrical arguments 
above are by their nature scale-invariant. Indeed, scale 
invariance might well be the "ideal" behavior of the 
system. In fact, Takeichi (1995) has recently presented 
evidence that under certain circumstances human com- 
putation of curvature may, in fact, be approximately 
invariant to scale. Yet ultimately so much of the visual 
system is modulated by scale that perfect scale invariance 
seems unlikely. Only future experiments can actually 
answer this question, but if responses did vary with scale 
this would presumably simply reflect some unknown 
details of the way the competence theory was imple- 
mented in the visual system. 

SUMMARY 

Taken together, the angle and distance results paint a 
very specific picture of the categorization of dot 
configurations. When classifying dot clusters with regard 
to curvilinearity, human observers act as if they move a 4- 
dot window along the dot series, evaluating regularity 
within the window (Fig. 9). Here "regularity" means 

(a) Curvature vanishes 

(b) Change in curvature vanishes 

(c) Difference in inter-dot distances vanishes. 

Components (a) and (b) can be thought of as the 
vanishing of the Mahalanobis distance (distance scaled 
by variance) in (al, a2)-space between the configuration 
and the origin, which is the "worm" prototype. This 
suggests an empirically motivated representation for dot 
configurations, in which each successive 4-dot window is 
mapped to a single two-component vector in the 
variance-scaled space. It should be possible to design a 
simple filter to compute this mapping. This suggests a 
strong empirical test of the theory: judged similarity 
between 4-dot configurations ought to be a monotonic 
function of distance in this space. This question will be 
the topic of future research. Formally, mapping config- 
urations into this 2-D space is exactly equivalent to 
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evaluating the correlation between the inter-dot angles. In 
this limited domain,  then, "regulari ty" corresponds 
literally to covariance. 

CONCLUSION 

Witkin & Tenenbaum (1983) have argued that 
perceptual grouping subserves the recovery o f  
"structure" f rom the image- -coord ina ted  behavior  on 
the part of  potentially independent visual items, which 
tends to imply c o m m o n  origins. It would make sense for 
this inference to be a Bayesian one, if only the observer 
had access to accurate probabilistic information about the 
priors: how often does each type of  structure occur, what  
is the probabili ty distribution on each type ' s  outputs, and 
so forth. As is commonly  pointed out, this approach 
suffers f rom the fact that this information is often 
unavailable to the observer. Historically, Bayesians have 
often tried to supply the missing information via some 
version o f  the "Principle o f  Ind i f fe rence" - - two  hypoth-  
eses about which one knows nothing are by default 
assigned equal probabilities. This principle has often 
been regarded as arbitrary, and the resulting "subjective 
probabilities" unsound. In its best applications, though, 
the Principle is really a kind of  symmetry  principle. A 
coin whose two sides are physically indistinguishable 
has, by  virtue o f  the symmetry,  equal probabilities o f  
heads and tails. This conclusion seems both justified and 
empirically correct. 

The study reported in this paper suggests that the 
recovery o f  curvilinearity, v iewed as a problem o f  
probabilistic inference, has a similar (albeit more 
complex) form. Extreme points for the d is t r ibut ions--  
crucial for establishing the exact magnitude o f  the 
curvilinearity j u d g m e n t - - w e r e  derived f rom symmetry  
arguments. In a sense, the observer has no choice but to 
depend on some sort o f  idealized argument in order to 
construct priors, because the true environmental  prob- 
abilities---e.g, the true probability o f  a given chain o f  dots 
having arisen f rom a curvilinear p rocess - - a re  unavail- 
able, vary arbitrarily f rom context to context, and may 
not even be well-defined. By building priors using the 
scheme described above, human observers are able to 
recover structure in a relatively reliable and flexible way, 
despite lacking crucial information. Like many heuristic 
interpretation schemes, this scheme is built on a concept  
o f  simplicity---here, on the idea that curvilinear processes 
tend to behave in a fairly constrained way, neither 
curving too much nor changing their curvature too 
quickly. What  is most  intriguing is the very precise way  
in which this simplicity principle translated into prob- 
abilistic terms, as a correlation. Progress in understanding 
other types o f  visual interpretation may  be made if  other 
heuristic inference principles can be fleshed out in a 
similarly concrete way. 

REFERENCES 

Ashby, F. G. & Perrin, N. A. (1988). Toward a unified theory of 
similarity and recognition. Psychological Review, 95, 124-150. 

Attneave, F. (1954). Some informational aspects of visual perception. 
Psychological Review, 61, 183-193. 

Barlow, H. & Reeves, B. (1979). The versatility and absolute 
efficiency of detecting mirror symmetry in random dot displays. 
Vision Research, 19, 783-793. 

Binford, T. (1981). Inferring surfaces from images. Artificial 
Intelligence, 17, 205-244. 

Brookes, A. & Stevens, K. A. (1991). Symbolic grouping versus 
simple cell models. Biological Cybernetics, 65, 375-380. 

Caelli, T. M. & Julesz, B. (1978). On perceptual analyzers underlying 
visual texture discrimination: Part I. Biological Cybernetics, 28, 
167-175. 

Dobbins, A., Zucker, S. W. & Cynader, M. S. (1988). Endstopped 
neurons in the visual cortex as a substrate for calculating curvature. 
Nature, 329, 438-441. 

Dobbins, A., Zucker, S. W. & Cynader, M. S. (1989). Endstopping and 
curvature. Vision Research, 29, 1371-1387. 

Dodwell, P. C. (1983). The lie transformation group model of visual 
perception. Perception and Psychophysics, 34, 1-16. 

Fahle, M. (1991). Parallel perception of vernier offsets, curvature, and 
chevrons in humans. Vision Research, 31, 2149-2184. 

Feldman, J. (1993). Perceptual models of small dot clusters. In 
Proceedings of the DIMACS Workshop on Partitioning Data Sets, 
1993. Published as D1MACS Series in Discrete Mathematics and 
Theoretical Computer Science, 19, 1995, 331-355. 

Feldman, J. (1996). Regularity vs. genericity in the perception of 
collinearity. Perception, 25, 335-342. 

Feldman, J. (1997a). Regularity-based perceptual grouping, Computa- 
tional Intelligence, 13. 

Feldman, J. (1997b). The structure of perceptual categories, Journal of 
Mathematical Psychology, in press. 

Field, D. J., Hayes, A. & Hess, R. F. (1993). Contour integration by the 
human visual system: evidence for a local "association field". Vision 
Research, 33, 173-193. 

Foster, D. H. (1983). Visual discrimination, categorical identification, 
and categorical rating in brief displays of curved lines: implications 
for discrete encoding processes. Journal of Experimental Psychol- 
ogy: Human Perception and Performance, 9, 785-807. 

Foster, D. H., Simmons, D. R. & Cook, M. J. (1993). The cue for 
contour-curvature discrimination. Vision Research, 33, 329-341. 

Glass, L. (1969). Moire effects from random dots. Nature, 223, 578- 
580. 

Jepson, A. & Richards, W. A. (1992). What makes a good feature? In 
Harris, L. & Jenkin, M. (Eds), Spatial vision in humans and robots. 
Cambridge, U.K.: Cambridge University Press. 

Kendall, D. G. & Kendall, W. S. (1980). Alignments in two- 
dimensional random sets of points. Advances in Applied 
Probability, 12, 380---424. 

Koenderink, J. J. & Richards, W. A. (1988). Two-dimensional 
curvature operators. Journal of the Optical Society of America A, 
5, 1136-1141. 

Kovacs, I. & Julesz, B. (1993). A closed curve is much more than an 
incomplete one: effect of closure in figure-ground segmentation. 
Proceedings of the National Academy of Sciences USA, 90, 7495- 
7497. 

Lowe, D. G. (1987). Three-dimensional object recognition from single 
two-dimensional images. Artificial Intelligence, 31,355-395. 

Nosofsky, R. (1991). Typicality in logically defined categories: 
exemplar-similarity versus rule instantiation. Memory and 
Cognition, 19, 131-150. 

Parent, P. & Zucker, S. W. (1989). Trace inference, curvature 
consistency, and curve detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 11,823-839. 

Prazdny, K. (1984). On the perception of glass patterns. Perception, 
13, 469-478. 

Richards, W. A., Jepson, A. & Feldman, J. (1996). Priors, preferences, 
and categorical percepts. In Knill, D. & Richards, W. A. (Eds), 
Perception as Bayesian inference. Cambridge, U.K.: Cambridge 
University Press. 

Stevens, K. A. (1978). Computation of locally parallel structure. 
Biological Cybernetics, 29, 19-28. 



2848 J. FELDMAN 

Takeichi, H. (1995). The effect of curvature on visual interpolation. 
Perception, 24, 1011-1020. 

Wagemans, J. (1993). Skewed symmetry: a nonaccidental property 
used to perceive visual forms. Journal of Experimental Psychology: 
Human Perception and Performance, 19, 364-380. 

Wagemans, J., Van Gool, L., Swinnen, V. & Van Horebeek, J. (1993). 
Higher-order structure in regularity detection. Vision Research, 33, 
1067-1088. 

Watt, R. J. & Andrews, D. P. (1982). Contour curvature analysis: 
hyperacuities in the discrimination of detailed shape. Vision 
Research, 22, 449-460. 

Wilson, H. R. (1985). Discrimination of contour curvature: data and 
theory. Journal of the Optical Society of America A, 2, I 19 l-1199. 

Witldn, A. P. & Tenenbaum, J. M. (1983). On the role of structure in 
vision. In Beck, J., Hope, B. & Rosenfeld, A. (Eds), Human and 
machine vision (pp. 481-543). New York: Academic Press. 

Zucker, S. W. (1985). Early orientation selection: tangent fields and the 
dimensionality of their support. Computer Vision, Graphics, and 
Image Processing, 32, 74-103. 

Zucker, S. W. & Davis, S. (1988). Points and endpoints: a size/spacing 
constraint for dot grouping. Perception, 17, 229-247. 

Acknowledgements~This research was supported by the Rutgers 
Center for Cognitive Science (RuCCS). I am grateful to Whitman 
Richards for many helpful discussions, to two anonymous reviewers 
for helpful comments on the manuscript, and to Janice Taylor for 
running the subjects. 

A P P E N D I X  

Derivation of the Axes of the Equiprobable Ellipse of a Bivariate 
Gaussian 

We consider without loss of generality a bivariate gaussian with two 

equal standard deviations of unity and correlation coefficient r. Each 
equiprobable contour has the form 

( l ~ ) ( a ~ + a 2 _ 2 r a l a 2 ) = c 2  ( a l )  

for some constant probability c 2. Now take the change of variables 

u = a l  q-a2 
(A2) 

v = a I a2~  

which rotates the coordinate frame by 45 deg. (A1) can be rewritten 
a s  

which simplifies to 

1 - - r  [ 1 + r  ] 2 
(A4) 

The canonic form of an ellipse with principal axes ~ and fl is 

U 2 V 2 
+ ~ = c 2. (A5) 

Hence, the equiprobable contour is an ellipse with principal axes 

~/2(~ - r 2 )  (A6) 
- - r  

pointing in the al+a2 and a l - a2  directions, respectively. The ratio of 
the two axes (the aspect ratio of the ellipse) is thus 

~ = ~ / i  + r  (A8) 
,L~ - -  r"  


