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• We analyze correlations of simultaneous wind speed and solar radiation data.
• Both processes shows persistent correlations and cross correlations.
• Wind speed demonstrates stronger persistency.
• We find complementarity in persistence of wind speed and solar radiation dynamics.

a r t i c l e i n f o

Article history:
Received 11 July 2014
Received in revised form 6 November 2014
Available online 8 January 2015

Keywords:
Wind speed
Solar radiation
Detrended fluctuation analysis (DFA)
Detrended cross-correlation analysis
(DCCA)

a b s t r a c t

We analyze correlations and cross-correlations in wind speed and solar radiation temporal
series recorded at the Island Fernando de Noronha in northeastern Brazil, using Detrended
fluctuation analysis (DFA) and Detrended cross-correlation analysis (DCCA). We find that
both processes exhibit persistent long-term power law correlations as well as persistent
long term cross correlations. The observed persistency is found to be stronger for wind
speed then for solar radiation, as indicated by higher value of the scaling exponent. By ap-
plying DFA on sliding windows of 365 day duration, we find that persistency is preserved
for thesewindows along the entire studied period. In the periodswhen the decrease in cor-
relation exponent for wind speed is observed, solar radiation shows increased persistency
(higher values of correlation exponent) indicating the existence of certain complementar-
ity between persistence property of the two stochastic processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Solar and wind energy play a strategic role in Brazil’s efforts for sustainable development. Brazil is one of thirteen coun-
tries involved in the Solar andWind Resource Assessment (SWERA) project, designed to provide a reliable database in solar
and wind energy resources, together with socio-economic, infrastructure and environmental information, that enable pol-
icy makers to evaluate potential for investments in new renewable energy technologies [1]. The implementation of such
technologies is meant to facilitate energy supply in remote areas as in the Amazon region and islands, and help reduce
greenhouse gases emissions to the atmosphere by reducing the fossil fuel consumption. The high solar irradiation levels
with small seasonal variation and trade wind regime make the coastal areas of northeastern Brazil especially attractive
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for alternative energy developing programs [1–3]. The use of solar and wind sources of energy in this region should help
regulating energy production during dry season, and preservation of bio environmental resources for future generations.

Fernando de Noronha archipelago, located about 360 km offshore from the Brazilian coast in the Atlantic Ocean, belongs
to the state of Pernambuco and is divided in two conservation units: National Marine Reserve (retained for fauna, flora and
natural resources protection) and Environmental Protected Area which is reserved for human occupation. Each of these
units has preservation rules established by the federal and the state governments with the aim of preservation of natural
resources. The first large wind turbine for commercial operation in South America was installed at this location in 1992 [4],
and since then there were several attempts to implement wind and solar energy generation at the island. Currently the
islands energy supply comes mainly from diesel generators, and there has been a continuous effort in developing efficient
technological solutions for energy supply based on integration of wind and solar resources [5]. The success of these efforts
requires a better understanding of the behavior of simultaneous wind speed and solar radiation data from this location.

Solar radiation and wind speed temporal dynamics are characterized by high intermittency, due to the dependence on
weather and climatic changes, and the variations of solar and wind energy output in general does not match the time dis-
tribution of the energy load demand. The independent use of these energy resources cannot provide a continuous power
supply for stand-alone systems due to seasonal and periodical variations. This problem may be partially or fully overcome
with hybrid solar-wind power generation systems that integrate the two energy resources using their complementary char-
acteristics. This solution improves system efficiency and reliability of the energy supply and reduces the energy storage
requirements compared to systems comprising only one single renewable energy source [6,7]. Traditionally, classical sta-
tistical methods were used to evaluate wind and solar radiation potential for energy generation [1,2,8–10] but recently de-
veloped methods from complex system science should provide complementary information about the nature of underlying
stochastic processes governing wind speed and solar radiation variability, which is crucial for development and evaluation
of reliable theoretical and computational prediction models [11–20].

In order to contribute to a better understanding of wind speed and solar radiation temporal variability at the location
of Fernando de Noronha Island, which provides the base for evaluation of renewable energy potential at this location, in
this work we analyze long-term correlations and cross-correlations in daily wind speed and solar radiation temporal series
registered during the period 2004–2013. We use Detrended fluctuation analysis (DFA) method [21] and Detrended cross-
correlation (DCCA) method [22], which were designed to quantify correlations and cross-correlations in non-stationary
signals. In the following section we describe data and methodology, in the subsequent section we present the results and
discussion of our analysis, and finally we draw the conclusions.

2. Data and methodology

2.1. Data

The data used in this work are part of a historical climatic database [23] provided by the Center for Time Prevision and
Climatic Studies (Centro de Previsão de Tempo e Estudos Climáticos—CPTEC) of the Brazilian National Institute for Space
Research (Instituto Nacional de Pesquisas Espaciais—INPE). We chose daily wind speed and solar radiation data recorded at
Fernando de Noronha Island located in the Atlantic ocean east of the state Rio Grande do Norte, Brazil (longitude: 32, 41W;
latitude: 3, 84 S; altitude: 38 m), during the period 07/08/2004–12/21/2013 with 3295 observations for each variable.

The raw time series for average daily wind speed and accumulated daily solar radiation are presented in Fig. 1.
In order to make sure that seasonality does not affect the temporal correlation analysis, we first normalize the original

series x(t) by calculating

X(t) =
x(t) − ⟨x(t)⟩d

σd
, (1)

where ⟨x(t)⟩d is the mean of the observed quantity (wind speed, or solar radiation) calculated for each calendar date d
(obtained by averaging over all the years in the record), and σd is the corresponding standard deviation (also calculated for
each calendar date).

2.2. Detrended fluctuation analysis

To quantify and compare correlations inwind speed and solar radiation time serieswe useDetrended fluctuation analysis
(DFA) introduced by Peng et al. [21] for linear detrending, and extended to higher older polynomials by Kantelhardt et al. [24]
and Hu et al. [25]. This method is suitable to quantify long-term correlations in non-stationary signals [25,26] and has been
successfully applied on physiological processes [27,28], weather records [15,29], geophysics [30–32] financial data [33,34],
and even music [35]. The DFA procedure is briefly described as follows. The original temporal series x(i), i = 1, . . . ,N is
integrated to produce y(k) =

k
i=1[x(i) − ⟨x⟩], k = 1, . . . ,N , where ⟨x⟩ =

1
N

N
i=1 x(i) is the average. Next, the integrated

series y(k) is divided into Nn non-overlapping segments of length n and in each segment s = 1, . . . ,Nn the linear (or higher
order polynomial) least square fit (representing local trend) is estimated. The integrated series y(k) is then detrended by
subtracting the local trend yn,s(k) (ordinates of straight line or higher order polynomial fit) from the data in each segment
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Fig. 1. The average daily wind speed (a) and daily accumulated solar radiation (b) data from Fernando de Noronha.

and detrended variance is calculated as

F 2
DFA(n) =

1
nNn

Nn
s=1

ns
k=n(s−1)+1

[y(k) − yn,s(k)]2. (2)

Repeating this calculation for different box sizes provides the relationship between fluctuation function FDFA(n) and box
size n, where typically FDFA(n) increases with n according to a power law FDFA(n) ∼ nα . The scaling exponent α is obtained
as the slope of the regression (least square line fitting) of log[FDFA(n)] versus log n.

The value of α = 0.5 indicates an uncorrelated signal (white noise), α > 0.5 indicates persistent long-term correla-
tions, α < 0.5 indicates anti persistent long-term correlations. The values α = 1 and α = 1.5 correspond to 1/f noise and
Brownian noise (integration of white noise) respectively.

2.3. Detrended cross-correlation analysis

Detrended cross-correlation analysis (DCCA) was recently introduced by Podobnik and Stanley [22], and is designed to
analyze power-law cross-correlations between two simultaneously recorded non-stationary time series. It has been sub-
sequently extensively studied [36–38], and it has been successfully applied in the analysis of climatic [39], and financial
data [33,40,41]. It proceeds as follows: two simultaneously recorded time series x(i) and y(i), i = 1, . . . ,N are integrated
to produce X(k) =

k
i=1 x(i) and Y (k) =

k
i=1 y(i), where k is an integer between 1 and N . Next, the integrated series

are divided into Nn segments of equal length n and a linear (or higher order polynomial) regression is performed for each
segment to capture the local trend. The integrated series X(k) and Y (k) are detrended by subtracting the local trends Xn,s(k)
and Yn,s(k) (ordinates of the straight line or polynomials within each segment s = 1, . . . ,Nn) from the data in each box, and
the detrended covariance is calculated as

F 2
DCCA(n) =

1
nNn

Nn
s=1

ns
k=n(s−1)+1

[X(k) − Xn,s(k)][Y (k) − Yn,s(k)]. (3)

Repeating this calculation for all segment sizes provides the relationship between FDCCA(n) and the segment size n. If
the series are power-law cross-correlated, then FDCCA(n) ∼ nλ and the scaling exponent λ is determined from the linear
regression of log[FDCCA(n)] versus log n. The interpretation of λ is similar to that of the DFA exponent α. Long-term cross-
correlations between two series imply that each series has long memory of its previous values, as well as a long memory of
the previous values of the other series [22].

3. Results and discussion

In order to verify whether there exist some linear external trends, and whether linear DFA or higher order polynomial
regression should be used, in Fig. 2 we present the results of the DFA1, DFA2 and DFA3 analyses of the wind speed and solar
radiation data. It is seen from Fig. 2 that the slope of the regression line is practically the same for all the three cases (differ-
ence between the linear and higher order DFA may be attributed to increased fluctuations for large segment size n, rather
than some external linear trend), and we therefore continue with the first order DFA and DCCA analyses in the remainder
of this paper.

The results of the DFA analysis for original and shuffled wind speed and solar radiation data are displayed in Fig. 3, where
it is seen that bothwind speed and solar radiation dynamics show persistent properties (α > 0.5) with stronger persistency
for wind speed indicated by the higher value of scaling exponent. The DFA analysis of shuffled data displays linear behavior
with slope very close to 0.5, indicating that the observed power law behavior in the wind speed and solar radiation data
stems from the temporal ordering of the observations and associated long-term correlations.

We also apply the DFA analysis to consecutive 365 day windows (with a single-day step) of the wind speed and solar
radiation data, to study temporal evolution of the scaling exponents [42]. The variation of the DFA exponents is presented
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Fig. 2. DFA analysis of order 1, 2 and 3, of the normalized data for (a) average daily wind speed (α1 = 0.87 ± 0.02, α2 = 0.82 ± 0.01, α3 = 0.83 ± 0.01)
and (b) accumulated daily solar radiation (α1 = 0.68 ± 0.01, α2 = 0.69 ± 0.01, α3 = 0.70 ± 0.01), from Fernando de Noronha island.

Fig. 3. DFA analysis for the original and shuffled data for (a) the average daily wind speed (α = 0.87 ± 0.02, αrand = 0.52 ± 0.01), and (b) for the
accumulated daily solar radiation (α = 0.68 ± 0.01, αrand = 0.53 ± 0.01), from Fernando de Noronha island.

in Fig. 4, where it is seen that for wind speed the power law correlations are preserved during the entire analyzed period,
while in the case of solar radiation there are ranges of windows characterized by absence of long-term correlations (when
the value of scaling exponent becomes close to 0.5). It is also seen that wind speed shows stronger persistence as compared
with solar radiation for almost the entire series, except for years 2005 and 2009, when the values of two scaling exponents
become close. The graphs presented in Fig. 4 reveal the periodicity in temporal evolution of scaling exponents, (with period
of approximately 5 years) and indicate the complementarity between observed persistence properties: when the scaling
exponent for wind speed increases, the scaling exponent of solar radiation decreases, and vice versa. The complementarity
between temporal variation of wind and solar energy potential has recently attracted considerable attention with the
goal of attaining more efficient use of renewable energy [43–46], as a higher degree of complementarity between their
outputs indicates the increased reliability in energy generation in hybrid systems. Our results demonstrate the existence of
complementarity between long term correlation properties (measured by the value of DFA exponent), which can be useful
in planning of long term use of hybrid systems at this site.

We also apply Detrended cross-correlation analysis (DCCA) on wind speed and solar radiation temporal series to study
long term cross-correlations. It was shown recently [47] that the relationship between DFA exponents α1 and α2 of two
auto-correlated series, and the corresponding DCCA exponent λ, may be established using the cross-correlation coefficient

ρDCCA(n) =
F 2
DCCA(n)

FDFA1(n)FDFA2(n)
. (4)

If the two series are not cross-correlatedρDCCA(n) oscillates about zero (boundedbetween−1 and1), for anti cross-correlated
series ρDCCA(n) is negative, and for positively cross-correlated series ρDCCA(n) ∼ nω , such that

ω = 2λ − α1 − α2. (5)

It turns out that due to canceling out of positive and negative terms (individual series fluctuation products) in (3) both
FDCCA and ρDCCA show very large fluctuations for our data. To remedy this situation we use the sliding window version of
the DCCA procedure, where fluctuations are calculated for windows of width n, sliding over the series with unit stride. The
results of DCCA analysis togetherwith the DFA graphs of individual series and the cross-correlation coefficient are presented
in Fig. 5, where it is seen that daily wind speed and solar radiation temporal series also exhibit positive long-term cross-
correlations. The value of cross-correlation exponent λ = 1.05 ± 0.01 is related with the average of DFA exponents for
individual series αwind = 0.89±0.01 and αrad = 0.68±0.01, and the cross-correlation coefficientω = 0.53±0.02 through
relation λ = (ω + λwind + λrad)/2, as predicted in Ref. [47].
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Fig. 4. Temporal variation of DFA exponent for wind speed and solar radiation data from Fernando de Noronha island. The size of the symbols roughly
corresponds to the error bars.

Fig. 5. DCCA analysis for average daily wind speed and daily accumulated solar radiation data from Fernando de Noronha. In (a) the dependence on the
window size n of the square root of detrended variance for the two series and the detrended co-variance among the series is shown, with regression line
slopes αwind = 0.89 ± 0.01, αrad = 0.68 ± 0.01 and λ = 1.05 ± 0.01, respectively, while in (b) the cross-correlation coefficient (4) is presented, with
regression line slope ω = 0.53 ± 0.02.

The existence of long-term correlations in wind speed has been analyzed using fractal [13–15] and multifractal [16–19]
approach, while solar radiation records have been receiving less attention [11,12]. The results of these studies using DFA
analysis generally agree with our results. On the other hand, to the best of our knowledge there have been no reports on
simultaneouswind speed and solar radiation records, and the current work presents the first study of long term correlations
and cross-correlations in simultaneous wind speed and solar radiation records from the same site, where both solar and
wind energy potential is considered viable for energy generation. Our findings suggest that a combination of wind and solar
radiation propelled plants should be viable as renewable energy sources for the location of Fernando Noronha Island, due
to the persistence and complementarity in the dynamics of these phenomena.

4. Conclusion

In this workwe analyze long-term correlations inwind speed and solar radiation temporal series recorded at the location
of Fernando de Noronha Island. Both processes are characterized by persistent long memory, with stronger persistency
of wind speed data. This property is preserved for 365 day sliding windows, along the entire studied period, however,
with varying exponent values. In the periods when the decrease in correlation exponent for wind speed is observed, solar
radiation shows increased persistency (higher values of correlation exponent), indicating the existence of a certain level of
complementarity between persistence property of the two stochastic processes.

The cross correlation analysis indicates that thewind data are correlated bothwithwind speed and solar radiation values
that occurred in previous periods, and the solar radiation values are also correlated with the previous wind speed and
solar radiation data. This correlation may be attributed to a complex relationship cycle: solar radiation affects the wind
formation through land, ocean and air heating, producing a pressure gradient and convective airmotion, wind in turn affects
cloud coverage, and clouds affect solar radiation measurements. What is perhaps the most surprising is that these mutual
correlations seem to persist on a yearly scale, and more complete understanding would require additional analysis of other
parameters, such as temperature value and gradient over a wider surrounding region, humidity, air pressure and possibly
other relevant environmental factors.

Our results provide a new insight to solar radiation and wind speed temporal variability, and should be taken in consid-
eration when planning long term renewable energy generation in Fernando Noronha from individual and hybrid systems
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that guarantee sustainable development of this island. Future studies including records from different locations (and at dif-
ferent temporal scales) should give more information about observed complementarity in persistent properties between
wind speed and solar radiation dynamics.
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