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Maintenance, repair, and renewal of the epidermis are thought to depend on a pool of dedicated epidermal
stem cells (EpiSCs). Like for many somatic tissues, isolation of a nearly pure population of stem cells is a primary
goal in cutaneous biology. We used a quantitative transplantation assay, using injection of keratinocytes into
subcutis combined with limiting dilution analysis, to assess the long-term repopulating ability of putative
murine EpiSC populations. Putative EpiSC populations were isolated by FACS sorting. The CD133þ population
and the subpopulation of CD133þ cells that exhibits high mitochondrial membrane potential (DCmhi) were
enriched for long-term repopulating EpiSCs versus unfractionated cells (3.9- and 5.2-fold, respectively).
Evidence for self-renewal capacity was obtained by serial transplantation of long-term epidermal repopulating
units derived from CD133þ and CD133þDCmhi keratinocytes. CD133þ keratinocytes were multipotent and
produced significantly more hair follicles than CD133� cells. CD133þ cells were a subset of the previously
described integrin a6þCD34þ bulge cell population, and 28.9±8.6% were label-retaining cells. Thus, murine
keratinocytes within the CD133þ and CD133þDCmhi populations contain EpiSCs that regenerate the epidermis
for the long term, are self-renewing, multipotent, and label-retaining cells.
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INTRODUCTION
Murine epidermis is maintained by tissue stem cells that can
be defined by their long-term repopulating and self-renewal
abilities. These defining features are essential to the
identification and characterization of epidermal stem cells
(EpiSCs) and their progeny.

Keratinocytes spontaneously form cysts with a differentiated
keratinizing epidermis, following traumatic or surgical implan-
tation into the human subcutis (Ohnishi and Watanabe, 1999;
Silver and Ho, 2003; Hall et al., 2006). Production of such cysts
has been used to study the conjunctival epithelium (Doran
et al., 1980; Wei et al., 1997), lung alveolar cells (Yu et al.,
2007), and epidermal keratinocytes (Grimwood et al., 1988;
Zheng et al., 2005). Epidermal keratinocytes produced stratified

squamous structures with keratohyalin granules, stratum
corneum, basement membrane, and protein expression,
indicating a fully differentiated epidermis (Doran et al., 1980;
Grimwood et al., 1988). Thus, subcutaneous injection of
keratinocytes into mice results in the phenotype and differ-
entiation pattern of the original epidermis.

CD133þ cells were human progenitors in kidney (Busso-
lati et al., 2005), nervous system (Uchida et al., 2000), and in
epithelial tissues including prostate (Richardson et al., 2004),
foreskin (Yu et al., 2002; Mizrak et al., 2008; Guo and
Jahoda, 2009), and colorectal adenocarcinoma (Corbeil
et al., 2000). CD133 cells were murine progenitors in neural
cells (Corti et al., 2007; Coskun et al., 2008), liver (Rountree
et al., 2007), kidney (Weigmann et al., 1997), and intestine
(Snippert et al., 2009; Zhu et al., 2009). We selected CD133
as a possible marker of murine EpiSCs.

Murine embryonic stem cells with high mitochondrial
membrane potential (DCm) show decreased differentiation
and increased teratoma formation (Schieke et al., 2008).
TMRM, a fluorescent derivative of R123, was used to isolate
putative EpiSCs based on high DCm, as it provides more
accurate quantification than the parent compound (Scaduto
and Grotyohann, 1999).

In both human and murine epidermis, integrin a6hiCD71lo

keratinocytes showed features of stem cells (Li et al., 1998;
Kaur and Li, 2000; Tani et al., 2000).

In this study, epidermal allografts were produced by injec-
tion of putative EpiSCs into murine subcutis. The frequency of
long-term repopulating EpiSCs was determined by limiting
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dilution analysis (Schneider et al., 2003; Strachan et al.,
2008; Charruyer et al., 2009). Enrichment for murine EpiSCs
was 3.9-fold over unfractionated (UNF) keratinocytes in
CD133þ keratinocytes and 5.2-fold in CD133þCDmhi

keratinocytes. CD133þ and CD133þCDmhi keratinocytes
displayed superior long-term repopulating and self-renewal
ability, multipotency, and label retention.

RESULTS
Generation of murine epidermal repopulating units in an
allograft model

Epidermal structures generated from injection of keratino-
cytes were termed epidermal repopulating units (ERUs)
pursuant to hematologic terminology (Szilvassy et al.,
1990). After injection of GFPþ keratinocytes, 100% of 100
ERUs analyzed were GFPþ , confirming derivation from
GFPþ keratinocytes injected (Figure 1a).

Immunohistochemistry showed keratin 14 in the basal layers
(Figure 1b) and involucrin in the suprabasal layers (Figure 1c).
Linear fluorescence at the ERU periphery of the ERU with anti-
laminin antibody (Figure 1d) indicated a basement membrane.

To determine whether ERUs originated from single cells,
keratinocytes incubated with Vybrant DiI (565 nm, red)
or DiO (501 nm, green) were mixed 1:1. One week after
injection of 100,000, 40,000, 20,000, or 6,250 keratinocytes,
17/79 (21%), 5/46 (10%), 0 (0%), or 0 (0%) bicolored ERUs
were observed, respectively (Figure 1e–g), indicating that at
lower doses ERUs originated from a single cell.

In this in vivo repopulation assay, only EpiSCs originally
injected (and their progeny) persist after 9 weeks, whereas
transit amplifying cells (and their progeny) are no longer
present

Long-term repopulation combined with limiting dilution analy-
sis has been used to quantify EpiSCs (Schneider et al., 2003;
Strachan et al., 2008; Charruyer et al., 2009). As short-term
repopulating cells exhaust their proliferative ability over time,
the frequency of ERUs decreases. When only ERUs from long-
term repopulating keratinocytes remain, ERU frequency does
not change at subsequent time points. Here we used a
transplantation assay modified from previous studies (Schneider
et al., 2003; Strachan et al., 2008). UNF keratinocytes were
injected at a range of doses (1–100,000 cells), and the frequency
of ERUs was determined at different repopulation times by
limiting dilution analysis (Table 1). The frequency of ERUs
decreased between 1 and 6 weeks (Pp0.001; n¼ 5) from 1 in
48 (SE¼1 in 35–66) to 1 in 790 (SE¼ 1 in 576–1,084). After
6 weeks, no significant change in the frequency of ERUs was
detected. The overall likelihood ratio test for differences in
EpiSC frequencies between weeks 1 and 24 yielded a significant
result (Po0.001), but between weeks 6 and 24 (P¼ 0.25), 9 and
24 (P¼0.63), 12 and 24 (P¼0.34), and 18 and 24 (P¼0.88)
yielded nonsignificant results. In previous transplantation studies
(Schneider et al., 2003; Strachan et al., 2008), no ERUs were lost
after 9 weeks and no significant change was found after 6 weeks
in the present model. Therefore, we selected 9 weeks as the
time at which we are studying ERUs derived only from EpiSCs.

CD133þ and CD133þDWmhi keratinocytes are located in the
bulge and are enriched for long-term repopulating EpiSCs

CD133 immunostaining was located in the bulge of neonatal
and adult hair follicles, as seen in humans (Jiang et al., 2010)
(Figure 2a and b).

For FACS isolation of CD133þ keratinocytes, an isotype
control was used to set a gate resulting in o1% of total cells
in the positive gate. 7AAD was used to exclude dead cells.
In day 4 neonates, the CD133þ keratinocytes constituted
2–7.6% of the total (mean¼4.2±3.1%, n¼7) (Figure 2c).
In 10- to 12-week-old adults, the CD133þ keratinocyte
population was not significantly different (2–4.2% of total
cells, mean¼ 2.8±1%, P¼0.4, n¼4).

High membrane potential (DCmhi) and low membrane
potential (DCmlo) were defined as 5% highest and lowest
TMRM fluorescence, as previously described (Schieke et al.,
2006, 2008). Approximately 2% of total cells were CD133þ

DCmhi. Therefore, we selected the 2% CD133þ DCmhi and
2% CD133� DCmlo populations (Figure 2d).

Integrin a6hiCD71lo/hi keratinocytes (7–10% total) were
selected based on appropriate isotype controls (Figure 2e), as
previously described (Tani et al., 2000; Li et al., 2004; Youn
et al., 2004).

When injected into the subcutis of NOD/SCID mice,
CD133þ cells produced ERUs with keratinized epidermis,
indistinguishable from those from UNF cells (Figure 2f). One
in 379 (SE¼ 1 in 274–526) CD133þ keratinocytes was an
EpiSC capable of long-term repopulation versus only 1 in
9,487 (SE¼ 1 in 6,644–13,547) CD133� cells, and 1 in 285
(SE¼ 1 in 220–371) CD133þDCmhi cells was capable of
long-term repopulation versus only 1 in 5,323 (SE¼1 in
3,410–8,308) CD133�DCmlo cells. The enrichment provided
by CD133þDCmhi versus CD133þ was not significantly
different (P¼ 0.49). One in 1,488 (SE¼1 in 1,079–2,052)
integrin a6hiCD71lo cells was capable of long-term repopula-
tion, similar to UNF cells (1 in 1,491 (SE¼ 1 in 1,109–2,002))
(Figure 2g). Thus, the CD133þ population was enriched for
long-term repopulating EpiSCs 3.9-fold over the UNF popula-
tion, and the CD133þDCmhi population was enriched for
long-term repopulating EpiSCs 5.2-fold (Figure 2g and h),
whereas the CD133� and CD133�DCmlo populations were
depleted. The integrin a6hiCD71lo population of keratinocytes
was not enriched for long-term repopulating cells in this assay.

To exclude the possibility of contamination of CD133þ

keratinocytes by CD133þ dermal papilla cells, we studied
versican GFP–tagged mice that express GFP in dermal papilla
cells (Kishimoto et al., 1999; Ehama et al., 2007). CD133þ

keratinocytes isolated from the versican GFP epidermis were
GFP� (Supplementary Figure S1a online).

In pilot studies, SSEA1þ , CD44þ , and CD133þCD44þ

populations were not enriched in long-term repopulating
EpiSCs (data not shown).

CD133þ and CD133þDWmhi murine keratinocytes express
stem cell markers and display functional stem cell characteristics,
including self-renewal, multipotency, and label retention
Overlap between CD133 and previously described EpiSC
markers was analyzed. Using histology, cells coexpressing
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Figure 1. Generation of epidermal repopulating units (ERUs) following subcutaneous injection of murine keratinocytes in an allograft model. (a) ERUs

formed following injection of green fluorescent protein-positive (GFPþ ) murine keratinocytes into a GFP� NOD/SCID mouse are GFPþ , confirming

derivation from the GFPþ donor keratinocytes. Fluorescence microscopy (488 nm) (left panel). Hematoxylin and eosin (H&E) staining of an adjacent

section (right panel). A total of 100 ERUs were analyzed (three experiments). (b–d) Epidermal differentiation is seen in ERUs. (b) Keratin 14 is expressed

in the basal layers. (c) Involucrin is expressed in the suprabasal epidermis. (d) Laminin is present at the basement membrane of the ERU. Positive controls

were the intact murine epidermis. Negative controls were performed with omission of the primary antibody. (e–g) ERUs are formed from single cells.

Keratinocytes were labeled with Vybrant DiI or DiO and mixed in a 1:1 ratio before injection into NOD/SCID mice. Resultant ERUs (arrow heads) were green or

red, but not mixed. (e) Four of the ERUs produced by injection of 20,000 keratinocytes. Fluorescence microscopy (left panel), DCI of the same section (middle

panel), and H&E staining of the adjacent section (right panel). (f) A DiO-positive ERU and (g) a DiI-positive ERU. Bars¼ 10 mm in a–d; 25 mm in e; and 10 mm in f

and g. DCI, differential contrast of interferences.
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CD133 and integrin a6 (Li et al., 1998) were located in the
hair follicle bulge (Figure 3a). Cells coexpressing CD133
and Delta 1 (Estrach et al., 2007) were located in the bulge
(Figure 3b). Integrin a6þCD34þ keratinocytes exhibited
EpiSC properties (Trempus et al., 2003, 2007). Using flow
cytometry, 97.1±1.8% of CD133þ keratinocytes were
integrin a6þ (not shown, n¼4), 99±1% were CD34þ

(Figure 3c, upper panel, n¼ 3), and 78.7±14% were integrin
a6þCD34þ (Figure 3c, middle panel, n¼ 3). Only
0.8±0.2% of CD133þ keratinocytes were integrin a6hiC-
D71lo (Figure 3c, lower panel, n¼4). On direct counting of
FACS isolated cells, 94.3±4.2% of CD133þ cells (Figure
3d) and 95.3±1.1% of CD34þ cells (not shown) were
observed to be keratin 14þ (n¼3), consistent with basal
keratinocytes. Keratin 15 colocalized with label-retaining
cells (Lyle et al., 1998, 1999). On direct counting, 15.5±4%
of CD133þ keratinocytes were observed to be keratin 15þ

(Figure 3e, n¼4). CD133þ keratinocytes were Lgr5� (data
not shown; Jaks et al., 2008). 4.5±2.1% of CD34þ cells are
CD133þ , 9.7±7.8% of integrin a6þ are CD133þ and
12.2±2.2% of integrin a6þCD34þ cells are CD133þ . Thus,
CD133þ keratinocytes are a subset of the a6þCD34þ bulge
population.

Bmi-1 is associated with stem cell self-renewal
(Reinisch et al., 2007; Lee et al., 2008; Lacroix et al., 2010).
More CD133þ , DCmhi, and CD133þDCmhi cells expressed
nuclear Bmi-1 (19.8±7.6%; Po0.05, 28.7±5.3%; Po0.001
and 45.9±10%; Po0.001, respectively) than UNF, CD133�,
DCmlo, and CD133�DCmlo cells (5±2.3, 2.8±2.6, 6.4±
4.1, and 4.8±4.5%, respectively) (Figure 4a and b).
To further study self-renewal ability, 4,000 CD133þ or

CD133þDCmhi and 4,000–25,000 CD133� or CD133�

DCmlo keratinocytes were injected into NOD/SCID mice.
Primary injection sites were harvested at 9 weeks and cell
suspensions were obtained, followed by reinjection into
secondary recipient mice. Secondary sites (harvested at
9 weeks) were analyzed microscopically. ERUs were detec-
ted in both CD133þ and CD133þDCmhi secondary trans-
plants, indicating self-renewal ability, whereas no ERUs
were detected in CD133� or CD133�DCmlo secondary
transplants (Figure 4c, n¼3). These results indicate greater
self-renewal ability in the CD133þ and CD133þDCmhi

populations.
Regeneration of hair follicles in vivo, using injection of

mixtures of epidermal and dermal cells into immunodeficient
mice, is well described (Morris et al., 2004; Zheng et al.,
2005; Yang and Cotsarelis, 2010). Multipotency was studied
using coinjection of 30,000–90,000 keratinocytes and
100,000 neonatal (day 2) GFP-tagged dermal papilla cells.
Eighteen days after injection, CD133þ keratinocytes formed
greater numbers of hair follicles than CD133� keratinocytes
(22.3±2.8 vs. 2.7±2.6 hair follicles per 30,000 cells
injected, respectively, P¼0.01, n¼ 3) (Figure 4d). These
follicles also expressed CD133 in the bulge (Figure 4e).
Injection of 100,000 dermal papilla cells did not produce hair
follicles (n¼ 4).

BrdU incorporation in neonatal mice was used to study
label-retaining ability as previously described (Blanpain
et al., 2004). After a 30-day chase, 28.9±8.6% of CD133þ

cells (n¼ 3, 1,000 cells counted) and 37.3±5.9% of
CD133þDCmhi cells were label-retaining cells (n¼ 3, 1,000
cells counted) (Figure 4f and Supplementary Figure S2 online).

Table 1. Frequency of epidermal repopulating units at different durations of repopulation

Duration of repopulation 1 week 6 weeks 9 weeks 12 weeks 18 weeks 24 weeks

Cell dose

Response ratio: positive samples/total number of injections

100,000 1/1 5/5 3/4 5/5 4/4 5/6

25,000 4/4 4/4 3/3 7/7 3/3 4/4

6,250 4/4 9/9 6/7 9/10 2/2 3/3

1,562 4/4 8/11 10/13 7/11 3/7 4/11

391 4/4 3/6 3/7 3/7 3/5 6/12

98 7/9 2/4 0/4 0/5 1/3 2/7

24 6/11 1/4 0/1 0/1 2/3

5 0/1

1 0/2

ERU frequency 1 in 48** 1 in 790 1 in 1,491 1 in 1,802 1 in 1,373 1 in 1,242

SE1,2 35–66 576–1,084 1,109–2,002 1,342–2,420 917–2,054 921–1,674

Abbreviation: ERU, epidermal repopulating unit.
**Pp0.001 between 1 week and all the other time points.
1SE expressed as 1 iny.
2Tests for inconsistency (w2 Pearson, deviance) were nonsignificant (NS).
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CD133þ and CD133þDWmhi murine keratinocytes have less
colony-forming ability in vitro than CD133� and
CD133�DWmlo keratinocytes

It has been assumed that colony-forming efficiency
(colonies per 100 cells plated) reflects EpiSC number.
However, the greatest in vitro short-term proliferative ability
is not associated with the greatest long-term repopulating
ability in vivo (Strachan et al., 2008). A total of 4,000 cells
of each population (CD133þ , CD133þDCmhi, CD133�,
CD133�DCmlo, and UNF) were plated in 35-mm dishes.
The CD133� and CD133�DCmlo populations showed
significantly greater relative clonogenic ability (1.11±0.1
and 0.47±0.06 fold) compared with CD133þ and CD133þ

DCmhi populations (0.23±0.07- and 0.07±0.12-fold,
respectively) (Figure 5a). Given this in vitro result, we
examined short-term repopulation in vivo. UNF and
CD133� populations also had greater short-term repopulating
ability in vivo at 1 week compared with CD133þ and
CD133þDCmhi populations (1 in 48 (SE¼1 in 35–66) and 1
in 77 (SE¼ 1 in 52–144) compared with 1 in 712 (SE¼ 1 in
492–1032) and 1 in 495 (SE¼ 1 in 364–671), respectively)
(Figure 5b). Thus, the CD133þ population was enriched for
keratinocytes with long-term (in vivo), but not short-term
(in vivo or in vitro), repopulating ability. Conversely, the
CD133� population showed minimal long-term repopulating
ability (in vivo), but contained keratinocytes with short-term
repopulation ability (in vivo and in vitro).

DISCUSSION
These studies show that murine CD133þ keratinocytes
(a subset of integrin a6þCD34þ keratinocytes) and
CD133þDCmhi keratinocytes contain long-term repopulat-
ing, self-renewing, multipotent EpiSCs containing increased
proportions of cells with nuclear Bmi-1 expression and label-
retaining ability. The CD133� population contains the
clonogenic cells in vitro and the short-term repopulating
cells in vivo. The CD133þ and CD133þDCmhi populations,
although containing long-term repopulating cells, are not
clonogenic in vitro nor short-term repopulating cells in vivo.

Although it was believed that 10% of basal cells were
EpiSCs, many studies have found a frequency on a lower
order (Bickenbach, 1981; Bickenbach and Chism, 1998;
Schneider et al., 2003; Triel et al., 2004; Redvers et al., 2006;
Charruyer et al., 2009; Winter and Bickenbach, 2009).
Here the frequency of EpiSCs was 1 in 1,491 (SE¼1 in
1,109–2,002). This is expected to be an underestimate, as
it is most probable that not all EpiSCs achieve proliferation

in this model. In this study, keratinocytes were isolated from
freshly obtained day 2–4 neonatal murine epidermis and
analyzed by FACS for integrin a6 expression. Integrin a6þ
(CD49f)–expressing basal cells constituted 44±7% of total
keratinocytes (n¼ 5), in keeping with previous findings
(Schneider et al., 2003). Therefore, in this study, on the
order of 0.01% of murine basal cells are EpiSCs. Although our
studies were conducted using neonatal murine dorsal
epidermis, our result is on the same order as that found
using unperturbed adult murine epidermis in vivo (Clayton
et al., 2007).

CD133þDCmhi cells were studied for long-term repopu-
lating ability, nuclear Bmi-1 expression, and label retention.
Although nuclear Bmi-1 expression was increased in the
CD133þDCmhi versus CD133þ population (P¼0.02), the
EpiSC enrichment (5.2- vs. 3.9-fold, P¼0.49) and the number
of label-retaining cells (37.3±5.9 vs. 28.9±8.6%, P¼0.23)
in CD133þDCmhi keratinocytes was not significantly
different. In addition, although there is strong evidence for
integrin a6hiCD71lo as a marker of human EpiSCs (Li et al.,
1998, 2004; Kaur and Li, 2000; Li and Kaur, 2005) and
in vitro studies showed that integrin a6hiCD71lo murine
keratinocytes are quiescent and small, with high nuclear/
cytoplasmic ratio (Tani et al., 2000; Yano et al., 2005), our
studies indicated that murine integrin a6hiCD71lo keratino-
cytes are not enriched for long-term repopulating cells
in vivo, in this assay. Other functional characteristics of
integrin a6hiCD71lo cells were not tested.

CD133þ cells were bulge cells and were CD34þ (AC133
antibody was produced by inoculation of CD34þ human
cells (Yin et al., 1997; Bidlingmaier et al., 2008)). Although
94.3±4.2% of CD133þ keratinocytes were keratin 14þ ,
there may exist a more primitive K14� stem cell. Although
side population cells were integrin a6hiCD71lo (Redvers
et al., 2006), CD34�, and distinct from the bulge population
(Redvers et al., 2006), 99±1% of CD133þ keratinocytes
were distinct from integrin a6hiCD71lo cells and CD34þ cells
and localized in the hair follicle bulge. CD133þ cells thus
appear to be distinct from both integrin a6hiCD71lo cells and
side population cells.

CD133þ cells are keratinocytes because CD133þ

(CD34þ ) cells are keratin 14þ and integrin a6þ , consistent
with basal epidermal cells. Possible contamination of
CD133þ keratinocytes by CD133þ dermal papilla cells
was excluded using versican GFP–tagged mice (CD133þ

dermal papilla cells are GFPþ ). Isolated CD133þ keratino-
cytes were GFP�. Furthermore, the GFPþ /CD133þ dermal

Figure 2. CD133þ and CD133þDWmhi keratinocytes are located in the murine bulge and are enriched for long-term repopulating epidermal stem cells.

(a, b) CD133 was expressed in the hair follicle bulge of neonatal and adult murine epidermis. In addition, CD133 was expressed in dermal papilla cells

(indicated by asterisk) (Ito et al., 2006). Immunofluorescence using confocal microscopy. (c) Isolation of CD133þ and (d) isolation of CD133þDCmhi murine

keratinocytes based on isotype control. (e) Isolation of integrin a6hiCD71lo murine keratinocytes. The selected population was based on the 7–10% of cells most

a6 integrinhiCD71lo (putative epidermal stem cells (EpiSCs). A second population (right upper quadrant) was also selected based on the 7–10% of cells most

a6 integrinhiCD71hi (putative transit amplifying cells (TACs)) (Li et al., 1998, 2004; Kaur and Li, 2000; Li and Kaur, 2005) (based on isotype controls).

(f) Epidermal repopulating units (ERUs) formed following injection of CD133þ keratinocytes into an NOD/SCID mouse. (g) EpiSC frequency, based on

in vivo transplantation combined with limiting dilution analysis, in isolated keratinocyte populations at 9 weeks. (h) Summary of the data in Figure 2g.

Bar graph showing the fold enrichment over unfractionated (UNF) keratinocytes for the selected populations. Error bars¼mean±SE (*Pp0.05; **Pp0.001;

n¼ 3). bg, bulge; H&E, hematoxylin and eosin; NS, nonsignificant; SSC, side scatter. Bars¼ 10 mm for a, b, and f.
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papilla cells were less than 2% of pure dermal papilla cell
preparations, so that contaminating CD133þ cells could not
explain the 4.2±3.1% CD133þ cells consistently found in
the total keratinocyte preparation. Finally, isolated CD133þ

cells grow a stratified epithelium in vivo, not dermal tissue,
when injected into murine subcutis.

The colony-forming efficiency results reflected short-term
in vivo results. CD133� keratinocytes were clonogenic
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in vitro and were short-term repopulating cells in vivo.
CD133þ cells did not grow in vitro and were not short-term
repopulating cells in vivo, but were long-term repopulating
cells in vivo. Culture conditions may favor proliferation of
transit amplifying cells and/or reprogram proliferative ability
(for review see Cotsarelis, 2006), or in vitro analysis may
reflect a wounding response, not homeostasis (Kaur, 2006).
These results are consistent with the belief that stem cells
have minimal clonogenic ability in vitro and that not all
colony-forming cells constitute stem cells (Schofield, 1978;
Loutit et al., 1981; Pavlovitch et al., 1991; Li et al., 1998;
Budak et al., 2005; Louis et al., 2008; Strachan et al., 2008;
Selver et al., 2011).

Lineage tracing indicates that follicular cells do not
contribute to the interfollicular epidermis during homeostasis
(Ghazizadeh and Taichman, 2001; Morris et al., 2004;
Tumbar et al., 2004; Ito et al., 2005; Levy et al., 2005).

Keratin 15þ bulge cells formed interfollicular epidermis in
transplantation assays (at 4 weeks) (Morris et al., 2004),
but lineage analysis after wounding demonstrated that
keratin 15þ bulge cells and their progeny contribute to the
interfollicular epidermis only transiently, whereas unlabeled
cells persisted (Ito et al., 2005). In another study, lineage
tracing after wounding demonstrated that Shh-expressing
cells (present throughout the pilosebaceous unit and com-
prising both keratin 15þ and keratin 15� cells) and their
progeny contributed to the interfollicular epidermis for at
least 4 months (Levy et al., 2007). By contrasting and
synthesizing the results of these two sets of experiments, Levy
et al. (2007) suggested the possibility of a distinct cell in the
follicle (derived from Shhþ but not keratin 15þ cells) with
the ability to become a long-term repopulating stem cell of the
interfollicular epidermis. Our studies show that bulge-derived
CD133þ cells (85% keratin 15�) form both the interfollicular
epidermis and hair follicles in transplantation assays and form
the interfollicular epidermis for the long term (9 weeks). Future
lineage tracing is indicated to determine how CD133þ cells
and their progeny contribute to the follicular and interfollicular
epidermis in vivo, during homeostasis and wounding.

Finally, our results characterize CD133þ EpiSCs using
functional properties and provide a basis for future studies
aimed at quantitative comparison of the enrichment in long-
term repopulating stem cells and short-term repopulating
progenitors provided by different EpiSC isolation strategies.

MATERIALS AND METHODS
Mice

IACUC approval (VAMC San Francisco, CA) was obtained and

work was performed in accordance with institutional guidelines.

C57BL/6TgN(ACTbEGFP1Osb), NOD/SCID (Jackson Laboratory,

http://www.jax.org), and versican GFP–tagged transgenic mice

(kindly provided by Jiro Kishimoto as a gift to Daniel Bikle)

(Kishimoto et al., 1999; Ehama et al., 2007) were used.

Keratinocyte and fibroblast isolation

Excised skin was incubated in dispase and then trypsin (Schneider et al.,

2003), and a cell suspension was obtained. Fibroblasts were isolated by

incubating the dermis in 0.25% collagenase IA (Sigma-Aldrich, St Louis,

MO, http://www.sigmaaldrich.com) at 371C for 1 hour.

Flow cytometry

Keratinocytes were sorted using a FACSAria (BD Biosciences,

San Jose, CA) and analyzed with the CellQuest software (Becton

Dickinson, San Jose, CA). Antibodies included APC-CD133 (AC133

(Corti et al., 2007; Rountree et al., 2007; Snippert et al., 2009)), APC-

IgG1K isotype control, Alexa Fluor 488-SSEA-1, PE-CD44 (all from

eBioscience, San Diego, CA, http://www.ebioscience.com), and

FITC-integrin a6, FITC-IgG2a isotype control, PE-CD71, PE-IgG1K

isotype control, and FITC-CD34 (all from BD Pharmingen, San

Diego, CA). PE-integrin a6 antibody was from Abcam (Cambridge,

MA, http://www.abcam.com).

To sort for keratinocytes with high DCm, cells were treated

with TMRM 25 nM for 15 minutes (Schieke et al., 2006, 2008). Cells

with high DCm accumulate more of this potentiometric dye

(Invitrogen, Grand Island, NY).
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Epidermal regeneration in vivo
Keratinocytes in Progenitor Cell Technology Epidermal Keratinocyte

Medium Complete (CNT07, Chemicon, Temecula, CA, http://

www.chemicon.com) were injected with Matrigel (0.5 mg ml�1;

BD Biosciences) 1:1 (vol/vol) into the subcutis of NOD/SCID mice.

CNT-07 is a protein-free fully defined, 0.07 mM calcium formulation

with no antibiotics/antimycotics, containing amino acids, minerals,

vitamins, and organic compounds. Grafts were harvested and

examined for the presence of ERUs histologically.

Limiting dilution analysis of ERU frequency

For each time point, injection sites were scored as positive if at least

one ERU was observed microscopically (Schneider et al., 2003) and

the ratio of positive/total sites determined for each dose. Statistical

software for limiting dilution analysis (L-CALC, Stemsoft, Vancouver,

BC, Canada, http://www.stemsoft.com) was used. The w2 statistic

was used and 5% or less type I error was considered significant.

Immunohistochemistry

Involucrin and keratin 14 primary antibodies (Abcam) and VECTAS-

TAIN Elite ABC reagent followed by ImmPACT NovaRED Peroxidase

Substrate (Vector, Burlingame, CA) were used on paraffin-embedded

sections.

Immunofluorescence

Antibodies included CD133 (AC133) (eBioscience), laminin,

Delta1, Lgr5, Keratin15, Keratin14 and Bmi-1 (all from Abcam),

and integrin a6 (Santa Cruz Biotechnology, Santa Cruz, CA, http://

www.scbt.com/). AlexaFluor 488-IgF1 (Hþ L), AlexaFluor 594-IgG,

and AlexaFluor 488-IgG (Invitrogen) secondary antibodies were used

on cell cytospins and paraffin-embedded sections. In all, 300–500

cells were analyzed per sample.

Label-retaining cells
Three-day-old mice were injected twice daily for 3 days with BrdU

(75 mg per dose). Skin was collected 30 days later. FITC-conjugated

BrdU antibody (Abcam) was used to localize label-retaining cells

using microscopy.

Multipotency

CD133þ or CD133� keratinocytes and versican GFP–tagged dermal

papilla cells (day 2) mixed with Matrigel 1:1 (vol/vol) were injected

into NOD/SCID subcutis. Grafts were harvested 18 days after

injection and examined histologically.

Colony-forming efficiency

Keratinocytes were seeded at clonal density (100–500 cells per cm2)

(Morris et al., 1988; Strachan et al., 2008) onto six-well plates with

CNT07 medium. After 3–4 weeks, cells were fixed, stained with

toluidine blue (Sigma-Aldrich), and colony-forming efficiency

(number of colonies per 100 cells seeded) was expressed relative

to UNF cells.

Statistical analysis

For comparisons of colony-forming efficiency, the percentage of

cells exhibiting nuclear Bmi-1, and the percentage of ERUs labeled

with both DiI and DiO, a two-tailed Student’s t-test was used.

For comparisons of the frequency of repopulating units in each

subpopulation at each time point, a two-tailed t-test within the

L-CALC program (Stemsoft Software) was used.
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