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a b s t r a c t

We introduce a model for the mortality rates of multiple populations. To build the proposed model
we investigate to what extent a common age effect can be found among the mortality experiences of
several countries and use a common principal component analysis to estimate a common age effect in an
age–periodmodel formultiple populations. The fit of the proposedmodel is then compared to age–period
models fitted to each country individually, and to the fit of the model proposed by Li and Lee (2005).

Althoughwedo not consider stochasticmortality projections in this paper,we argue that the proposed
common age effectmodel can be extended to a stochasticmortalitymodel formultiple populations,which
allows to generate mortality scenarios simultaneously for all considered populations. This is particularly
relevant when mortality derivatives are used to hedge the longevity risk in an annuity portfolio as this
often means that the underlying population for the derivatives is not the same as the population in the
annuity portfolio.

© 2015 The Author. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A number of stochastic models for mortality rates were devel-
oped in recent years. Among those the Lee–Carter (LC)model intro-
duced by Lee and Carter (1992) remains a very popular and widely
used model. This model breaks down the mortality experiences at
different ages and calendar years into age and period effects. The
period effect for a given population can then be viewed as a mor-
tality index for all ages. When a LC model is fitted to a number of
populations individually, an individual age effect is obtained for
each population. This makes it more difficult to compare the pe-
riod effects observed in different populations as they are fitted to
different age effects.

In this paper we consider an extension of the LC model to
multiple populations where the age effect is common to all
populations. We will call this model a common age effect (CAE)
model. In particular, we study the differences in the goodness of
fit between individual models and CAE models. The main question
we wish to answer is: how important are individual age effects for
the goodness of fit of individual LCmodels compared to the impact
of an additional age–period effect in a CAE model?

This study is motivated by the observation that obtained age
effects are very similar when they are estimated in different
countries of similar socio-economic structure. This suggests that
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the number of parameters, in particular, age effects, can be reduced
when themortality experiences of several countries or populations
are modelled simultaneously. In addition, a CAE model allows for
more direct comparison of period effects, since these period effects
in different populations are scaled with the same age parameters.

The proposed model can be applied directly to mortality data
from different countries or populations, or, alternatively, can be
applied to the residuals of other multiple population models, for
example, the multiple population model introduced by Kleinow
and Cairns (2013) where smoking prevalence is used to explain
differences in the mortality experiences in different countries.

In addition to the introduction of the CAE model we also
show how to use an estimation method called common principal
component analysis to identify common age effects. The proposed
model can be fitted using other estimationmethods likeMaximum
Likelihood Estimation. However, using common PCA has some
advantages, which we discuss in Section 3.

In our empirical study we will apply the model to the mortality
rates observed formales aged 18–87 in the following ten countries:
Austria, Australia, Canada, Switzerland, Denmark, France, Great
Britain, New Zealand, Sweden and the United States. We choose
those ten countries since they are all well developed countries
with similar socio-economic characteristics. Therefore, we expect
that a mortality model with common factors will allow us to
jointly model mortality rates in those countries. The empirical
results are based on observedmortality rates for the calendar years
1948–2007.Wewill split the ages into two groups of 35 years each,
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that is, we separately considermales aged 18–52 and 53–87. This is
necessary since we require the number of calendar years to exceed
the number of ages. All observedmortality rates are obtained from
the Human Mortality Database.

In Section 2 we will review the LC model including a straight
forward extension to p age–period effects. This also includes a brief
review of the estimation of parameters using principal component
analysis (PCA) rather than maximum likelihood methods. We
concentrate here on the PCA as we wish to use a modification of
this method, called common principal component analysis (cPCA)
in Section 3 to obtain estimates of the common age effects. In the
following Section 4 we will then compare the estimated age and
period effects resulting from the individual models and the CAE
model. In the same section we will also compare the goodness of
fit of the two models.

2. Individual model

We consider the mortality rates in k populations. For each
population i = 1, . . . , kwe observe the realised logmortality rates
m̃i(x, t) at age x ∈ {x1, . . . , xn} in year t = 1, . . . , T , that is,

m̃i(x, t) = log
Di(x, t)
Ei(x, t)

where Di(x, t) is the observed number of deaths in country i at
age x during year t and Ei(x, t) is the corresponding exposure to
risk. These rates are observed for n different ages and a total of T
years.We assume that T > n, and the ages x1, . . . , xn and the years
1, . . . , T are the same for all populations.

In the followingwewill consider centralised logmortality rates.
Therefore, we first calculate the average log mortality rate, m̄i(x),
for a life aged x in population i, that is,

m̄i(x) =
1
T

T
t=1

m̃i(x, t)

and define the centralised log mortality rates

mi(x, t) = m̃i(x, t) − m̄i(x).

We denote by mi the matrix of the observed centralised log
mortality rates, that is,

mi =

mi(x1, 1) · · · mi(x1, T )
...

...
mi(xn, 1) · · · mi(xn, T )

 .

The individual model of order p for the centralised mortality
rates mi in each country i is an extension of the Lee–Carter model
to p age and period effects, that is,

mi(x, t) = β
(1)
i (x)κ (1)

i (t) + · · · + β
(p)
i (x)κ (p)

i (t) + εi(x, t)

which can be written in matrix form as:

mi = pβipκi + εi (1)

with

pβi =

β
(1)
i (x1) · · · β

(p)
i (x1)

...
...

β
(1)
i (xn) · · · β

(p)
i (xn)

 and

pκi =

κ
(1)
i (1) · · · κ

(1)
i (T )

...
...

κ
(p)
i (1) · · · κ

(p)
i (T )

 .

(2)

The residuals εi =


εi(x, t)


form a n × T matrix, and we assume

that E[εi(x, t)] = 0 for all populations i. To avoid identifiability
problems we also assume that ∥β
(j)
i ∥ = 1 for all i and j, where ∥.∥

denotes the Euclidean norm, that is, ∥x∥ = x⊤x for any vector x.
The maximum number of age effects is p = n since there are only
n ages. To simplify notation we define

βi = nβi.

The individual model can be fitted in different ways. In the ac-
tuarial literature, methods based on Maximum Likelihood Estima-
tion (assuming a particular distribution for the number of deaths)
are widely used. Alternatively, methods based on generalised lin-
earmodels could also be applied. Since thosemethods are based on
models for the number of deaths rather thanmodels for themortal-
ity rates, the obtained estimates for the age and period effects are
strongly dependent on those ages and periods in which large num-
bers of deaths have been observed, and less dependent on ages and
periods in which relatively few deaths have been observed. This is
often seen as an advantage. However, we wish to extend the indi-
vidual model to a model for multiple populations that are of dif-
ferent sizes. We therefore prefer a method that attaches the same
weight to all observed mortality rates.

It is well known that estimates for β
(j)
i (column j in matrix βi)

for any individual population i can also be obtained by a principal
component analysis using a singular value decomposition of the
matrix mi, that is,

mi = βiLiU⊤

i

where βi is a n × n orthogonal matrix, that is, β⊤

i βi is the n-
dimensional identity matrix, Li is a n× n diagonal matrix, and Ui is
a T × n matrix with mutually orthonormal columns, that is, U⊤

i Ui
is the n-dimensional identity matrix. We assume that all matrices
mi have full rank, which is then equal to n since we assumed that
n < T . Note that the singular value decomposition above can also
be stated in terms of a n × T diagonal matrix Li, and a T × T
orthogonal matrix Ui. Such a decomposition would be equivalent
to the one used here.

Also note that the estimated matrix of age effects is now
an orthogonal matrix, meaning that the identifiability constraint
∥β

(j)
i ∥ = 1 is fulfilled, and, in addition, β(j)

i
⊤

β
(l)
i = 0, which is, in

general, not the case if age effects are estimated using maximum
likelihood methods.

Equivalently, estimates for βi can also be obtained from
computing the eigenvectors ofmim⊤

i :

Qi = mim⊤

i = βiκiκ
⊤

i β⊤

i = βiΛiβ
⊤

i

since

mim⊤

i = βiLiU⊤

i UiL⊤

i β⊤

i = βiLiL⊤

i β⊤

i

= βiΛiβ
⊤

i with Λi = LiL⊤

i .

The eigenvalues of mim⊤

i are on the diagonal of the matrix Λi,
and the first estimated age effect β̂

(1)
i is then the eigenvector

corresponding to the largest eigenvalue ofmim⊤

i . For an individual
model of order p ≤ n we only use the p estimated eigenvectors
corresponding to the p largest eigenvalues, that is, the estimated
matrix pβ̂i contains the first p columns of β̂i.

The estimated first age effects β̂
(1)
i for the ten countries

mentioned in the introduction are shown in Fig. 1 in grey. In
can be seen in this figure that the age effects for ages 53–87 are
indeed rather similar for different countries and might therefore
be replaced by an age effect that is the same for all countries. For
younger ages this is less obvious.Wewill now turn to amodel and a
corresponding estimation procedure for such a common age effect.
The black line in Fig. 1 already shows the estimated first common
age effect for these countries based on the CAE model that we will
introduce in the following section.



T. Kleinow / Insurance: Mathematics and Economics 63 (2015) 147–152 149
Fig. 1. First order age effects β̂
(1)
i (grey) and first order common age effect (black).
3. Common age-effect model

In this section we will first introduce the CAE model and then
discuss the estimation of its parameters in Section 3.2.

3.1. The CAE model

Using the approach in Section 2weobtain age andperiod effects
for each population i = 1, . . . , k individually. We now aim to
reduce the overall number of parameters. To this endwe introduce
a model in which age has the same effect on the centralised log
mortality rates for all countries.

Our common age-effect (CAE) model of order p has the same
structure as the individual model, but we now assume that the
impact of age is independent of the population i, that is,

mi = pβ pκ
c
i + εi i = 1, . . . , k (3)

where pβ is a matrix with n rows and p columns, and the pκ
c
i are

p × T matrices for all populations i. These matrices are defined as
in (2).

Note that in the CAE model the period effects pκ
c
i are still

dependent on the specific population. This is in contrast to the
model proposed by Li and Lee (2005) where there is a common
period effect associated with the common age effect, see (6). We
use here the notation pκ

c for the period effects in the CAEmodel in
(3) to distinguish them from the period effects pκ obtained in the
individual models.

We remark that the individual model and the common age-
effect model can be combined by choosing the matrices pβi in the
individual model (1) such that some of their columns are the same
for all i. Therefore, while all period effects are population specific,
some age effects are the same for all populations. The estimation
of such amodel is not considered in this paper, but it will consist of
estimating a CAE model of an order smaller than p combined with
a singular value decomposition applied to the residuals.

A further extension of the CAEmodelwould be amodel inwhich
the populations are grouped such that each group has common age
effects but age effects between groups are different. However, any
extensions of the proposed model are left for further research.

3.2. Estimation of common age effects

For the estimation of the common age effect pβ in (3) we
apply amethodology called commonprincipal component analysis
(cPCA) which was first introduced by Flury (1984). Instead of
using the estimators proposed by Flury (1984), which are based on
MaximumLikelihood estimation,we use here amodification based
on least squares estimation. To simplify notation we define β =

nβ as in the previous section. The numerical algorithm to obtain
estimates β̂ of β is the F–G-algorithm, see Flury and Constantine
(1985) with amodification by Clarkson (1988). In the following we
outline the basic ideas underlying this method.

Assuming the CAE model of order p in (3) and following the
approach outlined in the previous section, we wish to find an
orthogonal matrix β = nβ and diagonal matrices Λi such that

Qi := mim⊤

i = βΛiβ
⊤

∀ i = 1, . . . , k.

This is equivalent to finding an orthogonal matrix β such that
β⊤Qiβ = Λi is a diagonal matrix for all i = 1, . . . , k. In general, it
is not possible to find such a β .

However, our estimate β̂ for the CAEmatrix β is the orthogonal
matrix thatmakes all matrices β⊤Qiβ as close to diagonal matrices
as possible. To make this statement precise we denote by ∥A∥ =

i,j a
2
ij the Frobenius-norm of a matrix A = (ajl)j=1,...,J,l=1,...,L

where ajl is the element in row j and column l. We now estimate β
by minimising the statistic

T (β) =

k
i=1

∥β⊤Qiβ − diag(β⊤Qiβ)∥2
=

k
i=1


j≠l

(β⊤Qiβ)2jl

which is the sum of the squares of the off-diagonal elements of
β ′Qiβ . Our estimate β̂ is then

β̂ = argmin
β

T (β)

where the minimum is taken over all n× n orthogonal matrices β .
We also obtain estimates for the diagonal matrices Λi, which

are

Λ̂i = diag(β̂⊤Qiβ̂).

As mentioned earlier, the modified F–G-Algorithm by Clarkson
(1988) is used to obtain the estimates for β numerically.

As in the individual model, we only take the first p columns of
β̂ to obtain a common age-effect model of order p with estimated
CAE matrix pβ̂ . Note that the first p columns are here the columns
that correspond to the largest p values in the diagonal of one of the
Λi matrices, but the order of elements in the diagonal of Λi might
be different from the order in othermatricesΛj. There is no general
solution for this issue, but it turns out in our empirical study that
this is not a major issue for the mortality rates in those countries
that we consider.

After obtaining the estimate pβ̂ for the CAE matrix pβ , we
estimate pκ

c
i in the usual way treating pβ̂ as given. Since pβ̂ is an

orthogonal matrix, we obtain pκ̂
c
i as

pκ̂
c
i = pβ̂

⊤mi

and the observed residuals εi are given by εi = mi − pβ̂ pκ̂
c
i .

As mentioned in Section 2 other estimation methods could be
applied. Assuming that the number of deaths in each population
has a specific distribution, we can obtain Maximum Likelihood
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Fig. 2. First period effects estimated in individual models (κ̂ , grey lines) and in the CAE model (κ̂c , black lines) for the United Kingdom (solid lines) and the United States
(dashed lines). The age range is 18–52.
Fig. 3. Observed (solid line) and fitted log mortality rates for the UK at ages 50 and 70. The dashed lines correspond to fitted rates with one age–period effect (p = 1), and
the dotted lines are fitted rates for two age–period effects (p = 2). The grey lines are fitted rates for the individual model, and the black lines show fitted rates for the CAE
model.
estimators for the parameters in the CAE model. However, the
obtained estimators of the common age effects would strongly
depend on themortality in larger populations. In this paper, we see
this as a disadvantage since we are interested in common features
(age effects) across mortality rates in a number of populations that
are of very different sizes. We, therefore, suggest to consider an
estimation method based on the observed rates rather than the
observed numbers of deaths and exposures.

4. Empirical results and model comparison

As mentioned earlier, Fig. 1 shows the obtained estimates β̂
(1)
i

for the individual age effects and the estimated common age effect
β̂(1) for the ten countries in our empirical study. These appear
to be rather close at least for high ages, but this is clearly a
weak argument for suggesting that the differences do not matter.
To decide whether we can indeed replace individual βi with a
common β we will now study the impact of a common age effect
on the estimated period effects and compare the goodness of fit of
individual models with the goodness of fit of the CAE model.

The plot on the left of Fig. 2 shows the estimated first period
effects κ̂i (grey) and κ̂c

i (black) for the UK (solid lines) and for the
US (dashed lines). These are the first period effects in models fitted
to the age range 18–52. The plot on the right hand side shows the
difference κ̂i − κ̂c

i for the UK (black solid line), the US (dashed
line) and the other eight countries is our empirical study (grey
lines). It appears that the first period effects for these two countries
change very little when the individual age effects are replaced by
a common age effect. We observe a very similar picture for all
countries. The result is also similar whenwe fit themodels to other
age ranges.

In a next step we investigate the goodness of fit of the CAE
model compared to individual models. To this end we first plot the
observed log mortality rates together with the fitted log mortality
rates for the UK at ages 50 and 70 in Fig. 3.

We observe in Fig. 3 that there is hardly any difference in the fit-
ted curves at age 70 for the fourmodels (individual and CAEmodel,
each with p = 1 and p = 2). However, at age 50 (left plot) we find
that the fit improves if we consider two age–period effects (p = 2)
for both the individualmodel (grey lines) and the CAEmodel (black
lines). More importantly we observe that the CAE model with p =

2 seems to fit the data better than the individualmodel with p = 1.
This is a first indication that the additional age–period effect seems
to be more important for the goodness of fit than the country-
specific differences in the mortality rates. In other words, it seems
that the fit of a CAE model with one age–period effect (p = 1) can
be improved more by adding an additional common age–period
effect than by considering an individual age effect (LC model) for
each country. It should be noted that the fitted mortality rates at
age 50 are calculated on the basis of observed rates for ages 18–52,
and the fitted rates for age 70 are produced using rates for ages
53–87. They are therefore based on different data sets.

To investigate this further we calculate the overall mean
squared error as a function of the number of the age–period effects
p for both the individual model and the CAE model. With the
notation

m̂i(x, t) = pβ̂i pκ̂i, and m̂i(x, t) = pβ̂ pκ̂
c
i

respectively, the MSE is defined as

MSE(p) =
1

10nT

10
i=1

n
j=1

T
t=1


mi(xj, t) − m̂i(x, t)

2
. (4)

Note that our empirical study is based on two age groups with
35 ages each (n = 35), and 60 years of observations, 1948–2007
(T = 60), for ten countries. The obtained results for the two age
groups are shown in Table 1.
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Table 1
The table shows MSE(p) × 103 for the individual model and the CAE model.

Ages 18–52 53–87
p = 1 p = 2 p = 1 p = 2

Ind. Mod. 14.157 10.285 2.139 1.592
CAE Mod. 16.061 11.758 2.556 1.822

We observe in Table 1 that individual models fit the data better
aswewould expect. However, we also observe that theMSE for the
CAE model with p = 2 is less than the MSE of individual models
with p = 1. Again, this shows that the fit of a CAEmodelwith p = 1
is more improved by adding a second common age effect (and the
corresponding κc

i ) than by considering individual age effects for
each country.

Clearly, a CAE model with p = 2 has more parameters than
an individual model with p = 1 since the number of additional
country-specific period effects in the former exceeds the number of
additional country-specific age-effects in the latter. To penalise the
MSE for the number of parameters we consider an approximation
of the Bayesian Information Criterion (BIC). We did not make an
explicit assumption about the distribution of the error terms εi in
the two models in (1) and (3). However, we can approximate the
BIC with

BIC(p) = 10nT log(MSE(p)) + k log(10nT ). (5)

This approximation is justified if we assume that the error terms
εi in (3) are approximately normally distributed. Even if the
distribution of εi is not normal, BIC(p) corrects MSE(p) for the
number of parameters and will therefore provide a good measure
for the goodness of fit of the models.

In our empirical study, 10nT = 21 000 is the total number of ob-
served mortality rates in the ten countries at n ages in T calendar
years, and k is the number of parameters in themodels for the cen-
tralised log rates. For the individualmodel we have k = 10p(n+T )
since there are 10 countries with p age effects and p period effects
each. For the CAE we have k = p(10T + n). The numerical results
for our empirical data are shown in Table 2.

We also compare the fit of the CAE model with the fit of the
model proposed by Li and Lee (2005). They suggest

m̂i(x, t) = B(x)K(t) + b(x, i)κ(t, i)

as a model for the fitted centralised log mortality rates. We
estimate B and K using the combined log mortality rates for all
countries giving equal weight to each country, that is,

m̂(x, t) =
1
10

10
i=1

mi(x, t) ∀ x, t.

We then apply a singular value decomposition as described in
Section 2 for the individual model of order p = 1 to obtain
estimates B̂ and K̂ .

In a second step we apply the individual model to the residuals

ri(x, t) = mi(x, t) − B̂(x)K̂(t)

to obtain estimates for the country specific b(x, i) and κ(t, i) in the
Li and Lee model. We then recover the fitted mortality rates as

m̂i(x, t) = B̂(x)K̂(t) + b̂(x, i)κ̂(t, i) (6)
Table 3
The table shows MSE × 103 and the approximate BIC for the Li and Lee model.

Ages 18–52 53–87

MSE 12.948 2.104
BIC −80,883 −119,037

and calculate the statistics MSE and BIC as in (4) and (5). The
number of parameters in the Li and Lee model is k = 35 + 60 +

10(35 + 60) for 35 ages, 10 countries and 60 calendar years.
Table 3 shows the empirical values we obtain for the MSE and

the BIC. We find that the MSE of the Li and Lee model is greater
than the MSE of the CAE model of order p = 2. However, compar-
ing the BIC we also find that the Li and Lee model outperforms the
CAE model for the age group 18–52, but for the older ages 53–87
the CAE model performs better than the Li and Lee model. This re-
inforces our observation in Fig. 1 that the age effects of individual
countries are closer to each other for old ages, andwewould there-
fore expect, the CAEmodel to perform better for those ages. This is
also reflected in the smaller MSE and BIC for old ages compared to
the same model applied to young ages.

Also note that all considered models fit the mortality rates at
young ages rather poorly with large mean squared errors com-
pared to older ages. It seems that mortality rates at younger ages
are more difficult to model, or that none of the three considered
models is appropriate. One way to obtain a better fit might be to
increase the order of the models by including more age–period ef-
fects. However, this is beyond the scope of this paper.

An alternative way of estimating the Li and Lee model is to
combine death and exposure data, that is,

D(x, t) =


i

Di(x, t) and E(x, t) =


i

Ei(x, t)

and then estimate B̂ and K̂ from the combined mortality rates
D(x, t)/E(x, t). This would increase the BIC of the Li and Lee model
(since the MSE increases) to −79,921 (ages 18–52) and −118,816
(ages 53–87). However, this is clearly not appropriate in our study
since the large exposure of the US would dominate the empirical
results.

5. Conclusions and further research

We proposed an age–period model for the mortality rates of
multiple populations in which age effects are the same for all
populations while the period effects are population specific. We
find empirical evidence to justify this approach. The empirical
results in Section 4 suggest that a second factor in a LC-type model
is more important for the fit than the differences in the age effects
between individual populations.

The proposed common age effect model allows us to estimate
period effects in different countries, which are better comparable
than period effects that are influenced by country specific age
factors. Although, we did not study the dynamics of these period
effects, we argue that the proposed CAE model gives rise to more
consistent stochastic mortality models for multiple populations
since individual age factors are avoided.
Table 2
Approximate BIC for the individual model and the CAE model.

Ages 18–52 53–87
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Ind. Mod. −79,953 −77,209 −72,489 −119,639 −116,388 −111,213
CAE Mod. −80,438 −80,669 −79,601 −119,037 −119,828 −117,670
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The proposed model could be improved and extended in a
number of ways. The extension of the model to include a cohort
effect, either common to all countries or country specific, would
potentially improve the quality of fit. Considering a cohort effect
should be based on a more detailed analysis of the estimated
residuals. In addition, further research could focus on developing
techniques that can identify age effects which are only common to
some countries but not others. An extension of the model in that
direction together with a statistical test for the null hypothesis of
common age effects would be a further potential development.

Another interesting research question is the identification of
common factors for mortality rates in other sets of populations
rather than justmales in the ten countries considered in this paper.
For example, mortality rates formales and/or females in a different
set of countries, or the rates for different socio-economic groups
in one country, or across different countries, give rise to some
relevant research questions. More empirical studies would also
allow us to test the robustness of the CAE model, as it might be
an appropriate model for some groups of populations, but not for
others.
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