RESULTS
After Model of EAhY926 cell injured by homocysteine was made, we found that cultured with 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 mmol/L homocysteine, cells grew less than cultured with normal culture medium. Cells cultured with homocysteine 4.0 mmol/L for 24h was made to be the model of injury. To detect the effect of aconine on EAhY926 cell injured by homocysteine, well growing EAhY926 cells were cultured in culture plate. 24h later, cells were cultured with DMEM medium containing 2% fetal calf serum for 8 hours to make cells hungry, then cultured with medium containing aconine 0.05, 0.1, 0.2, 0.4, and 1.0 mmol/L respectively for 30 minutes, then cultured with medium containing 4.0 mmol/L homocysteine for 24h. It was found that, compared with control group, attached cells in aconine groups grew better, and attached cells in aconine 0.20 mg/ml plus homocysteine 4.0 mmol/L group grew best. Detected by nitrate reductase method, it was found that compared with control group, there was no obvious change in cell viability. In conclusion, aconine can inhibit aconine 0.20 mg/ml group, but in homocysteine 4.0 mmol/L medol group, NO concentration of cell culture fluid decreased obviously, and in aconine groups, NO concentration of cell culture fluid increased, and in aconine 0.20 mg/ml plus homocysteine 4.0 mmol/L group it was the most obvious (p < 0.05). Detected by Western-blot, it was found that, compared with control group, there was no obvious change of protein of Sirt-1 and eNOS in aconine 0.20 mg/ml group, but in homocysteine 4.0 mmol/L model group, expression of Sirt-1 and eNOS protein weakened obviously, and in aconine groups, expression of Sirt-1 and eNOS protein enhanced, and in aconine 0.20 mg/ml plus homocysteine 4.0 mmol/L it was the most obvious (p < 0.05). Detected by fluorescent quantitation, it was found that, compared with control group, there was no obvious change of mRNA of Sirt-1 and eNOS in aconine group, but in homocysteine 4.0 mmol/L model group, expression of Sirt-1 and eNOS mRNA weakened obviously, and in aconine groups, expression of Sirt-1 and eNOS mRNA enhanced, and in aconine 0.20 mg/ml plus homocysteine 4.0 mmol/L group, it was the most obvious (p < 0.05).

CONCLUSIONS Homocysteine may injuring EAhY926 cell by suppressing the expression of Sirt-1 then suppressing the expression of eNOS system, while aconine may protect EAhY926 cell by enhancing the expression of Sirt-1 and eNOS.

GW26-e5354 Suv39h1 Promotes Neointima Formation in Diabetes
Jing Chen, Jing Zhang, Changwu Xu, Qi Hu, Shuo Yang, Lin Xu, Jiao Yan, Xiaorong Hu, Hong Jiang Renmin Hospital of Wuhan University

OBJECTIVES Patients with diabetes are at an increasing risk of vascular complications. Suv39h1, a histone methyltransferase, is a metabolic memory and proinflammatory gene. Aconine may protect EAhy926 cell by enhancing the expression of Sirt-1 and eNOS in diabetes, while aconine may protect EAhy926 cell by enhancing the expression of Sirt-1 and eNOS protein in diabetes.

METHODS HUVECs were inoculated in a 6-well plate uniformly and were randomly divided into four groups, namely, Control group, HG group, Non-silencing shRNA group, and RNAi group, respectively. Control group were only treated with DMEM containing glucose (5.5 mmol/L) for 48h, while other groups were treated with DMEM containing glucose (23 mmol/L) for 48h and insulin(100 nmol/L) for 30 minutes post transfection. The expression levels of IKKα mRNA and protein, cell viability, NO and ET-1 level were detected.

RESULTS HUVECs were incubated in media containing 33 mmol/L of glucose for 48h and 100 nmol/L of insulin for 30 minutes. The cell viability was significantly decreased, showing significant difference between HG group and Control group (p < 0.01); it was also found that the levels of ET-1 was increased. However, the levels of NO was decreased, which had significant difference compared with Control group (p < 0.05). Downregulation of IKKα expression by its gene-silencing decreased the expression levels of IKKα mRNA and its protein absolutely and may antagonize these changes in all above-mentioned parameters induced by high glucose concentration and insulin, and there was significant difference between RNAi group and HG group (p < 0.05). However, the results of the Non-silencing shRNA group were similar to the High group and there was no significant difference between the two groups (p > 0.05).

CONCLUSIONS The silencing of IKKα gene could protect the HUVECs in high glucose-induced vascular endothelial insulin resistance (IR) and dysfunction.

GW26-e2219 Danlou Tablet Decreases Cytokine IFN-γ and Attenuates the Progression of Atherosclerosis
Yanfen Chen, Minzhou Zhang, Shuai Mao, Lei Wang 1,2 The second clinical medical college, Guangzhou University of Chinese Medicine; 2Intensive Care Unit, the second affiliated hospital, Guangzhou University of Chinese Medicine

OBJECTIVES Atherosclerosis is an inflammatory disease in which macrophage (Mφ) foam cells and lymphocytes are the main pathological components in atherosclerotic plaques. The Th1 cells, which secrete IFN-γ, play a central role in atherogenesis. We investigated whether Danlou Tablet, which promoting blood circulation and eliminating phlegm in Traditional Chinese Medicine, could decrease the expression of IFN-γ or restrain the Th1 cells activated to alleviate atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice.

METHODS Eight-week-old ApoE−/− mice fed a high-fat diet for 16 weeks, at the mean time were randomly divided into six groups for 16-week. Control group that fed a chow diet and received no treatment, other five groups fed a high-fat diet, model group that also received no treatment, low-dose DLT group (1 g/kg/d), moderate-dose DLT group (2 g/kg/d), high-dose DLT group (4 g/kg/d) were administered Danlou Tablet suspension, and atorvastatin group that were treated with atorvastatin. Cell suspensions were obtained from the spleens of five randomly chosen mice from each group at the 16-week. The flow cytometry analysis were used to detect the percentages of CD4 + IFN-γ+ (Th1 cells) in the spleen cell suspensions. Immunohistochemical...