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1. Introduction

In this paper we focus on algebraic connections between the two following kinds of multiple zeta
values:

ζ(k) =
∑

m1>m2>···>mr>0

1

mk1
1 mk2

2 · · ·mkr
r

, ζ �(k) =
∑

m1�m2�···�mr�1
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2 · · ·mkr
r

,
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where k = (k1,k2, . . . ,kr) is an index set of positive integers with k1 > 1. The number r is called depth
and

∑
ki weight of the index set. These series converge and define real numbers called multiple zeta

values (MZVs) and multiple zeta-star values (MZSVs), respectively. In the beginning, L. Euler studied the
properties of MZSVs rather than MZVs in the special case r = 2 [7], but MZVs have been studied more
popularly than MZSVs in the last few decades.

Since the product of MZVs can be expressed as a Z-linear combination of MZVs of the same weight
(in two ways: the so-called “harmonic product” and “shuffle product”), the space generated by MZVs
forms an algebra over Q. One of the crucial problems in this area is to understand the structure of
the algebra, which is related to the central problem about the periods of mixed Tate motives, but it is
still not clarified. The algebra generated by MZSVs coincides with that generated by MZVs, since one
can easily see that MZSVs can be written as Z-linear combinations of MZVs and vice versa. This fact
also allows us to translate relations among MZVs to those among MZSVs and vice versa.

From the viewpoint of algebra structure, the MZVs and MZSVs merely give different basis sets,
but in this paper we show that the translation law between these two generating sets has a quite
interesting algebraic property. As a main result it is shown in Section 2.1 that the translation law has
a compatibility with the harmonic product in a general setting.

We also discuss properties of q-analogue of MZ(S)Vs:

ζq(k) :=
∑

m1>···>mr>0

r∏
i=1

qmi(ki−1)

[mi]ki
, ζ �

q (k) :=
∑

m1�···�mr�1

r∏
i=1

qmi(ki−1)

[mi]ki
(1)

where k is the same as above, [m] := (1 − qm)/(1 − q) is a q-integer for |q| < 1. They are also written
as power series of q which converge in the unit disc. These series converge and have respectively
ζ(k) and ζ(k) as limits as q → 1. In the same way as above, one can consider the algebra generated
by qMZVs over Q[q] (which eventually agrees with that generated by qMZSVs by the same reason
as above) and its harmonic product. For basic properties of these values see [25,5,22]. It is worth
mentioning that the product may not preserve the weight and one has no natural shuffle product in
q-analogue case. In this way the MZ(S)Vs and their q-analogues may not have common properties.
But in the present paper we will introduce a method to handle them and their harmonic products at
the same time.

This paper is organized as follows. In Section 2.1, we introduce a non-commutative free algebra h1,
which corresponds to the formal space of (q)MZVs or (q)MZSVs, to describe the harmonic products
and the translation law S by algebraic words. Originally such algebraic setup was introduced by Hoff-
man in the case of MZVs [10] and the presentation of harmonic product of MZV in terms of “circle
product” was discussed in [14]. The setup in Section 2 generalizes them by introducing an extended
circle product and allows us to treat MZ(S)V and qMZ(S)V in parallel and describe the harmonic
products not only for MZ(S)Vs but for qMZ(S)Vs. In Section 2.2, we generalize the formulas which
are obtained in [14,17,9,5,26,4] by several authors. In Section 3 and Section 4, we discuss some topics
related to Section 2: Finding a linear basis of the space of MZVs may be an exciting problem. Hoffman
indicates a conjectural basis ζ(k1, . . . ,kr) with ki ∈ {2,3} in [10]. In Section 3 we argue an analogous
conjecture in case of MZSVs and show several evidence by concrete examples. The cyclic sum formu-
las for qMZVs and qMZSVs are proved in [5,20]. The equivalence of these two formulas was not clear
at all. In Section 4, we prove that these formulas are equivalent in natural sense by using a property
of the translation map S .

2. Harmonic algebras

As mentioned in the Introduction, one can easily show that the product of two MZVs (resp. MZSVs,
qMZVs, qMZSVs) can be expressed as a linear combination of MZVs (resp. MZSVs, qMZVs, qMZSVs)
by interchanging the order of summation in the defining series of each value. Such an expression is
called the harmonic product of these values. For example,

ζq(k1)ζq(k2) = ζq(k1,k2) + ζq(k2,k1) + ζq(k1 + k2) + (1 − q)ζq(k1 + k2 − 1),



K. Ihara et al. / Journal of Algebra 332 (2011) 187–208 189
ζ �
q (k1)ζ

�
q (k2) = ζ �

q (k1,k2) + ζ �
q (k2,k1) − ζ �

q (k1 + k2) − (1 − q)ζ �
q (k1 + k2 − 1).

(One gets the equalities in cases of MZVs and MZSVs respectively by letting q approach 1.)
To express the harmonic product for MZVs formally, an algebraic formulation called harmonic al-

gebra was defined by Hoffman [10] and an effective description of the product in terms of “circle
product” was introduced by Ihara, Kaneko and Zagier [14].

In the first subsection, we generalize the definition of harmonic algebra by introducing an ex-
tended circle product. This idea comes from the result in [14] and [11]. Consequently we can treat
the harmonic products for MZ(S)Vs and qMZ(S)Vs simultaneously. We also introduce two isomor-
phisms S and T and show that both satisfy the compatibility for harmonic products. In the second
subsection, as applications of the first subsection, we generalize the established relations for (q)MZVs
and (q)MZSVs to generalized harmonic algebras.

2.1. Definitions and properties

To extend the definition of harmonic product, we generalize the algebraic formulation defined in
[10,14,11,19] as follows.

Let h1 be a non-commutative polynomial algebra generated by a set A of letters over a commuta-
tive Q-algebra A, and z be the A-submodule of h1 generated by A. Suppose that z has an A-algebra
structure (not necessarily unitary) with associative commutative product ◦ (say the circle product).
Even if z has the unit element, we specify that z acts on scalars in h1 as 0-maps for convenience.
Note that h1 possesses a grading by regarding the elements of A as degree 1. The induced ascending
filtration (sequence of ascending A-submodules) is called depth filtration, which corresponds to the
depth of MZVs (and other values) in the examples below.

On h1 we define A-bilinear products ∗ and � with respect to ◦ recursively as follows: Assume that
1 ∈ h1 is the unit for each product and define the products inductively by

(aw1) ∗ (bw2) := a(w1 ∗ bw2) + b(aw1 ∗ w2) + (a ◦ b)(w1 ∗ w2),

(aw1) � (bw2) := a(w1 � bw2) + b(aw1 � w2) − (a ◦ b)(w1 � w2),

for all a,b ∈ A and any words (monic monomial elements) w1, w2 ∈ h1, and then extending by
A-bilinearity. The products ∗ and � are associative and commutative because of the associativity and
commutativity of ◦. We denote the algebras (h1,+,∗) and (h1,+, �) by h1∗ and h1

� respectively. These
define filtered algebras, since both of products are compatible with the depth filter. Both are called
“harmonic algebras” in this paper. We consider h1 as a left z-module by

a ◦ (bw) = (a ◦ b)w and a ◦ 1 = 0

for a,b ∈ A and any words w ∈ h1, and extending by A-linearity.

Example 1. The harmonic algebras are originally defined in [10] for h1∗ (and in [19] for h1
� ), to express

formally the “harmonic products” of multiple zeta values.
We set A = {zk}∞k=1 and A = Q, and consider the non-commutative polynomial algebra h1 gener-

ated by A over Q. Define the harmonic products ∗ and � on h1 with respect to the ◦-product defined
by

zk1 ◦ zk2 = zk1+k2 .

Then h1 becomes commutative algebras h1∗ , h1
� for both products and the subspace h0 defined by

h0 := A ⊕
∞⊕

zk h1 ⊂ h1
k=2
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becomes the subalgebra for both products. Defining Q-linear maps ζ and ζ � by

ζ : h0∗ → R; zk1 · · · zkr 	→ ζ(k1, . . . ,kr), 1 	→ 1,

ζ � : h0
� → R; zk1 · · · zkr 	→ ζ �(k1, . . . ,kr), 1 	→ 1,

then these maps are algebra homomorphisms:

ζ(w1 ∗ w2) = ζ(w1)ζ(w2), ζ �(w1 � w2) = ζ �(w1)ζ
�(w2).

Example 2. We set A = {zk}∞k=1 as in Example 1, and set A = Q[1 − q] and

zk1 ◦ zk2 = zk1+k2 + (1 − q) zk1+k2−1.

Let ζq and ζ �
q be A-linear maps defined by

ζq : h0∗ → Q�q�; zk1 · · · zkr 	→ ζq(k1, . . . ,kr), 1 	→ 1,

ζ �
q : h0

� → Q�q�; zk1 · · · zkr 	→ ζ �
q (k1, . . . ,kr), 1 	→ 1.

Then these maps are algebra homomorphisms:

ζq(w1 ∗ w2) = ζq(w1)ζq(w2), ζ �
q (w1 � w2) = ζ �

q (w1)ζ
�
q (w2).

MZVs (resp. qMZVs) are Q-linear (resp. Q[1−q]-linear) combinations of MZSVs (resp. qMZSVs) and
vice versa. Consequently these values generate the same space over Q (resp. Q[1 − q]). It is natural
to introduce the following map to describe the relations between these two kinds of values. This map
has been introduced by many authors in slightly different contexts (e.g. [11,16,18,23]).

Definition 1. We define an A-linear map S : h1 → h1 recursively as follows:{
S(1) = 1,

S(aw) = aS(w) + a ◦ S(w) for a ∈ A and w ∈ h1.
(2)

From the recurrence relation, it is shown that S satisfies S(a) = a for a ∈ A and preserves the
depth filtration:

S(a1 · · ·ar) = a1 · · ·ar + (lower depth terms).

In particular S gives an A-linear isomorphism. We show this again in Proposition 1 below by con-
structing S−1 explicitly.

Example 3. Under the situation in Example 1, the following diagram commutes:

h0
�

S

ζ �

h0∗

ζ

R

� .

Furthermore, under the situation in Example 2, the next diagram commutes (cf. Eq. (14) in Section 4):
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h0
�

S

ζ �
q

h0∗

ζq

Q�q�

� .

Proposition 1. S is a z-linear map, i.e.

a ◦ S(w) = S(a ◦ w).

Moreover S is an A-linear isomorphism and the inverse S−1 is given by{
S−1(1) = 1,

S−1(aw) = aS−1(w) − a ◦ S−1(w) for a ∈ A and w ∈ h1.
(3)

Proof. For a,b ∈ A and w ∈ h1,

a ◦ S(bw) = a ◦ (
bS(w) + b ◦ S(w)

) = (a ◦ b)S(w) + (a ◦ b) ◦ S(w)

= S
(
(a ◦ b)w

) = S
(
a ◦ (bw)

)
.

The function S−1 defined in the statement is inverse to S since by induction on depth

S
(

S−1(aw)
) = S

(
aS−1(w) − a ◦ S−1(w)

)
= aS

(
S−1(w)

) + a ◦ S
(

S−1(w)
) − a ◦ S

(
S−1(w)

)
= aw,

and vice versa. �
It is not difficult to show by induction that

S(a1 · · ·ar) =
r∑

d=1

∑
r1+···+rd=r

∀r•�1

( r1︷ ︸︸ ︷
a1 ◦ · · · ◦ ar1

)( r2︷ ︸︸ ︷
ar1+1 ◦ · · · ◦ ar1+r2

) · · · ( rd︷ ︸︸ ︷
a• ◦ · · · ◦ ar

)
,

S−1(a1 · · ·ar) =
r∑

d=1

∑
r1+···+rd=r

∀r•�1

(−1)n−d( r1︷ ︸︸ ︷
a1 ◦ · · · ◦ ar1

)( r2︷ ︸︸ ︷
ar1+1 ◦ · · · ◦ ar1+r2

) · · · ( rd︷ ︸︸ ︷
a• ◦ · · · ◦ ar

)
.

Theorem 1. The map S : h1
� → h1∗ is an algebra isomorphism, i.e.,

S(w1 � w2) = S(w1) ∗ S(w2) for w1, w2 ∈ h1.

Lemma 1. For a,b ∈ A, and w1, w2 ∈ h1 we have

a ◦ (w1 ∗ bw2) = (a ◦ w1) ∗ bw2 − b
(
(a ◦ w1) ∗ w2

) + (a ◦ b)(w1 ∗ w2),

a ◦ (w1 � bw2) = (a ◦ w1) � bw2 − b
(
(a ◦ w1) � w2

) + (a ◦ b)(w1 � w2).
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Proof. For a,b, c ∈ A and w1, w2 ∈ h1,

a ◦ (cw1 ∗ bw2) = a ◦ (
c(w1 ∗ bw2) + b(cw1 ∗ w2) + (c ◦ b)(w1 ∗ w1)

)
= (a ◦ c)(w1 ∗ bw2) + (a ◦ b)(cw1 ∗ w2) + (a ◦ c ◦ b)(w1 ∗ w1)

= (
(a ◦ c)w1

) ∗ bw2 − b
(
(a ◦ c)w1 ∗ w2

) + (a ◦ b)(cw1 ∗ w2).

The second equation can be proved in the same manner. �
Lemma 2. For a1,a2 ∈ A, and w1, w2 ∈ h1 we have

(a1 ◦ w1) ∗ (a2 ◦ w2) = a1 ◦ (w1 ∗ a2 ◦ w2) + a2 ◦ (a1 ◦ w1 ∗ w2) − (a1 ◦ a2) ◦ (w1 ∗ w2),

(a1 ◦ w1) � (a2 ◦ w2) = a1 ◦ (w1 � a2 ◦ w2) + a2 ◦ (a1 ◦ w1 � w2) − (a1 ◦ a2) ◦ (w1 � w2).

Proof. One can check these easily by applying the recursive relation for ∗ (resp. �) to both sides of
the first (resp. the second) equation. �
Proof of Theorem 1. The proof proceeds by induction on the sum of depths of w1 and w2. The left
hand side is expanded as

S(a1 w1 � a2 w2)

= S
(
a1(w1 � a2 w2) + a2(a1 w1 � w2) − (a1 ◦ a2)(w1 � w2)

)
= {

a1 S(w1 � a2 w2) + a1 ◦ S(w1 � a2 w2)
} + {

a2 S(a1 w1 � w2)

+ a2 ◦ S(a1 w1 � w2)
} − {

(a1 ◦ a2)S(w1 � w2) + (a1 ◦ a2) ◦ S(w1 � w2)
}

= a1
(

S(w1) ∗ S(a2 w2)
) + a1 ◦ (

S(w1) ∗ S(a2 w2)
) + a2

(
S(a1 w1) ∗ S(w2)

)
+ a2 ◦ (

S(a1 w1) ∗ S(w2)
) − (a1 ◦ a2)

(
S(w1) ∗ S(w2)

) − (a1 ◦ a2) ◦ (
S(w1) ∗ S(w2)

)
= {

a1
(

S(w1) ∗ a2 S(w2)
) + a1

(
S(w1) ∗ a2 ◦ S(w2)

)} + {
a1 ◦ (

S(w1) ∗ a2 S(w2)
)

+ a1 ◦ (
S(w1) ∗ a2 ◦ S(w2)

)} + {
a2

(
a1 S(w1) ∗ S(w2)

) + a2
(
a1 ◦ S(w1) ∗ S(w2)

)}
+ {

a2 ◦ (
a1 S(w1) ∗ S(w2)

) + a2 ◦ (
a1 ◦ S(w1) ∗ S(w2)

)}
− (a1 ◦ a2)

(
S(w1) ∗ S(w2)

) − (a1 ◦ a2) ◦ (
S(w1) ∗ S(w2)

)
= a1

(
S(w1) ∗ a2 S(w2)

) + a1
(

S(w1) ∗ a2 ◦ S(w2)
) + {

a1 ◦ S(w1) ∗ a2 S(w2)

− a2
(
a1 ◦ S(w1) ∗ S(w2)

) + (a1 ◦ a2)
(

S(w1) ∗ S(w2)
)} + a1 ◦ (

S(w1) ∗ a2 ◦ S(w2)
)

+ a2
(
a1 S(w1) ∗ S(w2)

) + a2
(
a1 ◦ S(w1) ∗ S(w2)

) + {
a1 S(w1) ∗ a2 ◦ S(w2)

− a1
(

S(w1) ∗ a2 ◦ S(w2)
) + (a1 ◦ a2)

(
S(w1) ∗ S(w2)

)} + a2 ◦ (
a1 ◦ S(w1) ∗ S(w2)

)
− (a1 ◦ a2)

(
S(w1) ∗ S(w2)

) − (a1 ◦ a2) ◦ (
S(w1) ∗ S(w2)

)
= a1

(
S(w1) ∗ a2 S(w2)

) + a1 ◦ S(w1) ∗ a2 S(w2) + a1 ◦ (
S(w1) ∗ a2 ◦ S(w2)

)
+ a2

(
a1 S(w1) ∗ S(w2)

) + a1 S(w1) ∗ a2 ◦ S(w2) + (a1 ◦ a2)
(

S(w1) ∗ S(w2)
)

+ a2 ◦ (
a1 ◦ S(w1) ∗ S(w2)

) − (a1 ◦ a2) ◦ (
S(w1) ∗ S(w2)

)
.
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On the other hand,

S(a1 w1) ∗ S(a2 w2) = (
a1 S(w1) + a1 ◦ S(w1)

) ∗ (
a2 S(w2) + a2 ◦ S(w2)

)
= a1

(
S(w1) ∗ a2 S(w2)

) + a2
(
a1 S(w1) ∗ S(w2)

) + (a1 ◦ a2)
(

S(w1) ∗ S(w2)
)

+ a1 S(w1) ∗ a2 ◦ S(w2) + a1 ◦ S(w1) ∗ a2 S(w2) + a1 ◦ S(w1) ∗ a2 ◦ S(w2).

So we should show that

a1 ◦ (
S(w1) ∗ a2 ◦ S(w2)

) + a2 ◦ (
a1 ◦ S(w1) ∗ S(w2)

)
− (a1 ◦ a2) ◦ (

S(w1) ∗ S(w2)
) = a1 ◦ S(w1) ∗ a2 ◦ S(w2).

By using the first equation of Lemma 2, one can check immediately this equation. �
Definition 2. We define the algebra involution T on h1 with respect to the ordinary product by

T (a) = −a for any a ∈ A.

Proposition 2. T : h1∗ → h1
� is an algebra isomorphism. Moreover we have

T (a ◦ w) = a ◦ T (w), (ST)2 = idh1∗ , (TS)2 = idh1
�
,

where a ∈ A and w ∈ h1 .

Remark. The map ST also appears in Section 2 of [12] and the fact that ST is an algebra isomorphism
is proved in a slightly less general setting.

Proof of Proposition 2. It is easy to see that T is an isomorphism and is z-linear. STST(a) = a and

STST(aw) = STS
(−aT (w)

) = ST
(−a ST(w) − a ◦ ST(w)

)
= S

(
a TST(w) − a ◦ TST(w)

)
= a STST(w) + a ◦ STST(w) − a ◦ STST(w) = aw,

where the last equation is true, because of the induction hypothesis on depth. �
2.2. Applications

The equations in harmonic algebra induce the relations of multiple zeta values and so on. What
kinds of relations are there in the harmonic algebras? In this subsection we will show that the equa-
tions stated in [14,18,9,5,22] are still true in our generalized setting.

Proposition 3 (A version of Corollary 1 of [14]). For z ∈ z, we have

1 = exp∗
(
log◦(1 − zλ)

)
and

1 = exp�

(− log◦(1 − zλ)
)
,

1 + zλ 1 − zλ
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where λ is a formal parameter which commutes with h1 and

exp∗(X) =
∞∑

n=0

n︷ ︸︸ ︷
X ∗ · · · ∗ X

n! , exp�(X) =
∞∑

n=0

n︷ ︸︸ ︷
X � · · · � X

n! , − log◦(1 − X) =
∞∑

n=1

n︷ ︸︸ ︷
X ◦ · · · ◦ X

n
.

Proof. The former expression is completely the same as Corollary 1 in [14] under the situation of
Example 1. In this situation, the argument in [14] works in the same way. Applying the algebra
isomorphism T to the former equation, we can get the latter one. �
Corollary 1. For z ∈ z, we have

S

(
1

1 − zλ

)
∗

(
1

1 + zλ

)
= 1.

Corollary 2. For z ∈ z, we have

zλ

(1 − zλ)2
=

(
zλ

1 + zλ

)
◦
∗ 1

1 − zλ
,

zλ

(1 − zλ)2
=

(
zλ

1 − zλ

)
◦
�

1

1 − zλ
,

where

(
zλ

1 + zλ

)
◦
=

∞∑
n=1

(−1)n(zλ)◦n.

Proof. Differentiate Proposition 3 with respect to λ. �
Example 4. Suppose the same condition as in Example 2. Applying ζq and ζ �

q to the identities in
Proposition 3 for z = zk (k � 2), we have

1 +
∞∑

r=1

(−1)rζq
({k}r

)
λr = exp

(
−

∞∑
r=1

{
r−1∑
j=0

(
r − 1

j

)
(1 − q) jζq(rk − j)

}
λr

r

)
,

1 +
∞∑

r=1

ζ �
q

({k}r
)
λr = exp

( ∞∑
r=1

{
r−1∑
j=0

(
r − 1

j

)
(1 − q) jζq(rk − j)

}
λr

r

)
, (4)

where {k}r means r-tuple of k’s. In the same way, applying ζq and ζ �
q to the identities in Corollary 2,

we obtain

rζq
({k}r

) =
r∑

i=1

(−1)i+1ζq
({k}r−i

) i−1∑
j=0

(
i − 1

j

)
(1 − q) jζq(ik − j),

rζ �
q

({k}r
) =

r∑
i=1

ζq
({k}r−i

) i−1∑
j=0

(
i − 1

j

)
(1 − q) jζq(ik − j).

The former is also stated in Theorem 1 of [5]. After taking a limit q → 1 − 0, these give the relations
among MZVs and MZSVs.
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Eq. (5) below generalizes Theorem 6 of [18].

Proposition 4. For a,b ∈ z, we have

S

(
1

1 − abλ

)
=

(
1

1 − ab λ

)
∗ S

(
1

1 − a ◦ bλ

)
,

S−1
(

1

1 − abλ

)
=

(
1

1 − ab λ

)
� S−1

(
1

1 + a ◦ bλ

)
. (5)

In particular,

S
(
(ab)n) =

∑
i+ j=n
i, j�0

(ab)i ∗ S
(
(a ◦ b) j).

Lemma 3. For a ∈ z,

S
(
(1 − a λ)−1) = (

1 − f (a)
)−1

, (6)

where

f (a) :=
∞∑

n=1

a◦nλn = (1 − aλ)◦(−1) − 1 ∈ z�λ�, a ∈ z.

Proof. We set X and Y equal to the left and right hand sides of Eq. (6), respectively. From the
definition of S ,

X = 1 + (a X + a ◦ X)λ.

On the other hand, by substituting Y = 1 + f (a)Y , we obtain

(aY + a ◦ Y )λ = aY λ + a ◦ (
1 + f (a)Y

)
λ = (

a + a ◦ f (a)
)
Y λ

= f (a)Y = Y − 1.

So both X and Y are the members of h1 �λ� satisfying the same relation and having the constant
part 1. Hence X = Y . �
Proof of Proposition 4. The second equation is implied by (5) and Corollary 1. We put w = a ◦ b and
A := f (w) = ∑∞

n=1 w◦n . We shall show that the both sides of (5) are equal to

X := (
1 − A − (a + a ◦ A)(1 − A)−1(b + A ◦ b)λ

)−1
.

The left hand side of (5) is

S

( ∞∑
i=0

(ab)iλi

)
= 1 + λ

{
ab

(
S

( ∞∑
i=0

(ab)iλi

))
+ a

(
b ◦ S

( ∞∑
i=0

(ab)iλi

))

+ a ◦ b

(
S

( ∞∑
(ab)iλi

))
+ a ◦ b ◦ S

( ∞∑
(ab)iλi

)}
,

i=0 i=0
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therefore Y = S( 1
1−ab λ

) satisfies the following.

Y = 1 + (
(ab)Y + (a ◦ b)Y + a(b ◦ Y ) + a ◦ b ◦ Y

)
λ.

We shall see that X also satisfies the same equality. By the definition of X ,

X = 1 + (
A + (a + a ◦ A)(1 − A)−1(b + A ◦ b)λ

)
X .

So we have

a(b ◦ X) = a
(
b ◦ (

1 + (
A + (a + a ◦ A)(1 − A)−1(b + A ◦ b)λ

)
X
))

= a(A ◦ b)X + a
(
(a ◦ b)λ + (a ◦ b)λ ◦ A

)
(1 − A)−1(b + A ◦ b)X

= a(A ◦ b)X + aA(1 − A)−1(b + A ◦ b)X

and

(a ◦ b) ◦ X = a ◦ b ◦ (
1 + (

A + (a + a ◦ A)(1 − A)−1(b + A ◦ b)λ
)

X
)

= (a ◦ b ◦ A)X + (a ◦ b ◦ aλ + a ◦ b ◦ aλ ◦ A)(1 − A)−1(b + A ◦ b)X

= (a ◦ b ◦ A)X + (a ◦ A)(1 − A)−1(b + A ◦ b)X .

Adding all these up, we get

(
(ab)X + (a ◦ b)X + a(b ◦ X) + a ◦ b ◦ X

)
λ

= (ab)Xλ + (a ◦ b)Xλ + a(A ◦ b)Xλ + aA(1 − A)−1(b + A ◦ b)Xλ

+ (a ◦ b ◦ A)Xλ + (a ◦ A)(1 − A)−1(b + A ◦ b)Xλ

= a(b + A ◦ b)Xλ + aA(1 − A)−1(b + A ◦ b)Xλ

+ A X + (a ◦ A)(1 − A)−1(b + A ◦ b)λ

= A X + a(1 − A)−1(b + A ◦ b)Xλ + (a ◦ A)(1 − A)−1(b + A ◦ b)Xλ

= (
A + (a + a ◦ A)(1 − A)−1(b + A ◦ b)λ

)
X

= X − 1.

Since X and Y satisfy the same equality, and the equality uniquely characterizes the series, we obtain
X = Y .

Next, we shall see that the right hand side of equality (5) equals X . If we put B and C as

B := (1 − abλ)−1, C := (1 − A)−1,

then by the equality (6), the right hand side of (5) can be written as B ∗ C . We have

B ∗ C = (1 + ab Bλ) ∗ (1 + AC)

= 1 + ab Bλ + AC +ab B ∗ AC λ. (7)
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Using B = 1 + ab Bλ, C = 1 + AC, the last term of the above equality becomes

ab B ∗ AC λ = a(bB ∗ AC)λ + A(ab B ∗ C)λ + (a ◦ A)(bB ∗ C)λ

= a(bB ∗ AC)λ + A(ab B ∗ C)λ + (a ◦ A)(bB ∗ C)λ

= a
(

B ′ ∗ C
)
λ − ab Bλ + A(B ∗ C) − AC +(a ◦ A)

(
B ′ ∗ C

)
λ

= −ab Bλ + A(B ∗ C) − AC +(a + a ◦ A)
(

B ′ ∗ C
)
λ,

where we put B ′ := bB . Substituting the above identity into (7), we have

(1 − A)B ∗ C = 1 + (a + a ◦ A)
(

B ′ ∗ C
)
λ. (8)

By a similar argument,

B ′ ∗ C = bB ∗ (1 + AC)

= bB + b(B ∗ AC) + A(bB ∗ C) + (A ◦ b)(B ∗ C)

= b(B ∗ C) + A
(

B ′ ∗ C
) + (A ◦ b)(B ∗ C)

= A
(

B ′ ∗ C
) + (b + A ◦ b)(B ∗ C).

Therefore

(1 − A)B ′ ∗ C = (b + A ◦ b)(B ∗ C). (9)

Solving Eqs. (8) and (9) thus we obtain

B ∗ C = (
1 − A − (a + a ◦ A)(1 − A)−1(b + A ◦ b)λ

)−1 = X . �
The following proposition generalizes Theorems 2.1 and 2.2 of [9], Eqs. (16) and (17) of [12], and

Theorem 3 of [5].

Proposition 5. For ai ∈ z, we have

∑
σ∈Sr

aσ (1) · · ·aσ (r) =
∑

C={C}⊔
C={1,...,r}

(−1)r−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)
,

∑
σ∈Sr

aσ (1) · · ·aσ (r) =
∑

C={C}⊔
C={1,...,r}

�
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)
,

where the sum of the right hand side runs over all partitions {C} of the set {1, . . . , r}, |C| means the number
of the classes of C , and ◦,∗ and � mean products which run over the subscript with respect to ◦,∗ and �

respectively.
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Proof. It is enough to show the former equation since the latter one is proved from that by apply-
ing T . We proceed by induction on r. It is obvious when r = 1. From the induction hypothesis, we
assume that

∑
σ∈Sr−1

aσ (1) · · ·aσ (r−1) =
∑

C={C}⊔
C={1,...,r−1}

(−1)r−1−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)
.

Multiplying ar by the left hand side, we have

ar ∗
∑

σ∈Sr−1

aσ (1) · · ·aσ (r−1)

=
∑

σ∈Sr

aσ (1) · · ·aσ (r) +
r−1∑
i=1

∑
σ∈Sr−1

aσ (1) · · · (ar ◦ aσ (i)) · · ·aσ (r−1)

=
∑

σ∈Sr

aσ (1) · · ·aσ (r)

+
∑

C={C}⊔
C={1,...,r−1}

(−1)r−1−|C| ∑
D∈C

(|D| − 1
)!(∑

i∈D

ai ◦ ◦
j∈D
j �=i

a j

)
∗ ∗

C∈C
C �=D

(|C | − 1
)!( ◦

j∈C
a j

)

=
∑

σ∈Sr

aσ (1) · · ·aσ (r) +
∑

C={C}⊔
C={1,...,r}

r∈C⇒|C |�2

(−1)r−1−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)
.

Then the right hand side becomes

ar ∗
∑

C={C}⊔
C={1,...,r−1}

(−1)r−1−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)

=
∑

C={C}⊔
C={1,...,r}

r∈C⇒|C |=1

(−1)r−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)
.

Thus we have,

∑
σ∈Sr

aσ (1) · · ·aσ (r) =
∑

C={C}⊔
C={1,...,r}

r∈C⇒|C |=1

(−1)r−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)

−
∑

C={C}⊔
C={1,...,r}

r∈C⇒|C |�2

(−1)r−1−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)

=
∑

C={C}⊔
C={1,...,r}

(−1)r−|C| ∗
C∈C

(|C | − 1
)!( ◦

j∈C
a j

)
. �
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Proposition 6. (See [26,11].) For ai ∈ z, we have

r∑
i=0

(a1a2 · · ·ai) ∗ S(arar−1 · · ·ai+1) = 0,

r∑
i=0

(a1a2 · · ·ai) � S−1(arar−1 · · ·ai+1) = 0. (10)

Proof. We show this by induction on r. In the same way as (4) of [18], iterating the definition of S ,
we have,

S(ar · · ·ai+1) = ar S(ar−1 · · ·ai+1) + S
(
(ar ◦ ar−1)ar−2 · · ·ai+1

)
= ar S(ar−1 · · ·ai+1) + (ar ◦ ar−1)S(ar−2 · · ·ai+1) + S

(
(ar ◦ ar−1 ◦ ar−2)ar−3 · · ·ai+1

)
= · · ·

=
r−i−1∑

j=0

(ar− j ◦ · · · ◦ ar− j) · S(ar− j−1 · · ·ai+1).

Substituting the above and using the definition of ∗, the right hand side of (10) is

r∑
i=0

(−1)i(a1 · · ·ai) ∗ S(ar · · ·ai+1)

= S(ar · · ·a1) +
r−1∑
i=1

(−1)i(a1 · · ·ai) ∗
{

r−i−1∑
j=0

(ar ◦ · · · ◦ ar− j) · S(ar− j−1 · · ·ai+1)

}

+ (−1)ra1 · · ·ar

= S(ar · · ·a1) +
r−1∑
i=1

r−i−1∑
j=0

(−1)ia1
(
(a2 · · ·ai) ∗ (

(ar ◦ · · · ◦ ar− j) · S(ar− j−1 · · ·ai+1)
))

+
r−1∑
i=1

r−i−1∑
j=0

(−1)i(ar ◦ · · · ◦ ar− j)
(
(a1 · · ·ai) ∗ S(ar− j−1 · · ·ai+1)

)

+
r−1∑
i=1

r−i−1∑
j=0

(−1)i(ar ◦ · · · ◦ ar− j ◦ a1)
(
(a2 · · ·ai) ∗ S(ar− j−1 · · ·ai+1)

) + (−1)ra1 · · ·ar .

The second term is equal to

a1

r−1∑
i=1

(−1)i(a2a3 · · ·ai) ∗ S(arar−1 · · ·ai+1) = a1
(
0 − (−1)ra2a3 · · ·ar

) = (−1)r+1a1a2 · · ·ar .

Changing the order of the summation and using the induction hypothesis, the third term of the above
is

r−2∑
j=0

(ar ◦ ar−1 ◦ · · · ◦ ar− j) ·
( r− j−1∑

i=1

(−1)i(a1a2 · · ·ai) ∗ S(ar− j−1ar− j−2 · · ·ai+1)

)
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=
r−2∑
j=0

(ar ◦ ar−1 ◦ · · · ◦ ar− j) · (−S(ar− j−1ar− j−2 · · ·a1)
)

= −S(arar−1 · · ·a1) + ar ◦ ar−1 ◦ · · · ◦ a1.

In the same way, the fourth term is equal to

r−2∑
j=0

(−1)(ar ◦ · · · ◦ ar− j ◦ a1) · S(ar− j−1 · · ·a2)

+
r−1∑
i=2

r−i−1∑
j=0

(−1)i(ar ◦ · · · ◦ ar− j ◦ a1)
(
(a2 · · ·ai) ∗ S(ar− j−1 · · ·ai+1)

)

= −ar ◦ ar−1 ◦ · · · ◦ a1 +
r−3∑
j=0

r− j−1∑
i=1

(−1)i(ar ◦ · · · ◦ ar− j ◦ a1)
(
(a2 · · ·ai) ∗ S(ar− j−1 · · ·ai+1)

)
= −ar ◦ ar−1 ◦ · · · ◦ a1.

Summing these up we finish the proof. �
The next corollary is a generalization of Theorem 3.1 in [4] and Theorem 4 in [5].

Corollary 3.

a1 · · ·ar =
r∑

n=1

∑
{0=i0<i1<···<in=r}⊂{0,1,...,r}

(−1)r−n
n−1∗
j=0

S(ai j+1 · · ·ai j+1),

a1 · · ·ar =
r∑

n=1

∑
{0=i0<i1<···<in=r}⊂{0,1,...,r}

(−1)r−n
n−1

�
j=0

S−1(ai j+1 · · ·ai j+1). (11)

Proof. We proceed by induction on r. It is obvious for r = 1. Then the right hand side of (11) is

r∑
n=1

∑
{0=i0<i1<···<in=r}⊂{0,1,...,r}

(−1)r−n
n−1∗
j=0

S(ai j+1 · · ·ai j+1)

= S(ar) ∗
r−1∑
n=1

∑
{0=i0<i1<···<in=r−1}⊂{0,1,...,r−1}

(−1)r−1−n
n−1∗
j=0

S(ai j+1 · · ·ai j+1)

− S(arar−1) ∗
r−2∑
n=1

∑
{0=i0<i1<···<in=r−2}⊂{0,1,...,r−2}

(−1)r−2−n
n−1∗
j=0

S(ai j+1 · · ·ai j+1)

+ · · · + (−1)r−1 S(ar · · ·a1) ∗ 1

= S(ar) ∗ a1 · · ·ar−1 − S(arar−1) ∗ a1 · · ·ar−2 + · · · + (−1)r−1 S(arar−1 · · ·a1),

where the last equality is by the induction hypothesis. Substitute Proposition 6 and we have the
corollary. �
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3. Basis conjecture

Finding a standard linear basis of the Q-algebra Z generated by all MZVs is one of the interesting
problems. Conjecturally, the space Z is a direct sum of subspaces generated by MZVs of each weight.
Based on the coincidence between the conjectural dimension of the vector space (cf. [24]) and the
number of indices (k1, . . . ,kr) with ki ∈ {2,3} of weight k, M.E. Hoffman presented the basis conjec-
ture: Every MZV can be written uniquely as a sum of rational multiples of MZVs of the same weight
whose indices involve only 2’s and 3’s [10]. It seemed to be very difficult to show the conjecture, but
recently, Francis Brown [6] announced that he proved the conjecture except the uniqueness of the
expression. (The readers can also find related topics in [3] and [8].) As mentioned before, the space
of MZVs coincides with that of MZSVs. Can we present a similar conjecture on MZSVs?

In this section we state an analogous conjecture for MZSVs and show some evidence by several
examples.

Conjecture 1 ({2,3}-Basis conjecture for MZSVs). The multiple zeta-star values ζ �(k1, . . . ,kr) with ki ∈ {2,3}
for i = 1,2, . . . , r (r � 1) and 1 make up a basis of Z over Q.

Experimentally we have checked the reliability of the conjecture up to weight 16. We call the basis
in the conjecture “{2,3}-basis” in the rest.

Remark. Note that the equivalence among these basis conjectures for MZVs and MZSVs is not yet
certain. It is also hard to show the linear independence of the conjectured basis for both cases.

The main purpose of the present section is to show the following theorem.

Theorem 2. All Riemann zeta values ζ(k) with k � 2 can be written in terms of {2,3}-basis. Their complete
expression for any r ∈ N is as follows:

ζ(2r) = {
2
(
1 − 21−2r)}−1

ζ �
({2}r

)
,

ζ(2r + 1) = {
4r

(
1 − 2−2r)}−1

(
2

r∑
i=1

ζ �
({2}i−1,3, {2}r−i

) + ζ �
({2}r−1,3

))
.

Remark. The expression of ζ(2r) in the theorem is known by [26] and also a special case of the
formula in [2]. On the other hand ζ(2r + 1) is newly expressed by {2,3}-basis, and note that the
corresponding general expression of ζ(2r + 1) by Hoffman’s original basis is not yet known.

We prove the second formula in Theorem 2 by using the derivation relation [10,14] and the rela-
tions in [2,1]. First we review the former relations and translate them to those of MZSVs by means of
S . Next we review the latter class, then show Theorem 2.

For considering the derivation relation, here we review the definition of derivation ∂n . Let h =
Q〈x, y〉 be the non-commutative polynomial algebra over Q generated by x and y. For A = {zk}∞k=1
(the same setting as Example 1 in the previous section), we embed h1 to h by identifying zk =
xk−1 y. Then h1 and h0 are described by h1 = Q ⊕ hy and h0 = Q ⊕ xhy. These settings are originally
introduced in [10], and the map

xk1 yxk2 y · · · xkr y 	→ ζ(k1,k2, . . . ,kr)
(
resp. ζ �(k1,k2, . . . ,kr)

)
is nothing but the map ζ (resp. ζ �) defined in Example 1. For n ∈ N, define the derivation ∂n on h by

∂n(x) = x(x + y)n−1 y, ∂n(y) = −x(x + y)n−1 y.

In particular ∂n(x + y) = 0.
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Theorem 3 (Derivation relation). (See [14].) For any positive integer n,

∂n
(
h0) ⊂ ker ζ.

Under current situation, the map S defined in Definition 1 can be expressed as follows. We de-
fine S ′ as the algebra automorphism (with respect to the ordinary product) having S ′(x) = x and
S ′(y) = x + y. Then for wy ∈ h1, the linear map S is realized by S(wy) = S ′(w)y. The inverses S ′−1

and S−1 are given by S ′−1(x) = x, S ′−1(y) = −x + y and S−1(wy) = S ′−1(w)y.
For any word u in h0, we take li � 1 for i = 1,2,3, . . . , r such that u = xyl1−1xyl2−1 · · · xylr−1−1xylr ,

and we denote u = wl1 wl2 · · · wlr y by putting wl = xyl−1.

Theorem 4. For any positive integer n, we have S−1∂n S(h0) ⊂ ker ζ � . More explicitly, we have

ζ �

(
r∑

i=1

wl1 · · · wli−1 wli+n wli+1 · · · wlr y −
r+1∑
i=1

wl1 · · · wli−1 wn wli wli+1 · · · wlr y

)
= 0,

for any integers li � 1 with i = 1,2,3, . . . , r and n � 1.

Proof. The first statement of Theorem 4 is obvious because of Theorem 3 and Example 3 in the
previous section. For the second statement, we study the action of S−1∂n S , precisely. The derivation
S ′−1∂n S ′ is characterized by

S ′−1∂n S ′(x) = xyn−1(y − x) and S ′−1∂n S ′(y) = 0.

For wl , the derivation acts as

S ′−1∂n S ′(wl) = S ′−1∂n S ′(xyl−1) = S ′−1∂n S ′(x)yl−1

= xyn−1(y − x)yl−1 = xyn+l−1 − xyn−1xyl−1

= wn+l − wn wl.

For any word u = wl1 wl2 · · · wlr y ∈ h0,

S−1∂n S(u) = S−1∂n S(wl1 wl2 · · · wlr y)

= S ′−1∂n S ′(wl1 wl2 · · · wlr )y + wl1 wl2 · · · wlr S−1∂n S(y)

=
(

r∑
i=1

wl1 · · · wli−1 S ′−1∂n S ′(wli )wli+1 · · · wlr

)
y + wl1 wl2 · · · wlr S−1∂n S(y)

=
r∑

i=1

wl1 · · · wli−1(wn+l − wn wl)wli+1 · · · wlr y − wl1 wl2 · · · wlr wn y.

Thus, the expression

r∑
i=1

wl1 · · · wli−1 wli+n wli+1 · · · wlr y −
r+1∑
i=1

wl1 · · · wli−1 wn wli wli+1 · · · wlr y

belongs to the kernel ker ζ � , because of the first statement. �
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Next, the following identity is also needed in the proof of Theorem 2.

Theorem 5. (See [2,1].) For any integers s > 0 and k � 2s, we have

∑
k

ζ �(k) = 2

(
k − 1

2s − 1

)(
1 − 21−k)ζ(k)

where the sum runs all admissible indices k = (k1,k2, . . .), i.e., k1 > 1 satisfying
∑

ki = k and #{i |
ki > 1} = s.

Now, we can prove Theorem 2.

Proof of Theorem 2. Specializing Theorem 4 to l1 = l2 = · · · = lr−1 = 2, lr = 1 and n = 1, we have

r∑
i=1

ζ �
({2}i−1,3, {2}r−i

) + ζ �
({2}r−1,3

) =
r∑

i=1

ζ �
({2}i,1, {2}r−i

)
. (12)

On the other hand, putting k = 2r + 1 and s = r, the identity in Theorem 5 becomes

r∑
i=1

ζ �
({2}i−1,3, {2}r−i

) +
r∑

i=1

ζ �
({2}i,1, {2}r−i

) = 4r
(
1 − 2−2r)ζ(2r + 1). (13)

Adding up each side of the equalities (12) and (13), we get

2
r∑

i=1

ζ �
({2}i−1,3, {2}r−i

) + ζ �
({2}r−1,3

) = 4r
(
1 − 2−2r)ζ(2r + 1).

For even weight, putting k = 2r and s = r, the identity in Theorem 5 becomes

ζ �
({2}r

) = 2
(
1 − 21−2r)ζ(2r).

Thus we obtain Theorem 2. �
Next, we consider the value ζ �({2k}r) for arbitrary k, r ∈ N. Using Proposition 3 and Euler’s formula

ζ(2k) = (−1)k−1(2π)2k B2k
2(2k)! , we get

1 +
∞∑

r=1

ζ �
({2k}r

)
xr = exp

( ∞∑
r=1

ζ(2kr)

r
xr

)

= exp

( ∞∑
r=1

(−1)kr−1(2π)2kr B2kr

2r(2kr)! xr

)
.

Comparing both sides of the above equality, we easily understand that ζ �({2k}r) is a rational multiple
of π2kr , or of ζ(2kr) for any k, r ∈ N, and thus the value can be written as a rational multiple of
ζ �({2}kr). Muneta [18] gives an explicit formula of the value ζ �({3,1}r), and it shows that ζ �({3,1}r)

is a rational multiple of π4r . So, ζ �({3,1}r) can also be written as a rational multiple of ζ �({2}2r). In-
cidentally, using the cyclic sum formula [21] of the multi-indices ({2, {1}m−1}r) and ({3}r) for arbitrary
m, r ∈ N, we obtain
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ζ �
({

2, {1}m−1
}

r,1
) = (m + 1)ζ

(
r(m + 1) + 1

)
,

ζ �
({3}r,1

) = 3ζ(3r + 1) − ζ �
(
2, {3}r−1,2

)
.

Therefore, for any positive integers k, m and r, the values ζ(k + 1), ζ �({2k}r), ζ �({3,1}r),
ζ �({2, {1}m−1}r,1) and ζ �({3}r,1) can be written in the {2,3}-basis over rationals.

4. Equivalence between cyclic sum formulas

The cyclic sum formulas (CSFs) are basic classes of linear relations among zeta value. The formulas
for MZVs, MZSVs, qMZVs and qMZSVs are established in [13,21,5] and [20], respectively. In this section
we will prove the equivalence in natural sense between CSFs for (q)MZVs and those for (q)MZSVs.
See [25,5] for basic properties about qMZVs. The contents in this section constitute a part of the
second author’s doctoral dissertation [15], however, the contents are improved. Recently Tanaka and
Wakabayashi [23] also proved the equivalence “for MZ(S)V case” by an elegant way.

Theorem 6 (CSFs for qMZ(S)Vs). (See [13,21,5,20].) For any admissible index set (k1, . . . ,kr), i.e., k1 > 1 of
weight k, and for |q| < 1, the following relations hold:

r∑
i=1

ki−2∑
j=0

ζq(ki − j,ki+1, . . . ,ki−1, j + 1) =
r∑

i=1

ζq(ki + 1,ki+1, . . . ,ki−1),

r∑
i=1

ki−2∑
j=0

ζ �
q (ki − j,ki+1, . . . ,ki−1, j + 1) =

r∑
l=0

tl(k − l)

(
r

l

)
ζ �

q (k + 1 − l)

where t := 1 − q and all subscripts of k• are regarded modulo r: ki+r = ki for any i. The inner sums of the LHSs
are treated as 0 when ki = 1.

The limit for q → 1 of these formulas give the CSFs for MZVs and MZSVs respectively. Note that
the RHS of second formula has terms of different weights and is not the same as

∑r
i=1 ζ �

q (ki + 1,

ki+1, . . . ,ki−1) in general, in spite of the name CSFs.
Recall the setting of Example 2 in Section 2. Let A = Q[t] be the algebra generated by t := 1 − q

over Q. Let h1 = A〈A〉 be the non-commutative polynomial algebra generated by A = {zk}∞k=1 over A,
h0 = A ⊕ ⊕∞

k=2 zkh
1 the subalgebra. z is the A-submodule of h1 generated by A. We have defined a

commutative product ◦ on z, called circle product, by zk ◦ zl = zk+l + tzk+l−1 and an A-homomorphism
S : h1 → h1 by (2) with respect to the circle product. ζq : h0 → R is the A-module homomorphism
defined by ζq(zk1 · · · zkr ) = ζq(k1, . . . ,kr). One can express the theorem by

(Ar)

r∑
i=1

ki−2∑
j=0

zki− j zki+1 · · · zki−1 z j+1 ≡
r∑

i=1

zki+1zki+1 · · · zki−1 ,

(Br)

r∑
i=1

ki−2∑
j=0

S(zki− j zki+1 · · · zki−1 z j+1) ≡
r∑

l=0

tl(k − l)

(
r

l

)
S(zk+1−l)

where ≡ means that the evaluation of both sides for ζq coincides.
In general qMZVs and qMZSVs are expressed by a linear combination of the other with coefficients

in A = Q[t]. For example one can show
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ζ �
q (k) =

∑
1�d�r

0�l�r−d

∑
r1+···+rd=r, ∀r•�1
l1+···+ld=l, ∀l•�0

tl
d∏

m=1

(
rm − 1

lm

)
ζq

(
k[r1]

1 − l1,k[r2]
r1+1 − l2, . . . ,k[rd]

r1+···+rd−1+1 − ld
)

(14)

where k[ j]
i := ki + ki+1 + · · · + ki+ j−1 ( j terms) and the binomial coefficients

(rm−1
lm

)
are zero unless

0 � lm � rm − 1. We use the notation k[0]
i := 0 for convenience later.

Therefore one can translate any linear relation among qMZSVs into that of qMZVs and vice versa.
The claim in this section is that any formula (relation) in the class of CSFs for qMZSVs is given by a
linear combination of formulas in the class of CSFs for qMZVs and vice versa. In other words, each
class of CSFs is proved from the other.

Theorem 7. The CSFs for qMZVs and qMZSVs are equivalent, namely, the A-submodule of h1 generated by the
equalities in (As) for all 1 � s � r (and for all admissible index sets) coincides with the A-submodule generated
by the equalities in (Bs) for all 1 � s � r.

It is easy to check Lemmas 4 and 5 below by induction on r. (Lemma 4 is true for general circle
product.) Lemma 6 will be proved later.

Lemma 4. We have S(zk1 · · · zkr ) = ∑r
a=1 zk1 ◦ · · · ◦ zka S(zka+1 · · · zkr ), and

S(zk1 · · · zkr ) = zk1 ◦ · · · ◦ zkr +
r−1∑
a=1

a−1∑
b=0

a−b︷ ︸︸ ︷
zk1 ◦ · · · ◦ zka−b S

( r−a−1︷ ︸︸ ︷
zka−b+1 · · · zkr−b−1

) b+1︷ ︸︸ ︷
zkr−b ◦ · · · ◦ zkr .

Lemma 5. We have zk1 ◦ · · · ◦ zkr = ∑r−1
c=0 tc

(r−1
c

)
zk[r]

1 −c .

Lemma 6. For 0 � s � a < r, 1 � i � r and given index set (k1, . . . ,kr), we have

s∑
b=0

∑
c,d�0

k[b+1]
i −d−2∑
j=k[b]

i −d

tc+d
(

a − b

c

)(
b

d

)
zk[a+1]

i − j−c−d S(zki+a+1 · · · zki−1)z j+1 (15)

=
∑

c,d�0

k[s+1]
i −d−2∑

j=0

tc+d
(

a − s

c

)(
s

d

)
z

k[a+1]
i − j−c−d

S(zki+a+1 · · · zki−1)z j+1 (16)

−
s−1∑
b=0

∑
c,d�0

tc+d
(

a − b − 1

c

)(
b

d

)
z

k[a−b]
i+b+1−c+1

S(zki+a+1 · · · zki−1)z
k[b+1]

i −d
, (17)

where ki+r = ki for any i and the 2nd term in RHS is zero if s = 0.

Proof of Theorem 7. Induction on r. We assume (As) for 1 � s � r and show (Br). By Lemma 4

LHS of (Br)

=
r∑

i=1

ki−2∑
j=0

zki− j ◦ zki+1 ◦ · · · ◦ zki−1 ◦ z j+1 (18)
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+
r∑

i=1

ki−2∑
j=0

r−1∑
a=0

a∑
b=0

a−b+1︷ ︸︸ ︷
zki− j ◦ zki+1 ◦ · · · ◦ zki+a−b S

( r−a−1︷ ︸︸ ︷
zki+a−b+1 · · · zki−b−1

) b+1︷ ︸︸ ︷
zki−b ◦ · · · ◦ zki−1 ◦ z j+1 .

(19)

Shifting the index i to i + b in (19) (the cyclic sum does not change), and applying Lemma 5, one has

(19) =
r∑

i=1

r−1∑
a=0

a∑
b=0

∑
c,d�0

ki+b−d−2∑
j=−d

tc+d
(

a − b

c

)(
b

d

)
z

k[a−b+1]
i+b − j−c−d

S(zki+a+1 · · · zki−1)z
k[b]

i + j+1
.

Shift j to j − k[b]
i and use Lemma 6 (for s = a), and shift i to i − b − 1 in 2nd term,

=
r∑

i=1

r−1∑
a=0

∑
d�0

k[a+1]
i −d−2∑

j=0

td
(

a

d

)
z

k[a+1]
i − j−d

S(zki+a+1 · · · zki−1)z j+1 (20)

−
r∑

i=1

r−1∑
a=1

a−1∑
b=0

∑
c,d�0

tc+d
(

a − b − 1

c

)(
b

d

)
z

k[a−b]
i −c+1

S(zki+a−b · · · zki−b−2)z
k[b+1]

i−b−1−d
. (21)

Use the induction hypothesis and apply Lemma 4 to (20), and Lemmas 4, 5 to (21),

(20) ≡
r∑

i=1

r−1∑
a=0

∑
d�0

td
(

a

d

)
z

k[a+1]
i −d+1 S(zki+a+1 · · · zki−1) =

r∑
i=1

S(zki+1zki+1 · · · zki−1),

(21) = −
r∑

i=1

r−1∑
a=1

a−1∑
b=0

a−b︷ ︸︸ ︷
zki+1 ◦ zki+1 ◦ · · · ◦ zki+a−b−1 S

( r−a−1︷ ︸︸ ︷
zki+a−b · · · zki−b−2

) b+1︷ ︸︸ ︷
zki−b−1 ◦ · · · ◦ zki−1

= −
r∑

i=1

[
S(zki+1zki+1 · · · zki−1) − zki+1 ◦ zki+1 ◦ · · · ◦ zki−1

]
.

By Lemma 5 again, these yield

(18) =
r∑

i=1

ki−2∑
j=0

zki− j ◦ zki+1 ◦ · · · ◦ zki−1 ◦ z j+1 =
∑

0�l�r

(k − r)tl
(

r

l

)
zk−l+1, (22)

(19) ≡
r∑

i=1

zki+1 ◦ zki+1 ◦ · · · ◦ zki−1 =
∑

0�l�r

(r − l)tl
(

r

l

)
zk−l+1. (23)

Hence we have finally LHS of (Br) ≡ (22) + (23) = RHS of (Br). The proof of the opposite implication
is almost the same. We omit the proof to save the space. �
Proof of Lemma 6. To show dependence on s, we attach s as a label to each of the sums in the
statement of Lemma 6, i.e., (15)s , (16)s and (17)s . We will show (15)s = (16)s + (17)s by induction
on s. When s = 0, it is clear that (15)s = (16)s . (Note (17)s = 0 in this case.) Next,
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(16)s − (16)s−1 =
∑

c,d�0

k[s+1]
i −d−2∑

j=0

(
a − s

c

)(
s

d

)
Z −

∑
c,d�0

k[s]
i −d−2∑

j=0

(
a − s + 1

c

)(
s − 1

d

)
Z , (24)

where we put Z = tc+d zk[a+1]
i − j−c−d S(zki+a+1 · · · zki−1 )z j+1 for simple notation. Substituting the recur-

sive relation
( s

d

) = ( s−1
d−1

) + (s−1
d

)
and

(a−s+1
c

) = (a−s
c−1

) + (a−s
c

)
to each term, (24) equals

∑
c,d

[ k[s+1]
i −d−2∑

j=0

(
a − s

c

)(
s − 1

d − 1

)
+

k[s+1]
i −d−2∑

j=0

(
a − s

c

)(
s − 1

d

)
−

k[s]
i −d−1∑

j=0

(
a − s

c

)(
s − 1

d − 1

)

−
k[s]

i −d−2∑
j=0

(
a − s

c

)(
s − 1

d

)]
Z ,

where we have replaced c 	→ c + 1, d 	→ d − 1 in 3rd term (Z does not change after all under this
operation). Add the 1st and 3rd terms, and 2nd and 4th terms then we have

=
∑
c,d

[ k[s+1]
i −d−2∑
j=k[s]

i −d

(
a − s

c

)(
s − 1

d − 1

)
+

k[s+1]
i −d−2∑

j=k[s]
i −d−1

(
a − s

c

)(
s − 1

d

)]
Z ,

=
∑
c,d

[ k[s+1]
i −d−2∑
j=k[s]

i −d

(
a − s

c

)(
s

d

)
+

∑
j=k[s]

i −d−1

(
a − s

c

)(
s − 1

d

)]
Z

= (
(15)s − (15)s−1

) − (
(17)s − (17)s−1

)
where we have used

( s−1
d−1

) + (s−1
d

) = ( s
d

)
. This completes the proof of Lemma 6. �
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