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Abstract. The paper presents projection lemmas relating the infinite behaviour of deterministic 

and unboundedly branching nondeterministic infinite automata. 

Introductiorer 

Projection lemmas have been used to relate in an elegant way the behaviours of 
deterministic and nondeterministic devices accepting o-languages, as finite automata 
[9], finite partial automata [7] or Turing machines [8]. In all these cases the branching 
of the nondeterministic devices has been bounded in all situations. A different and 
more difficult problem arises if the branching of the nondeterministic devices is 
unbounded (though finite in every situation) or even countably infinite (cf. [ 11). 

We shall prove that the same projection lemma as in the bounded case holds true 
for finitely branching automata, and is valid with a slight modification in the case 
of countably branching automata. 

1. Preliminaries 

For a finite alphabet X, as usual X* and X” are the sets of finite words and 
infinite sequences on X. Let e denote the empty word in X*, and by wb we denote 
the concatenation of M’ E X* and 6 E X* u X”, Iwl is the length of the word w E X*. 
If i G I/.$ then h(i) is the ith letter of the string 6 E X* u X”. Finally, A(b) denotes 
the set of all finite initial words of 6 E X* u X”. We regard the product topology 
in X”. This topology makes X”’ (card X 2 2) homeomorphic to the Cantor discon- 
tinuum and,, hence, a compact space [9]. By 9, SC, and gfi we denote the classr~ 
of closed, of countable unions of closed, and of countable intersections of open 
subsets of X”, respectively. 
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If X, Y are finite alphabets, we consider the product alphabet X X Y together 
with the projection pr: X x Y I+ X defined by pr((x, y)) = x. The obvious extension 

of pr to (X x Y)* u (X x Y)” is also denoted by pr. Clearly, pr: (X x Yr" - X" is 

a continuous and (since (X x Y)” is compact) closed mapping 

{pr F: FE 9) and 3,, = {pr F: FE Sm), whereas ,y= (pr F: FE ‘3&) 

Souslin subsets of X” (or sets of the first projective class) [S]. 

We remark that for Y = (0, 1) the set 

E z ((Xx(0, I))“u(X x(1)))‘” 

is in Il$\& (cf. [6]). 

[5]. Hence, 9 = 

equals the set of 

(1) 

2. Automata 

An (infinite j automaton (or transition system) .d over X is a quadruple 
(2. Z,,, Zfin, R), where 2 is a set of states, Z()E Z and Ztin C Z are the sets of 

initial and final states, resp. R c Z x X XZ is the transition relation s.t. 

R( z, X) 2 {(z, x, z’) : Z’E Z and (z, x, z’) E R) is nonempty for all z E Z and -pl E X. 

An automaton ,cd is called deterministic if card Zr, = I and card R( z, s) = 1 for all 

2 t; 2 and x E X. In this case we will also write ,d = (2, Zo, Zfin, R), and R: Z x X ++ Z 

as a function. We call ,d finitely (countably) branching provided Z. and R( z, s) 

are finite (at most countable) sets for z E. Z and .x E X. Since for a countably branching 

automaton .crl at most a countable number of states is accessible from the initial 

states, we can as!,ume its set of states to be at most countable. 
For a word H’E X* we call the finite sequence ?I r z,,... , z,,,., of states a M’- 

computation on .d iff zn E Z, and (z,_ 1, w(i), z,) E R for i = 1, . . . , Iwl. The set of all 

words M’ E X* having a \+computation with +I E Zlin is called the language accepted 

by the automaton .PI (abbreviated T( ~4)). 

We note in passing that every subset W c X* is acceptable by the deterministic 

automaton (X”, e, W, R) where R( M: A-) L- ws. 

For a sequence p E X’” we call an infinite sequence of states 2,). z,, . . . , a /3- 
computation on .d if z~+I_ Z and (2, , , p(i), z,) c R for i = I, 2, . . . . 

A /%computation - bO7 21, 8 - ’ on .~d is called everywhere (e-) successful, almost 

everywhere (ae- 1 successful, or infinitely often (io-) successful provided 

- 2, f: Zlrrr for all i E N, 

- z, C. &,, except for a finite number of i c IV, aud 
- 2, C Ztin for intinitely many i cs IV, resp. 

A sequence p c: X’” is called e-accepted (ae-accepted, io-accepted) if there is a 

e-successful (ae-successful, io-successful 1 P-computation on ,d. By 7J .d)( TJ,sI), 

T,,L:*l) 1 we denote the w-language (subset of X”’ )) of all p E: Y’ which are e-accepted 

(iic-accepted, in-accepted) on .d. 
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(In contrast to [l] we use the terms e-, ae- and io-successfulness instead of 1-, 2- 

and 3-successfulness becaus’e, in our opinion, they are more suggesting and less 

confusing with Landweber’s [6] types of acceptance.) 

As a shorthand notation we introduce 9, N and %.N to denote the classes of 

deterministic, finitely branching nondeterministic and countably branching non- 

deterministic automata, respectively. Moreover, for (Y E (e, ae, io} and 9 E { 9, &)V, %l’) 

let r,(9) d=‘(T,,(.d):.y’E~].Clearly,if 9 = ,t’ or 9 = KY, then T,( .9 ) is closed under 

projection. 

3. Deterministic twtomata , 

In this section we briei1y derive the relation of the finite and infinite behaviours 

of deterministic automata. To this end we introduce the following operators mapping 

languages to o-languages. According to Elgot [4] we define 

lim W fi{ /3: @ E A?” snd A( /iI) E W}, 

the limit of :1x k-iguage IVC_ X”, and according to [2] we define 

(2) 

iit- 
Ly ” = { p: p E X”’ ;nnd A( p ) n W infinite}, (3) 

the S-limit of the language M/C X*. 

(The reader is warned not to confuse this with Eilenberg’s [3] notation where 

lim W denotes the S-limit.) We prefer the notation W’ for the following reason. 

Lemma 1 ( Davis [2]j. A subset F c X ‘* is a ?&-set if and onlJ9 if‘ there is a W c X * 

such that 

F zz W”. 

Similarly, one has the following lemma. 

lt is easily verified, that, for ;i deterministic automaton ,c’il, 

7YJ.d) - lim 77, .PU, 
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Hence, one has the following lemma. 

(7) 

(8) 

(9) 

4. The projection lemmas 

Lemma 4. Let -PI be a$nitely branching automaton over X. Then there is a deterministic 
automaton ._YY’ over X x (0, I) such that 

7;,(.%4) = Pr _rl,(.&‘) 

for a E (e, ae, io). 

Lemma 5. Let d be a countably branching automaton over X. Then there is a 
deterministic automaton a” over X x(0, f ) such that 

T,,(zl) = Pr ( 7J d’) A E), 

where Q’ E {e, ae, io} and E is defined by ( I ). 

Proof of Lemmas 4 and 5. For both lemmas we use the same proof which is carried 

out via the following queue-buffer-construction. 

Let .d = (Z, Zo, Z,,,. R), where Z is w.1.o.g. countable. To every pair (z, s) we 

associate a fixed string p( z, . ..) E Z* (or Z* u Z’” when .d is countably branching) 

consisting of ail and only those z’ E I?( z, .u). Moreover, let p. E Z* (or Z* u Z”‘, 

resp.) be the string consisting of all initial states of ~4’. Now let Z” consist of all 

~(2, .u) (z E Z, .Y E X) and p,), and all of its nonempty tails. 

Define .cl’= (Z’, so, Zl;,,, R’) E !2 as follows: 

d 1’ 

Z’-Z”x(P\{e}) x(0, l)u{s,,, s}, 

where s,, and s are ~1 separate initicll state and dead sink, rap: 



i’rujecrion lemmas for w-languages 335 

and 

I s ify’ =0, w = e, 

dr (W, UX’, J’) 
R((zw, xv, y), W, y’s) = J ify’=O, w # e, 

if y’= 1, zE &, 

ify’= 1, zE& 

This queue-buffer-construction functions in the following manner. 
On reading the first letter of the input sequence the automaton sJ’ buffers the 

X-label and puts all initial states of & to the state-queue. As long as the (0, l}-label 
of the following letters is 0, the automaton .d’ buffers the X-labels of the correspond- 
ing letters and deletes thle first state from the state-queue. (If this queue is empty, 
it switches to the dead sink s.) Whenever the (0, I)-label of the input letter is 1, the 
first state z of the state-queue becomes active and creates with the first letter of the 
buffered word xu (which, by construction, cannot be the empty word) the new 
state-queue ~r_( z, x), whereas the X-label of the input letter is buffered as in the 
other case. 

The third label of the states in 2’ stores the information whether the latest active 
state was a final one or not. In the passive phase of the work of d’ this information 
is not changed unless d’ switches to the dead sink S. 

It is now evident that an infinite computailon on 2Y’ either switches to the dead 
sink s or otherwise has infinitely many active moves if and only if the input sequence 

contains infinitely many times a 1 as (0, I}-label. If ti is finitely branching, then it 
is impossible that an active move of sI’ is followed by onEy passive moves unless 
,Q? switches to s. 

Thus, for a finitely branching automaton .ti an infinite computation on d’ can 
be (e-, ae- or io-) successful only if the (0, I)-labels of the input sequence 7 E 

(X x (0, 1 })‘I’ are infinitely often ‘ 1’. Contrarily, if ti is countably branching then 
bd' can have a successful infinite computation whose input sequence q has only a 
finite number of ‘1‘ 9~ (0, I}-labels. 

On the other hand, from the construction of .d’ ii is evident, that every p- 
computation on J can be simulated in the active moves of a computation on &’ 
by an appropriate choice of the (0, I}-labels of the input sequence 7 where /3 = pr q. 

This yields that for p E X”’ there is a (e-, ae- or io-) succxsful @-computation on 

.d itf there is an n E (X x(0, 1))‘” with pr q = a such that the q-computation is 

(e-, ae-, or io-) successful on AI and 7 E E (which latter condition is implied by 

successfulness in the case of finitely branching automata). Cl 

As an immediate consequence of Lemmas 4 and 3 we obtain the following. 

Corollary 6 
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5. Countably branching automata 

For countably branching automata, Lemmas 5 and 3 yield 

Since all of the considered classes are closed under proJection, and since 9’ G s8, 
it remains to show that Y& C_ ?;( %.N) for (Y E {e, ae, io) in order to prove that equality 
holds everywhere. 

To this end we use a guess-and-check-method. 
Let F c X” be a set in &. According to Lemma 1 there is a VE X* such that 

V’ = F_ 

Let, without loss of generality, e E V. Define 

Mv z{(v, w) : uw E V and w # e). 

We construct 5& = (Z {‘%I, z,,,, JO 

z %uM,u{s}, where 

dl df 
z,) =eE V, Z,, =Z\(s} 

as follows: 

s & Vu Mv is a dead sink, 

and Rc_ZxXxZ, 

consisting of all triples of the form (A- E X) 

(W (z,x,s), ZEZ; 

(1) (v, x, (lx, w)), v E V, zxw E V, w # 4 ; 

(2) ((u, xw), x, (ux, w)), vxwE V, w# e; 

(3) ((u, ?I), x, vx)), LNE v. 

The automaton .Q& successively guesses (by rules of type (1,) and checks (by rules 
of types (2) and (3)) whether initial parts of the input sequence belong to V. If & 
fails, it switches to the dead sink S. Clearly T,(,&) = T;,,(.d,) -7 T,,(.Q&) = V’. 

This finishes the proof of 

6. Conclusion 

We have proved projection lemmas for w-languages in the very general case of 
arbitrary infinite automata. The problem becomes more complicated when we restrict 

the class of automata. 
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It is an open question for which classes of infinite-state devices accepting or)- 
languages a deterministic device in the class satisfying the projection lemma can be 
always constructed. Up to now this problem has been solved (positively) for the 
class of Turing-acceptors (cf. [8]). 
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