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1. Introduction
In this paper we consider the local well-posedness of the Cauchy problem for a fifth-order shallow water wave equation

U + Uxxxx + (1 _a’%)%(uz)zo, XxeR, t>0, (1.1)
u(x, 0) =uo(x).

The equation in (1.1) was introduced by Tian et al. in [17] for the purpose of understanding the role of nonlinear dispersive
and nonlinear convection effects in K(2, 2, 1). They established the local well-posedness of the Cauchy problem (1.1) in H®
with any s > —% by the Fourier restriction norm method.

In [4], the authors proved local well-posedness of the Cauchy problem (1.1) in HS for s > —5/4 by following the ideas
of [k; Z]-multiplier [15]. And some ill-posedness in H® for s < —5/4 is established by a general principle of Bejenaru and
Tao [1].

The purpose of this paper is to extend the already-established local well-posedness in the range s > —5/4 of this initial
value problem to s = —5/4. We obtain that

Theorem 1.1. The Cauchy problem (1.1) is locally well-posed in H=>/4(R).

Notation and definitions

In this paper we will use C and c to denote constants which are not necessarily the same at each occurrence. For
X,y € R, x ~y means that there exist C1,Cy > 0 such that Cq|x| < |y| < C2]x|. For f € S’ we denote by f or F(f) the
Fourier transform of f for both spatial and time variables,
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fE = / e XeIT £(x 1) dxdt.
]RZ

We denote by Fy the Fourier transform on spatial variable and if there is no confusion, we still write 7 = F. Let Z and N
be the sets of integers and natural numbers, respectively. Z, = NU {0}. For k € Z let

Le={& &l [20 2]} k=1, lo={&: 1g1<2).

Let 19:R — [0, 1] denote an even smooth function supported in [—8/5,8/5] and equal to 1 in [—5/4,5/4]. We define

W (t) = no(t). For k € Z let ni(&) = no(&/2%) — no(€/21) if k> 1 and (&) =0 if k < —1. For k € Z let x(€) = no(&/2%) —
no(&/2%1). Roughly speaking, {xx}kez is the homogeneous decomposition function sequence and {Mk}kez, is the non-

homogeneous decomposition function sequence to the frequency space. For k € Z let Py denote the operator on L%(R)
defined by
Pru(§) = mi(§)u(8).

By a slight abuse of notation we also define the operator Py on L?>(R x R) by the formula F(Pyu) (£, T) = ne(£) F ) (&, T).
For l € Z let

Pg=Y P Py=)Y P

k<l k>l

Thus we see that P<g = Po.
Let

w(§) = —§ (12)
be dispersion relation associated to Eq. (1.1). For ¢ € S'(R), we denote by W (t)¢ the linear solution of (1.1) which is defined
by

Fe(W (D)) (&) = exp[iw©)t]p(), VteR.

We define the Lebesgue spaces L{_,L¥ and LYL}_; by the norms

e e = DF e iy W gpae, = D19 M- (13)

tel

If I =R we simply write LYLY and LYL{. We will make use of the X*? norm associated to Eq. (1.1) which is given by

lullxss = (7 — @) (€ TE D 220,

where () = (14 -|?)V/2. The spaces X! turn out to be very useful in the study of low-regularity theory for the dispersive
equations. These spaces were first used to systematically study nonlinear dispersive wave problems by Bourgain [2] and
developed by Kenig, Ponce and Vega [11] and Tao [15]. Klainerman and Machedon [14] used similar ideas in their study of
the nonlinear wave equation.

In applications we usually apply X5? space for b very close to 1/2. In the case b = 1/2 one has a good substitute —
I' type X5 space. For k € Z, we define the dyadic X5"-type normed spaces Xy = X (R?),

o
Xi={ f € L*(R?): f(¢, 7)issupportedin Iy x Rand || f|lx, = > 2% n;(t — @) f|,2 ¢ (1.4)
j=0
Then we define the I'-analogue of X space FS by
2
lullfs = 2% [me@FW]y, (15)

k>0

Structures of this kind of spaces were introduced, for instance, in [16,9] and [10]. The space F* is better than X*1/2 in many
situations for some reasons (for example, see [5,8]). From the definition of Xj, we see that for any | € Z; and fi € Xj (see
also [10]),

3 22 H,,j(r —w(g))/|fk(§, )27 (1 + 27 e =) tar
j=0

2 S il (16)

Hence for any | € Z, to € R, f € Xk, and y € S(R), then
|7y @' =) - 77 fil |, S I ellxi (17)
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In order to avoid some logarithmic divergence, we need to use a weaker norm for the low frequency
llull gy = lull 200
It is easy to see from Lemma 2.5 in Section 2 that
[ TIo(t)Pgouon S IP<otllx,- (1.8)

On the other hand, for any 1 <q < oo and 2 <r < oo we have

| P<otll}a

<
¢ LN o ST IP<oull2pe0_ - (1.9)

[tI<T [tI<T

For —5/4 < s <0, we define the our resolution spaces

FS = {u e S'(R?): ullZ, = Y 2% @ Fan [, + |P<ow]3, < oo}.
k>1

For T > 0, we define the time-localized spaces F*(T):
lullgsery :VV‘Q£S{”P<°””L%L37<T + IP>1wllgs, w(t) =u(t) on [T, T1}. (1.10)
Let a1, az,a3 € R. It will be convenient to define the quantities dmax > Gmed > dmin to be the maximum, median, and
minimum of aq,ay, a3 respectively. Usually we use kq,k2, k3 and ji, j2, j3 to denote integers, N; = 2% and L; = 2Ji for
i=1, 2,3 to denote dyadic numbers.

2. Local well-posedness at H~5/4

To prove local well-posedness, we use a up-to-date X5:’-method. The first step is to prove linear estimates, for its proof
we refer the readers to [5].

Proposition 2.1 (Linear estimates).

(a) Assume s € R and ¢ € HS. Then there exists C > 0 such that

[ OW©)¢| z < Cligllns. (2.11)
(b) Assume s € R, k € Z,. and u satisfies (i + T — w(&)) "1 F(u) € Xi. Then there exists C > 0 such that

<Cl(i+7-0@)  Faly, (212)

t
H]—'[w(t) / Wt —s)(u(s)) ds:|
0

X
Then the remaining task is to show bilinear estimates. We will need symmetric estimates which will be used to prove
bilinear estimates. For &1, € R and w: R — R as in (1.2) let

2(81,86) = w@1) + w(é2) — w(é1 +§2). (213)

This is the resonance function that plays a crucial role in the bilinear estimate of the XS’-type space. See [15] for a
comprehensive discussion. For compactly supported nonnegative functions f, g, h € L>(R x R) let

J(f. g h) =/f(§1a/t1)g(§z7ﬂz)h($1 + &2, b1 + t2 + (&1, §2)) dEr dEr dur djus.
R4

We will apply to function fj, j; € L2(R x R) are nonnegative functions supported in [2ki—1, 2kit1] x I, i=1,2,3.1t is easy
to see that J(fk,.j;» fis.jps fis,j3) =0 unless

kmed — kmax| <5, 2/m* ~ max(2/med |2 (&1, £))). (214)

We give an estimate on the resonance function in the following proposition that follows from simple calculations.

Proposition 2.2. Assume max(|&1], |&2], |&1 + &2|) > 10. Then
|21, )| ~ 18 max& Imin,

where

1§ Imax = max(l&1], &2], 1€1 +&21),  |€|min = min(|&1], 1621, 51 + &21).
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In [6] the author actually proved the following lemma, also see [3].

Lemma 2.3. Assume w = —&£° and k; € Z, j; € Z4, Ny =25, L; = 2Ji fori =1, 2, 3. Let friji € L2(R x R) are nonnegative functions
supported in [2ki =1, 2K+ x [}, i =1,2,3. Then

(a) Forany ky,kz,k3 € Z and j1, j2, j3 € Zy,

3
.](fk],j] ’ sz,jzs fkg,jg) g Cz]min/zzkmin/z 1_[ ”fki,ji ||L2' (215)
i=1
(b) If Nmin < Nmed ~ Nmax and (ki ji) # (Kmin, jmax) foralli=1,2,3, or for some i € {1, 2, 3}, (ki, ji) = (kmin jmax),
3

J (v fia.izs Fia jz) < C2UVH2H/ 27 3kmax/20= GO T il 2. (216)
i=1

(c) Forany ki1, ka2, ks € Z with Npin ~ Nmed ~ Nmax > 1 and ju, j2, j3 € Z4
Tty Fio g o js) < €2Imn/20dmea/ =3xS [T e . (217)
i=1

Next, we will prove some dyadic bilinear estimates. First we need the estimates for the linear solution to Eq. (1.1).

Lemma 2.4. Let | C R be an interval with |I| <1,k € Z and k > 10. Then for all ¢ € S(R) we have

|W© P9, S22 (2.18)
[WOP<@)] 210 <27 l1ll12. (219)
[W©OPD ] g1 2719112, (2220)
WO P 012 S 2710112, (2.21)

where (q, 1) satisfles2 < q,r <ooand2/q=1/2 —1/r.

Proof. For the first inequality, see [7], for the second see [12]. For the third we use the results in [13], for the last we use
the results in [12] by noting that |’ (£)| ~ 2% if |&| ~ 2k, O

Using the extension lemma in [5], then we get immediately

Lemma 2.5. Let I C R be an interval with |I| <1, k € Z,. and k > 10. Then for all u € S(R?) we have

1Pyl oy S 279 Prutl . (2.22)
IP<ktllzpee, S 2241 P <l 2 (223)
1Pyl g0 < 2441 Prtll 2, (2.24)
1Pkl gop2 S 2721 Peuill 2, (2.25)

where (q,r) satisfles2 < q,r <ooand2/q=1/2 —1/r.
Proposition 2.6 (High-low).
(@) Ifk > 10, |k — ko| <5, then forany u, v € F°
i+ 7 — @®) ™ m@ie ) Peoti * Y O P, v |, S IP<ottll 2y I1Pig Vi, (2.26)
(b) Ifk > 10, |k —ky| <5and 1 <k; <k—9. Then forany u,v € F°

. _‘l . —_— —_— _ _ —_— —_—
[(i+7 —@®) " m@ig ) Pryux Py, k27227 Pullx,, 1Py, vlx, - (227)
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Proof. For simplicity of notations we assume k = kj. For part (a), it follows from the definition of X} that

[+ 7 — @) m@ig &) Poux y O Pev |y, S22 272de | Poux y ©OP, v - (2.28)
j=0 '

From Plancherel’s equality and Lemma 2.5 we get

22| Pou x v (6) Py, <2%p P S|P Pyv
| Pou v P, vl 2 S 2% IPoulliguee I Pivllggerz < 1 Potll iz 1PVl

which is part (a) as desired. For part (b), from the definition we get

. -1 . —_ i
[(i+7 — @)™ m©)ig €) Pe,ux Prv |, $2% Y 2752 00p, 1 -t gy * Vi, . (2.29)
ji=0
where
Uk, jy = M ENjy (T = 0@)T, vk j, = (ENj, (T — ©(©))V. (2.30)

From Proposition 2.2 and (2.14) we may assume jmax = 4k + ki — 10 in the summation on the right-hand side of (2.29). We
may also assume j1, jo, j3 < 10k, since otherwise we will apply the trivial estimates

2jmin/221<min/2

11Dy, 5, ~ Uk, jy * Vi joll2 S Nk, iy N2k, i, 125

then there is a 27% to spare which suffices to give the bound (2.27). Thus by applying (2.16) we get
p) —j3/2
223 27BPYp, g gy x Vi, 12
J1,J2,j320
21 —§3/29imin/29—3k/29—k1 /25 jmed/2
< 2% Z 2=43/29Jmin/29—3k/29—k1/2 imed/ luky jy 1211 VK jy 12
J1.J2,j320
21 39—3k/29—k1/29—jmax/2\| P, 11 P
PAEEED D S | P Y
Jmax =>4k+k1—10

SIP272271 P ull g 1PV . (231)

which completes the proof of the proposition. O
Proposition 2.7. If k > 10, |k — ka| <5 and k — 9 < ky <k + 10, then forany u, v € F~>/4

. -1 . — —_ _ —_— —_
[ 47— 0®) @& @ P Pigv]y S 27 Pettll 1Py Vil x,,- (232)

Proof. As in the proof of Proposition 2.6 we assume k =k, =k; and it follows from the definition of X}, that

. -1 . - _i
[(i+7 = 0®) m @ig@) PPy, <2%0 30 272, g, vics s (2.33)
J1,2,J320

where uy j,, Vi j, are as in (2.30) and we may assume jmax > 5k —20 and j1, j2, j3 < 10k in the summation. Applying (2.17)
we get

2k —j1/2
22 3 272, g, x vl
J1.J2,j320

< ( Z + Z + Z 2—]1/225’</42]min/22]'meul/4”ukJ2 2l Vi js ll2
jl=jmax j2=jmax j3:jmax
=1+ 1+

For the contribution of I, since it is easy to get the bound, thus we omit the details. We only need to bound II in view of
the symmetry. We get that

—§1/295k/45 jmin/2 jmed /4
< Z + Z 2—01/295k/45 imin/29 jmed/ Ik, 211V, js 12
J2=Jmax, J1<J3  J2=Jmax.j12]J3
=1y + 1.

For the contribution of II;, by summing on j; we have
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s Y 2K RBA ) allv gy l2
J2=Jmax,J1<J3
5k/4+j3/2 —5k/4\/ D 1 oo
S 2P vl S 271 Prullx NI Piy Vil
j225’<720,j3>0

which is acceptable. For the contribution of II,, we have

—j1/295k/44j3/2]j1/4
S Y 2PNy g v s N2
j2:fmax,j1213
S 274 Pyl x, 1Py vl x4, -

Therefore, we complete the proof of the proposition. 0O
For the low-low interaction, it is the same as the KdV case [5].
Proposition 2.8 (Low-low). If 0 < k1, k2, k3 < 100, then for any u, v € F*
|G+ 7 — 0®) ™" nie )i ()9 O Py ) # Piy (V) g, S 1Prytll o3 1 Piy Vil o
Now we consider the high-high interactions. This is the only case where the restriction comes from.
Proposition 2.9 (High-high). Ifk > 10, |k —ko| <5 and 1 <k; <k —9, then forany u, v € F°

. _l . — — _ _ — —_—
[(i+7 = 0®) e @i @) Prux Py 2 (272 4,27 %242) 1Bt 1 Pr Vil xi, -

Proof. We assume k =k, and it follows from the definition of Xj, that

. -1 . = _i
[(i+7 = 0®) m @ig @) Paus Py, <250 30 272y, # vic s,
Jj1,J2,J320

(2.34)

(2.35)

(2.36)

where uy j,, Vi, j, are as in (2.30). For the same reasons as in the proof of Proposition 2.6 we may assume jmax > 4k+kq —10
and ji, j2, j3 < 10k. We will bound the right-hand side of (2.36) case by case. The first case is that j; = jpmax in the

summation. Then we apply (2.16) and get that
21 —j1/2
2 N 2P p, g, Vi Dl
J1,J2,j320

2k —Jj1/29—3k/29—k1/259(j2+]j3)/2
S Y Y 2R Ry g g vi s 2
Jj124k-+k1 =10 j2,j320

S 2722 P x| Py vl i, »

which is acceptable. If j, = jmax, then in this case we have better estimate for the characterization multiplier. By applying

(2.16) we get

2k —j1/2
29 N 27T p, g, vis D2
Jj1,J2,i3=0

VDY Do 27Uy v s D2
Jj224k+k1—10 j1 <10k, j320

—4k~3k1/2 D 3y D
S k27232 Prull 1Py v .,

where in the last inequality we use j; < 10k. The last case j3 = jmax is identical to the case j» = jmax from symmetry.

Therefore, we complete the proof of the proposition. 0O
In order to avoid the logarithmic divergence, we prove the following

Proposition 2.10 (X, estimate). Let |k — kp| < 5 and ky > 10. Then we have for all u, v € F°

7l7k1 —_ —_—
S 2727 Pryullx, Py ullx, -
L2L%°
Xt

t
H 0) / W (t —s)P<odx(1 — af)% [Pr,u(s) Py, v(s)]ds
0
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Proof. Denote Q (u,v) =1 (t) fot W (t —s)Podx(1 — 83)% [Py, u(s) P, v(s)]ds. By straightforward computations we get

(T —7) = (T — )

FlQw, w]E 1 =c/ Ld ) n0(£)iE (&) dt’
R
x / Pr (1, T1) Pry v (&2, T2).

E=E1+6,7'=11+T2

Fixing & € R, we decompose the hyperplane I' :={§ =& + &, T’ =11 + 12} as follows

r={g g2 *)nr,
D={gl>2% |t -o@E)| <3 2%E i=1,2}nT;
rs={lgl>27% o —w@E)| 23 2% nr;
M= {lgl>27% |5 - wE&)|23- 2%} nT.
Then we get

1

t
f{$@:/Wﬁ—ﬂP@@@—ﬂbjthQHﬂ@ﬂ$}@Jﬁ:Ar+h+4h+Am
0

where

Al :C/ V(T — TT) — ¥ -w@)
R

10(€)i& (£) / Pr,u(é1, 1) Pry v (&2, T2) dT'.

I

"—w(§)
We consider first the contribution of the term A;. Using Lemma 2.5 and Proposition 2.1(b), we get

”‘7_—71(A1)||L,2(Lt°° S

(i+7 — w®) 'no®)i& ) / Pr,u(E1, T1) P, v (&2, T2)

X
I 0

Since in the area A1 we have [&] < 2741 thus we get

'(i+r’—w(§))‘1no<s>is<s> / Pr,u(E1, T1) Py v (&2, T2)

Aq

—J3/29ks . .
N Z Z 2 2 Z Iy, jy = Uiy iy * Vioojo ll12

k3 <—4k1+10 j3>0 j120,j220

Xo

where
Uy 1 6, D) = iy O, (T — 0@)UE T, iy jy (€. T) = My EINj, (T — 0(E))V(E, T).
Using (2.15), then we get
|7 Al s D0 D222 220 Ry Vi, 2
k3 <—4k1+10j; >0
S 275 Pyl 1Pyl »

which suffices to give the bound for the term Aj.
Next we consider the contribution of the term As. As for the term A, using Lemma 2.5 and Proposition 2.1(b), we get

#7105 |

(i+7 — &) @)t &) / Pr,u(E1, 1) P, v (&2, T2)

I3

—J3/29k . .
SZ ZZ e2n Z TDyy j * Ukyojy * Voo ll22-

k3<0 j3>0 j120,j220

Xo

Clearly we may assume j3 < 10kq in the summation above. Using (2.16), then we get
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-1 k3~j2/29—3k
|77 A3 gy S D > 2620212973 i 2 Vi g, N 2
k3<0 j1>k3+4k1—10,j2,j320

—5k; — —
S k270 P ullx NI Piy g, »

which suffices to give the bound for the term As3. From symmetry, the bound for the term A4 is the same as As.
Now we consider the contribution of the term A,. From the proof of the dyadic bilinear estimates, we know this term is
the main contribution. By computation we get

¢

A = [ Oneite) [ [ v dn drads
0 R2 §=51162

where
Uiy (51, T1) = My GD 117, ooy <c3.2%1 16y U E T1),
Vi (62, T2) = M, (62) 111, — oy | 3.2%1 ) V (62, T2)-

By a change of variable 7{ = 71 — (&), T; = T2 — (&), we get

eit@EDNF0(E)-0©)) _ p—it(11+12)

1+ 10 —wl) +wE)+o’)

i (A2) =y ()" O no©)E (&) / elt(mtm) /
R2 §=611+&
X U, (51, T1 + 0(€)) v, (&2, T2 + 0(&)) dTy dT2
=7 ') - FaD.

For the contribution of the term II, we have

F = / P OO o)k &) dt ds.
RZ

/ Ui, (61, T1 + @(§1)) Vi, (52, T2 + w(£2))

1+ T —wé)+wé)+w’)
E=61+&

Since in the support of uy, and ug, we have |71 + T2 — w(&) + @(£1) + w(&2)] ~ 2%1|£|, then we get from Lemma 2.4 that

_ Ui, (61, T1 + 0(51)) Vi, (62, T2 + @(£2))
|77 D] 2y < / H f £(g) 2 dry dr,
x 1+ -0l +ol)+od) |2
R2 &=&1t& 5
< 7l7k1 5 B
S22 Pyl NPyt x, -
To prove the proposition, it remains to prove the following
[ 771D zie £ 27721 Prq ullxg, 1Py, -
Compare the term I with the following term I’:
1( /) ito) it 4%y) eit(@E+wE)—w(§))
F) = v On@ste) [ e
‘ —w($) +wé) +wé2)

R2 §=61+62
X Uy, (61, T1 + (&) Vi, (62, T2 + ©(&2)) dT1 dTa.
Since on the hyperplane & = &; + & one has

—w(E + &)+ 0E) + &) = 5168 (5] + 7 +£%) = CE158 (=215 + 282).

In the integral area, we have 22| « |£1&2], thus we get

1 L 282 )"
2616 +282 2616 g(zasz '

Inserting this into I’ we have

0o 2\n
}_;1 (1/) — YO0 (&) Z /eit(r1+t2) / eit(w(&)—%—w(éz))%
n=0 p> §=611+&

X Uy, (61, T1 + @0(81)) Vi, (62, T2 + ©(&2)) dT1 dTa.
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Since it is easy to see that (actually we need a smooth version of 1) YA >0,
~1
|7 g n P 2o S ull 20,
and setting

Ffr)E) =Pru(E. 1 +0®).  F(gr) ) =Py (. 2 + 0(6)),

thus we get from Lemma 2.4 that

70 g = 2 [ IW @32 W 08 g g

nORz

<ch / [W O "2 fr, | gy [ W03 " g, | gy dr T
n=0 R2
1 —_— —_—
<272 Py ulx,, 1 Phy il -

which gives the bound for the term If}.
To prove the proposition, it remains to prove the following

|77 (1= 1) 210 S27791Pk Ul x,, IPhg i, -
Since in the integral area we have |1;| <« 2%1|£|, i =1, 2, thus on the hyperplane & = & + & we have

1 1
T+ 0 -0@E) +oE) toE) —oE)+oé)+oE)

=y 1 ( T+ 1 )”
B = —w(€) +wér) +wé) \ —wE) +wé) +wé)

S A 72 )"( T+ 1T )” ( 262 )ff
; (6162)2%¢ kZ()(Z&Ez (5162)%¢ Z l_[ 26185

..... Jjn=0 i=1

The purpose of decomposing this is to make the variable separately, thus then we can apply Lemma 2.4. Then by decom-
posing low frequency we get

)= Y wmo(e) [ et 3 X )
n=1 R2

2k327%1 max(|ty|.|t2])

P 1

X / el +e§2)uk1 (51,1'1 +$13)sz(§2,‘172 +§§)m

§=5116
00 k n Ji
2g2>(z1+r2> (252>

X d‘L’] d‘L’z.

g(zflfz (&1862)%¢ Z -0 11_! 2616
Using the fact that y, (£)(£/2%3)~ is a multiplier for the space L,%L?O and as for the term I, we get
-1
|71 =1) ] e
o
<Y > CM|1y + T2 s 274k =T 2 (£ | L | F gy | 2 dTrd s

n=1p2 2%33527%1 max(|r,|72))
—7k1/20 . o
S 2772 Pyyullx,, IPiytlx, -

Therefore, we complete the proof of the proposition. O

For u, v € FS we define the bilinear operator

t
B(u,v):1/r<%)/W(t—r)8x(1 —83)%(1//2(‘[)u(‘[)-v(1'))d‘t. (2.37)
0
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In order to apply a fixed point argument, all the issues are then reduced to show the boundness of B : F$ x F$ — FS.

Proposition 2.11 (Bilinear estimates). Assume —5/4 < s < 0. Then there exists C > 0 such that

|B@, V)| s < C(Nutllps IVl 574 + Il p-sallVIIEs) (2.38)

hold for any u, v € FS.

Proof. In light of the argument for [5, Proposition 4.2], we check the proposition as follows. Thanks to
[Batw)[* = [P<oB@. w3, + 3 2% |m & F[Ba W], . (239)
ky>1

we are about to control the two terms of the right-hand side of (2.39).
Using the decomposition of u, v we have

[P<oB@, Wz, = > [P<oB(Piytt, Pisv) g,
ka.k3 >0

thereby considering two cases:
(i) If max(ks, k3) < 10, using
[0 P<ou 5, < IIP<oullx,
along with Propositions 2.8 and 2.1, we have
| P<oB(Piyu. Py V) 5, < 11Piyttll e 1211 Prs Vil o 2
whence yielding
[P<oB, V5, S (lullsllvilp-sa + lullg-s/slvIzs). (2:40)

(ii) If max(ky, k3) > 10, then |k, — k3| < 5 and hence by Proposition 2.10,

[PeoBw vz, < 3 27R[FEPR]y [FPvy,
\X2—1<3|<5, kz,k3>10 > 3

S lullp-sallvIF-s/a
S (lullgsvilg-sa + lullg-sallvilzs). (2.41)
Now a combination of (2.40) and (2.41) deduces
|P<oB(u, V)H5<0 SlullgsvIig-sa + lullg-sallvilgs- (2.42)

Next, let us control the second part at the right-hand side of (2.39). To do so, owing to symmetry we may assume
ko < k3. Decomposing u and v again and using Proposition 2.1(b), we see

I ©F[Bw. ]|y,

< 2 I @FBPou. Puv] g,

kz,k3>0
S 2 47 -0@®) m ©iEEYOPGus OV, -
kz,k3>0

(iii) If kmax < 20, then an application of Proposition 2.8 derives

> lli+7—w®) n©iEEVOPLus Y OPLY]

kz,kg }0
S D IPulep 1Pk Vo2
kmax <20

Note that

P < [IPsvilx, whenk>1,
I kV”L?OL)Z(N ||Pk3v||5(k when k = 0.
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So we get

2
> 22"”[ 3 (i 47— 0@) i ©)iE )Y 0 Pru 1/f<t>Pk3vHXk]]

k]?l kz,k320
2
S (Nullp-sallviigs)” (2.43)
(iv) If kmax > 20, then three subcases are considered:

(iv)1: k1 — k3| <5, ko <ky —10;
(iv)2: k1 — k3| <5, k1 —9<ky <ks;
(iv)s: |ko — k3| <5, 1<k;<ky—5.

For (iv)1, we use Proposition 2.6(a) with k; = 0 and (b) with k; > 1 to get (2.43). For (iv);, we use Proposition 2.7 to
establish (2.43). For (iv)3, we apply Proposition 2.9 to achieve (2.43).
A combination of (iii) and (iv) implies

> 2% g @ F(B@. ][, < Nullp-sslvilps (2.44)
k]}l

Finally, we bring (2.42) and (2.44) into (2.39) to produce the bilinear estimate (2.38). O

Keeping the previous linear estimates in Proposition 2.1 and bilinear estimate in Proposition 2.11 in mind, we can use
the standard fixed point argument (for the bounded bilinear operator B:F* x F* — F°) to find a unique solution u €
C([0, T1; H~>/4(R)) of (1.1) for some T > 0 depending on the initial data ug, thereby finishing the proof of Theorem 1.1.
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