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Abstract

In this paper, we introduce a new class of operator–general H -monotone operators in Banach space. We define a proximal
mapping associated with the general H -monotone operator and show its Lipschitz continuity. We also consider a new class
of variational inclusions involving these general H -monotone operators and constructed a new iterative algorithm for solving
the variational inclusion in Banach spaces. Under some suitable conditions, we prove the convergence of the iterative sequence
generated by the algorithm.
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1. Introduction

In recent years, variational inequality theory has become a very effective and powerful tool for studying a wide
class of linear and nonlinear problems arising in many diverse fields of pure and applied science, such as mathematical
programming, optimization theory, engineering, elasticity theory and equilibrium problems of mathematical economy
and game theory etc.; see, for example, [1–4] and the references therein.

One of the most interesting and important problems in the theory of variational inequality is the development of
an efficient iterative algorithm to compute approximate solutions. One of the most efficient numerical techniques for
solving variational inequalities in Hilbert spaces is the projection method and its variant forms (see [3,5–10]). Since
the standard projection method strictly depend on the inner product property of Hilbert spaces, it can no longer be
applied for variational inequalities in Banach spaces. The fact motivates us to develop alterative methods to study
iterative algorithms for approximating solutions of variational inequalities in Banach spaces.

Recently, Ding and Xia [11] introduced a new notion of J -proximal mapping for a nonconvex lower semi-
continuous subdifferentiable proper functional, and used it to study a class of completely generalized quasi-variational
inequality in Banach spaces. We would like to point out that the J -proximal mapping can not be used to study some
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variational inclusions. In fact, let B be a Banach space with the dual space B∗, A : B → B∗ a single-valued mapping
and M : B → 2B∗

a set-valued mapping. Then the following problem arises: find u ∈ B such that 0 ∈ A(u) + M(u)

cannot be solved by using the J -proximal mapping method.
On the other hand, Fang and Huang [8] introduced a new class of monotone operators—H -monotone operators,

defined the resolvent operator associated with an H -monotone operator, and then used it to study a class of variational
inclusions in Hilbert spaces. Moreover, Fang and Huang [12] introduced a new class of generalized accretive operators
named H -accretive operators and defined the resolvent operator associated with the H -accretive operator in Banach
spaces. By using the resolvent operator technique, they also studied a new class of variational inclusions in Banach
spaces as follows: Find u ∈ B such that 0 ∈ A(u) + M(u), where B is a real Banach space, A : B → B is a
single-valued operator and M : B → 2B is a set-valued mapping. We note that A and M are mappings from Banach
space B to B, and so the resolvent operator method presented in [12] cannot be used to solve the following variational
inclusion: 0 ∈ A(u) + M(u), where A and M are two mappings from a real Banach space B to its dual space B∗.

Motivated and inspired by the research work going on this field, in this paper, we introduce a new concept of a
general H -monotone operator, give the definition of its proximal mapping, and prove the Lipschitz continuity of this
proximal mapping in Banach spaces. In terms of these results, we construct an iterative algorithm for approximating
the solution of a new class of variation inclusions involving general H -monotone operators in Banach spaces. We also
show the existence of a solution and convergence of the iterative sequence generated by the algorithm. The results
presented in this paper improve and extend some known results in the literature.

2. Preliminaries

Let B be a Banach space with the topological dual space of B∗, and 〈u, v〉 be the pairing between u ∈ B∗ and
v ∈ B. Let 2B∗

denote the family of all subsets of B∗. Let A : B → B∗ and g : B → B be two single-valued
mappings, and M : B → 2B∗

a set-valued mapping. We shall investigate the following variational inclusion problem:
find u ∈ B such that

0 ∈ A(u) + M(g(u)). (2.1)

Some special cases of problem (2.1):

(1) If B is a Hilbert space, and g = I , the identity mapping on B, then problem (2.1) reduces to the variational
inclusion problem considered by Fang and Huang [8].

(2) If B is a Hilbert space, M is maximal, and A is strongly monotone and Lipschitz continuous, then problem (2.1)
has been studied by Huang [9].

(3) If M = ∂ϕ, where ∂ϕ denotes the subdifferential of a proper, convex and lower semi-continuous functional
ϕ : B → R

⋃
{+∞}, then problem (2.1) reduces to the following problem: find u ∈ B such that g(u) ∈ D(∂ϕ),

and

〈A(u), v − g(u)〉 + ϕ(v) − ϕ(g(u)) ≥ 0, ∀v ∈ B, (2.2)

which is called a nonlinear variational inequality problem and has been studied by Hassouni and Moudafi [3] in
Hilbert space.

(4) If g = I , the identity mapping on B, then problem (2.2) reduces to the general mixed variational inequality
problem considered by Cohen [13].

We first recall the following definitions and some known results.

Definition 2.1. Let A : B → B∗ and g : B → B be two single-valued mappings. We say that

(i) A is monotone if

〈A(x) − A(y), x − y〉 ≥ 0;

(ii) A is strictly monotone if A is monotone and

〈A(x) − A(y), x − y〉 = 0

if and only if x = y;
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(iii) A is α-strongly monotone with constant α > 0 if, for any x, y ∈ B,

〈Ax − Ay, x − y〉 ≥ α‖x − y‖
2
;

(iv) A is β-Lipschitz continuous with constant β ≥ 0 if, for all x, y ∈ B,

‖Ax − Ay‖ ≤ β‖x − y‖;

(v) g is k-strongly accretive if, for any x, y ∈ B, there exists j (x − y) ∈ J (x − y) such that

〈 j (x − y), g(x) − g(y)〉 ≥ k‖x − y‖
2,

where J : B → 2B∗

is the normalized duality mapping defined by

J (x) = { f ∈ B∗
: 〈 f, x〉 = ‖ f ‖ · ‖x‖, ‖ f ‖ = ‖x‖}, ∀x ∈ B.

Definition 2.2. Let B be a Banach space with the dual space B∗, and T : B → 2B∗

be a set-valued mapping. T is
said to be

(i) monotone if, for any x, y ∈ B, u ∈ T x , and v ∈ T y,

〈u − v, x − y〉 ≥ 0;

(ii) maximal monotone if, for any x ∈ B, u ∈ T x ,

〈u − v, x − y〉 ≥ 0 implies v ∈ T (y);

(iii) λ-strongly monotone if, for any x, y ∈ B, u ∈ T x , and v ∈ T y,

〈u − v, x − y〉 ≥ λ‖x − y‖
2.

Definition 2.3. Let H : B → B∗ be single-valued mapping. H is said to be

(i) coercive if

lim
‖x‖→∞

〈H x, x〉

‖x‖
= +∞;

(ii) hemi-continuous if, for any fixed x, y, z ∈ B, the function t → 〈H(x + t y), z〉 is continuous at 0+.

We remark that the uniform convexity of the Banach space B means that for any given ε > 0, there exists δ > 0
such that for all x, y ∈ B, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ = ε ensure the following inequality:

‖x + y‖ ≤ 2(1 − δ).

The function

δB(ε) = inf
{

1 −
‖x + y‖

2
: ‖x‖ = 1, ‖y‖ = 1, ‖x − y‖ = ε

}
is called the modulus of the convexity of the Banach space B.

The uniform smoothness of the Banach space B means that for any given ε > 0, there exists δ > 0 such that

‖x + y‖ + ‖x − y‖

2
− 1 ≤ ε‖y‖

holds. The function

ρB(t) = sup
{

‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = t

}
is called the modulus of the smoothness of the space B.

We also remark that the Banach space B is uniformly convex if and only if δB(ε) > 0 for all ε > 0, and it
is uniformly smooth if and only if limt→0 t−1ρB(t) = 0. Moreover, B∗ is uniformly convex if and only if B is
uniformly smooth. In this case, B is reflexive by the Milman theorem. A Hilbert space is uniformly convex and
uniformly smooth. The proof of the following inequalities can be found, e.g., in page 24 of Alber [14].
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Proposition 2.1. Let B be a uniformly smooth Banach space and J be the normalized duality mapping from B into
B∗. Then, for all x, y ∈ B, we have

(i) ‖x + y‖
2

≤ ‖x‖
2
+ 2〈y, J (x + y)〉,

(ii) 〈x − y, J (x) − J (y)〉 ≤ 2d2ρB(4‖x − y‖/d), where d = ((‖x‖
2
+ ‖y‖

2)/2)1/2.

3. Main results

In this section, we first introduce a new class of monotone operators—general H -monotone operators.

Definition 3.1. Let B be a Banach space with the dual space B∗, H : B → B∗ be a single-valued mapping,
and M : B → 2B∗

be a set-valued mapping. M is said to be general H -monotone if M is monotone and
(H + λM)(B) = B∗ holds for every λ > 0.

Remark 3.1. (1) If B is a Hilbert space, then the general H -monotone operator reduces to the H -monotone operator
in Fang and Huang [8].

(2) Let B be a reflexive Banach space with the dual space B∗, M : B → 2B∗

a maximal monotone mapping, and
H : B → B∗ a bounded, coercive, hemi-continuous and monotone mapping. Then for any given λ > 0, it follows
from Theorem 4.5 in page 315 of Guo [15] that (H + λM)(B) = B∗. This shows that M is a general H -monotone
operator.

Theorem 3.1. Let H : B → B∗ be a strictly monotone mapping and M : B → 2B∗

a general H-monotone mapping.
Then, for any λ > 0, (H + λM)−1 is a single-valued mapping.

Proof. For any given x∗
∈ B∗, let x, y ∈ (H +λM)−1(x∗). It follows that −H x + x∗

∈ λMx and −H y + x∗
∈ λMy.

The monotonicity of M implies that

〈(−H x + x∗) − (−H y + x∗), x − y〉 = 〈H y − H x, x − y〉 ≥ 0.

The strictly monotonicity of H gives x = y. Thus (H + λM)−1 is a single-valued mapping. �

By Theorem 3.1, we can define the following proximal mapping RH
M .

Definition 3.2. Suppose B is a reflexive Banach space with the dual space B∗. Let H : B → B∗ be a strictly
monotone mapping and M : B → 2B∗

a general H -monotone mapping. A proximal mapping RH
M is defined by

RH
M (x∗) = (H + λM)−1(x∗), ∀x∗

∈ B∗, (3.1)

where λ > 0 is a constant.

Remark 3.2. (1) If B is a Hilbert space, then the proximal mapping RH
M reduces to the resolvent operator RH

M,λ in
Fang and Huang [8].

(2) If ϕ : B → (−∞, +∞] is a lower semi-continuous subdifferentiable proper functional and M = ∂ϕ, then the
proximal mapping reduces to the η-proximal mapping of ϕ in Ding and Xia [11].

(3) If B is a Hilbert space, H is identity mapping of B, and M = ∂ϕ, then the proximal mapping reduces to the
resolvent operator of ϕ on Hilbert space.

(4) The proximal mapping is different from the resolvent operator for the H -accretive operator studied by Fang
and Huang [12].

Theorem 3.2. Suppose B is a reflexive Banach space with the dual space B∗. Let H : B → B∗ be a mapping, and
M : B → 2B∗

a general H-monotone mapping. Then the following conclusions hold.

(i) If H : B → B∗ is a strongly monotone mapping with constant γ > 0, then the proximal mapping RH
M : B∗

→ B
is Lipschitz continuous with constant 1

γ
;

(ii) If H : B → B∗ is a strictly monotone mapping and M : B → 2B∗

is a strongly monotone mapping with constant
β > 0, then the proximal mapping RH

M : B∗
→ B is Lipschitz continuous with constant 1

λβ
.



28 F.-Q. Xia, N.-J. Huang / Computers and Mathematics with Applications 54 (2007) 24–30

Proof. Let x∗ and y∗ be any given points in B∗. It follows from (3.1) that

RH
M (x∗) = (H + λM)−1(x∗), RH

M (y∗) = (H + λM)−1(y∗)

and so
1
λ

(x∗
− H(RH

M (x∗))) ∈ M(RH
M (x∗)),

1
λ

(y∗
− H(RH

M (y∗))) ∈ M(RH
M (y∗)).

(1) If H : B → B∗ is strongly monotone with constant γ > 0 and M : B → 2B∗

is monotone, then

1
λ

〈x∗
− H(RH

M (x∗)) − (y∗
− H(RH

M (y∗))), RH
M (x∗) − RH

M (y∗)〉 ≥ 0.

It follows that

‖x∗
− y∗

‖‖RH
M (x∗) − RH

M (y∗)‖ ≥ 〈x∗
− y∗, RH

M (x∗) − RH
M (y∗)〉

≥ 〈H(RH
M (x∗)) − H(RH

M (y∗)), RH
M (x∗) − RH

M (y∗)〉

≥ γ ‖RH
M (x∗) − RH

M (y∗)‖2

and so

‖RH
M (x∗) − RH

M (y∗)‖ ≤
1
γ

‖x∗
− y∗

‖.

(2) If H : B → B∗ is strictly monotone and M : B → 2B∗

is strongly monotone with constant β > 0, then

1
λ

〈x∗
− H(RH

M (x∗)) − (y∗
− H(RH

M (y∗))), RH
M (x∗) − RH

M (y∗)〉 ≥ β‖RH
M (x∗) − RH

M (y∗)‖2.

It follows that

‖x∗
− y∗

‖‖RH
M (x∗) − RH

M (y∗)‖ ≥ 〈x∗
− y∗, RH

M (x∗) − RH
M (y∗)〉 + λβ‖RH

M (x∗) − RH
M (y∗)‖2

≥ 〈H(RH
M (x∗)) − H(RH

M (y∗)), RH
M (x∗) − RH

M (y∗)〉

+ λβ‖RH
M (x∗) − RH

M (y∗)‖2

≥ λβ‖RH
M (x∗) − RH

M (y∗)‖2

and this implies

‖RH
M (x∗) − RH

M (y∗)‖ ≤
1
λβ

‖x∗
− y∗

‖.

This completes the proof. �

From the definition of RH
M and Theorem 3.1, we have the following result.

Theorem 3.3. Let g : B → B be a single-valued mapping, H : B → B∗ a strictly monotone mapping, and
M : B → 2B∗

a general H-monotone mapping. Then u ∈ B is a solution of problem (2.1) if and only if

g(u) = RH
M [H(g(u)) − λA(u)],

where RH
M = (H + λM)−1 and λ > 0 is a constant.

Based on Theorem 3.3, we construct the following iterative algorithm for problem (2.1).

Algorithm 3.1. For any given u0 ∈ B, the iterative {un} ⊂ B is defined by

un+1 = un − g(un) + RH
M [H(g(un)) − λA(un)], n = 0, 1, 2, . . . . (3.2)

Now, we give some sufficient conditions which guarantee the convergence of the iterative sequences generated by
Algorithm 3.1.
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Theorem 3.4. Let B be a uniformly smooth Banach space with ρB(t) ≤ Ct2 for some C > 0, and B∗ be the dual
space of B. Let g : B → B be a k-strongly accretive and δ-Lipschitz continuous mapping, H : B → B∗ a strictly
monotone and s-Lipschitz continuous mapping, and M : B → 2B∗

a general H-monotone and β-strongly monotone
mapping. Assume A : B → B∗ is α-Lipschitz continuous and that there exists some constant λ > 0 such that

λ >
sδ

β − α − β
√

1 − 2k + 64Cδ2
, β − α − β

√
1 − 2k + 64Cδ2 > 0. (3.3)

Then the iterative sequence {un} generated by Algorithm 3.1 converges strongly to the unique solution of problem
(2.1).

Proof. By Algorithm 3.1 and Theorem 3.2,

‖un+1 − un‖ = ‖un − g(un) + RH
M [H(g(un)) − λA(un)] − (un−1 − g(un−1)

+ RH
M [H(g(un−1)) − λA(un−1)])‖

≤ ‖un − un−1 − g(un) + g(un−1)‖ +
1
λβ

‖H(g(un)) − λA(un)

− (H(g(un−1)) − λA(un−1))‖

≤ ‖un − un−1 − g(un) + g(un−1)‖ +
1
λβ

‖H(g(un)) − H(g(un−1))‖

+
1
λβ

‖A(un) − A(un−1)‖

≤ ‖un − un−1 − g(un) + g(un−1)‖ +
sδ + λα

λβ
‖un − un−1‖. (3.4)

Since g : B → B is k-strongly accretive and B is uniformly smooth Banach space, by Proposition 2.1, we have

‖un − un−1 − g(un) + g(un−1)‖
2

≤ ‖un − un−1‖
2
+ 2〈J (un − un−1 − (g(un) − g(un−1))),

− (g(un) − g(un−1))〉

= ‖un − un−1‖
2
− 2〈J (un − un−1), g(un) − g(un−1)〉

+ 2〈J (un − un−1 − (g(un) − g(un−1))) − J (un − un−1),

− (g(un) − g(un−1))〉

≤ ‖un − un−1‖
2
− 2k‖un − un−1‖

2
+ 4d2ρB(4‖g(un) − g(un−1)‖/d)

≤ (1 − 2k)‖un − un−1‖
2
+ 64C‖g(un) − g(un−1)‖

2

≤ (1 − 2k + 64Cδ2)‖un − un−1‖
2, (3.5)

where J : B → B∗ is the normalized duality mapping. Combining (3.4) with (3.5), one has

‖un+1 − un‖ ≤ µ‖un − un−1‖, (3.6)

where

µ =

√
1 − 2k + 64Cδ2 +

sδ + λα

λβ
.

From (3.3) and (3.6), we know 0 < µ < 1 and so {un} is a Cauchy sequence. Let un → u as n → ∞. It follows from
(3.2) that

g(u) = RH
M [H(g(u)) − λA(u)]. (3.7)

By Theorem 3.3, u is a solution of problem (2.1).
Let u∗ be another solution of problem (2.1). Then Theorem 3.3 implies that

g(u∗) = RH
M [H(g(u∗)) − λA(u∗)]. (3.8)
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By (3.7) and (3.8) and the similar arguments as above, we have

‖u − u∗
‖ ≤ µ‖u − u∗

‖,

where

µ =

√
1 − 2k + 64Cδ2 +

sδ + λα

λβ
.

Since 0 < µ < 1, u = u∗, and so u is the unique solution of problem (2.1). �
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