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Identi�cation of a piecewise constant coe�cient
in the beam equation
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Abstract

In this paper we recover an unknown piecewise constant coe�cient in the beam equation by a given boundary input–
output map. We extend the boundary control method in inverse problems to the case of the string and beam equations
with nonsmooth coe�cients and reduce the dynamical inverse problem to a spectral one. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Recently considerable interest has been demonstrated by specialists in control theory in modeling,
control and identi�cation problems for constrained layer structures (see, e.g. [10,7,6]). Particularly, in
the book [7] a cantilevered beam with piezoceramic patches is analysed for parameter estimation. One
estimates such material parameters as Young’s modulus, sensor constants related to the piezoceramic
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patches. Estimation of these parameters is based on dynamic observations of the governing system.
Beam acceleration, velocity data, displacement data may be taken at various locations of the beam
depending on the measuring devices at hand. These observations are then used in an optimization
problem where a least-squares output functional of the parameters in question is considered.
The present article discusses the possibility of determining the location of the piezoceramic patches

as well as the level of voltages in them using boundary observation. We employ an approach which
is based on deep connections between inverse problems of mathematical physics and control theory
of distributed parameter systems, the so-called BC (boundary control) method. The method was
proposed in [8] for the wave equation. Then it was extended to vector hyperbolic equations in
one-dimensional space in [3], to general symmetric hyperbolic equations in [11], to the heat equation
in [9] (see also [4]), and to nonself-adjoint inverse problems in [2]. The BC method is proved to
be very e�cient not only from the theoretical but also from the numerical viewpoint. It does not
involve nonlinear optimization procedures, all its main steps are linear.
In [1], we discussed its application to the equation

92u
9t2 +

( 9
9xa(x)

9
9x

)2
u= 0

with smooth function a(x). In the present paper we generalize the method to the case of nonsmooth
coe�cients. The beam and the string equations with piecewise constant coe�cients are considered
and both dynamical and spectral inverse problems are studied. In dynamical inverse problem one
has to recover unknown coe�cient via given Dirichlet-to-Neumann map whereas in spectral inverse
problem eigenvalues of the operator of the system and ‘traces’ of eigenfunctions are supposed to
be given.
Let 0 = x0¡x1¡ · · ·¡xN = ‘, I = (0; ‘), Ij = (xj−1; xj), T; pj ¿ 0, j = 1; : : : ; N .
We consider a system described by the equations

92u(x; t)
9t2 + p2j

94u(x; t)
9x4 = 0; x∈ Ij; t ∈ (0; T ) (1)

with the boundary conditions

u(0; t) = u(‘; t) = 0;

p1
92u(0; t)
9x2 = f(t);

92u(‘; t)
9x2 = 0;

(2)

additional compatibility conditions

u(xj − 0; t) = u(xj + 0; t);
9u
9x (xj − 0; t) =

9u
9x (xj + 0; t); (3)

pj
92u
9x2 (xj − 0; t) = pj+1

92u
9x2 (xj + 0; t);

pj
93u
9x3 (xj − 0; t) = pj+1

93u
9x3 (xj + 0; t);

(4)

j = 1; : : : ; N − 1
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and zero initial conditions

u(x; 0) =
9u
9t (x; 0) = 0: (5)

We suppose that f∈FT := L2(0; T ) and introduce in this space a response operator RT ,

(RTf)(t) =
9u
9x (0; t): (6)

The problem under consideration is to recover unknown xj (j = 1; : : : ; N − 1) and pj (j = 1; : : : ; N )
by the given operator RT . We prove that this problem has a unique solution for any T ¿ 0 and
give a constructive method to �nd it. Dynamical inverse problem for (1)–(6) is reduced to the
spectral one. Then we investigate the last problem with respect to the corresponding string equation
and recover {xj; pj}. As an important intermediate step of the solution of these inverse problems
we prove exact controllability of systems described by the beam or string equations with piecewise
constant coe�cients. Our approach allows also one to prove exact controllability of a string with
piecewise C1 density.

2. Operators L and L0

Let us introduce operator L,

(L’)(x) =−pj’′′(x); x∈ Ij; j = 1; : : : ; N (7)

with domain

D(L) = {’∈H 2(Ij); j = 1; : : : ; N :

0 = ’(xj − 0)− ’(xj + 0) = ’′(xj − 0)− ’′(xj + 0); j = 1; : : : ; N − 1}
and operator L0 acting by the same rule (7) with domain

D(L0) =D(L) ∩ H 1
0 (I):

Let H := L21=p(I) where p(x) :=pj, x∈ Ij, j = 1; : : : ; N , and ’,  ∈D(L0). Then

(L0’;  )H=−
N∑

j=1

∫ xj

xj−1

pj’′′ 
1
pj
dx

=−
N∑

j=1

∫ xj

xj−1

pj’ ′′ 1
pj
dx −

N∑
j=1

[’′ − ’ ′]xjxj−1

= (’;L0 )H:

Operator L0 is a self-adjoint operator in H; its eigenvalues �n and eigenfunctions ’n(x) satisfy the
relations [12]

�n ∼
(�n

L

)2
; L :=

N∑
j=1

∫ xj

xj−1

dx√
pj

; (8)

|’′
n(0)| � n; n= 1; 2; : : : (9)
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(we suppose that ‖’n‖H = 1). Formula (9) means that

0¡ inf
n∈N

|’′
n(0)|
n

6 sup
n∈N

|’′
n(0)|
n

¡∞:

Let us note that L is the optical length of a string which will be de�ned by (10). It will appear in
the corresponding controllability statement (see Proposition 1 below).
Operator L2

0 is a self-adjoint operator in H with domain

D(L2
0) = {’∈D(L0) ∩ H 4(Ij); j = 1; : : : ; N :

0 = ’′′(0) = ’′′(‘) = pj’′′(xj − 0)− pj+1’′′(xj + 0)

=pj’′′′(xj − 0)− pj+1’′′′(xj + 0); j = 1; : : : ; N − 1}
acting by the rule

(L2
0’)(x) = p2j’

(IV )(x); x∈ Ij; j = 1; 2; : : : ; N

and for ’,  ∈D(L2
0) we have

(L2
0’;  )H=

N∑
j=1

∫ xj

xj−1

p2j’
(IV ) 

1
pj
dx =

N∑
j=1

∫ xj

xj−1

p2j’ (IV )
1
pj
dx

+
N∑

j=1

pj[’′′′ − ’′′ ′ + ’′ ′′ − ’ ′′′]xjxj−1

= (’;L2
0 )H:

3. Regularity of solutions of initial boundary value problems

Let expression p(x)uxx(x; t), x∈ I , mean

pj
92u
9x2 (x; t); x∈ Ij; j = 1; 2; : : : ; N

with conditions (3) and expression p2(x)u(IV)(x; t) mean

p2j
94u
9x4 (x; t); x∈ Ij; j = 1; 2; : : : ; N;

with conditions (3) and (4).
Consider the following initial boundary value problem for the string equation:

wtt = p(x)wxx; x∈ I; t ∈ (0; T ); (10)

w(0; t) = f(t); w(‘; t) = 0; f∈FT ; (11)

w(x; 0) = wt(x; 0) = 0; x∈ I: (12)
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Let us look for the solution of problem (10)–(12) in the form

w(x; t) =
∞∑
n=1

an(t)’n(x):

Using standard calculations (see e.g. [13, 5, Chapter V]), we get

an(t) = ’′
n(0)

∫ t

0
f(�)

sin
√
�n(t − �)√
�n

d�; n∈N: (13)

From (8), (9), and (13) it follows [5, Chapter III] that
∞∑
n=1

|an(·)|2 ∈C[0; T ]

and hence

w∈C([0; T ];H):

Let us turn now to the initial boundary value problem (1)–(5). Looking for its solution in the form

u(x; t) =
∞∑
n=1

bn(t)’n(x);

we obtain the equalities

bn(t) =−’′
n(0)

∫ t

0
f(�)

sin �n(t − �)
�n

d�; n∈N: (14)

Relations (8), (9), and (14) imply that
∞∑
n=1

|bn(·)|2�n ∈C[0; T ]

and therefore

u∈C([0; T ];W1); W1 :=D(L1=2
0 ) = H 1

0 (I): (15)

4. Controllability of the string and beam equations

Our approach to the indenti�cation problem is based on controllability of the corresponding systems
for the string equation (10)–(12) and beam equation (1)–(5), where the property we need slightly
di�ers from the standard one.

Proposition 1. Let T6L; where L is the optical length of the string (10) de�ned in (8); and X (T )
is de�ned by the equality

T =
∫ X (T )

0

dx√
p(x)

; HT := L21=p(0; X (T )): (16)
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For any function z ∈HT ; there exists a unique control f∈FT such that

w(x; T ) = z(x) in HT : (17)

There are several ways to prove this statement. One of the simplest is to use equivalence of variables
x and t. In the domain (x; t)∈ [0; X (T )]× [0; T ] we consider Eq. (10) with compatibility conditions
(3) (replacing u by w), boundary condition (17) and initial conditions

w(X (T ); t) = wx(X (T ); t) = 0: (18)

New ‘time’, x, decreases from X (T ) to 0. In each interval Ij we have a standard initial boundary
value problem for the string equation with constant coe�cients and L2 Dirichlet boundary condition.
At points x = xj compatibility conditions provide continuity of the Cauchy data. Therefore, the
problem (10), (17), (18) has a unique solution w∈C([0; X (T )];FT ). The function f(t) :=w(0; t)
gives us the unique solution of control problem (17).
For T = L this result together with (13) implies that for any {�n}∈ ‘2, the moment problem

�n =
∫ L

0
f(L− t) sin

√
�n t dt

has the unique solution f∈FL. Therefore, the family {sin√�nt}n∈N forms a Riesz basis in FL (see,
e.g. [5, Chapter I]). Quite similarly, one can prove that the family {1} ∪ {cos√�nt}n∈N also forms
a Riesz basis in FL. Standard evenness-oddness arguments show that the family {1} ∪ {e±i

√
�nt}n∈N

forms in this case a Riesz basis in L2(−L; L) and, hence, in F2L.
This implies ‘regularity’ of distribution of {√�n} (see [5, Theorems II.4.12 and II.4.17]). Namely,

#{√�n: x6
√
�n ¡x + r}

r
→ L
�

as r → ∞ uniformly relative to x∈R. Using this fact, one can prove quite similar to [5, Theorem
II.4.18], that the family {e±i�nt}n∈N forms a Riesz basis in the closure of its linear span in FT

for any T ¿ 0. This is equivalent to exact controlability of system (1)–(5) for any T ¿ 0 [5,
Section III.3]. In particular, taking into account (15) we obtain

Proposition 2. For any T ¿ 0 and any y∈W1; there exists a control f∈FT such that solution
of system (1)–(5) satis�es the equality

u(x; T ) = y(x) in W1:

5. Connecting operator

In this section we introduce an operator which plays a central role in our approach to inverse
problems. This operator CT connects metrics of control space FT and space of solutions H.
We prove a very important fact that the operator CT can be explicitly expressed via the response
operator.
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Let us de�ne operator CT :FT →FT via its bilinear form setting

(CTf; g)FT := (uf(·; T ); ug(·; T ))H: (19)

Here uf and ug are solutions of (1)–(5) corresponding to the boundary controls f and g. Using
(14) we have

(uf(·; T ); ug(·; T ))H=
∞∑
n=1

bf
n (T )b

g
n(T )

=
∞∑
n=1

[’′
n(0)]

2
∫ T

0
f(t)

sin �n(T − t)
�n

dt
∫ T

0
g(s)

sin �n(T − s)
�n

ds: (20)

On the other hand,

(RTf)(t) = ux(0; t) =
∞∑
n=1

bf
n (t)’

′
n(0)

=−
∞∑
n=1

[’′
n(0)]

2
∫ t

0
f(�)

sin �n(t − �)
�n

d�: (21)

From (19)–(21) it follows that operator CT can be explicitly expressed via RT :

CT = 1
2(S

T )∗I2TR2TST : (22)

Here ST :FT →F2T is the operator of odd continuation,

(STf)(t) =




f(t); 06t6T;

−f(2T − t); T ¡ t62T;

I2T is the integration operator in F2T ,

(I2Tf)(t) =
∫ t

0
f(s) ds; 06t62T;

R2T is the response operator in F2T . It is easy to check that (ST )∗=2NTQ2T , where Q2T :F2T →F2T ,

(Q2Tf)(t) = 1
2 [f(t)− f(2T − t)];

N T :F2T →FT ; NTf = f|[0;T ]:
From (19) and (1) we have for f∈H 2

0 (0; T ) :=FT
0 , the following equalities:

(CTf′′; f)FT = (uf′′
(·; T ); uf(·; T ))H = (uf

tt (·; T ); uf(·; T ))H
=−(p2u(IV)(·; T ); uf(·; T ))H =−(L2uf(·; T ); uf(·; T ))H
=−(L2

0u
f(·; T ); uf(·; T ))H: (23)

We used the fact (which follows from (14)) that uf(·; T )∈D(L2
0) for f∈FT

0 .
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6. Variational principle

In Section 4 we proved that system (1)–(5) is exactly controllable; in particular, it is spectrally
controllable, i.e., for any n∈N there exists control fn ∈FT (it can be proved that it is possible to
�nd fn ∈FT

0 ) such that u
fn(x; T ) = ’n(x).

Relations (19), (23) imply

(CTfn; fn)FT = (’n; ’n)H = 1; (CTf′′
n ; fn)FT =−�2n: (24)

By the de�nition of fn we have

(RTfn)(T ) =
9
9xu

fn(x; T )
∣∣∣∣
x=0
= ’′

n(0): (25)

These relations allow us to �nd �n and ’′
n(0) using known operator R

T . We can do it in the following
way.
Spectral analysis of the operator L2

0 may be realized along with well known variational principle:

�21 = inf
’∈H;‖’‖2

H
=1
(L2

0’; ’)H;

’1 : (L2
0’1; ’1) = �21;

�2n = inf
’∈H; ‖’‖2

H
=1;(’;’j)H=0; j=1;:::; n−1

(L2
0’; ’)H;

’n : (L2
0’n; ’n) = �2n; n∈N:

Using relations (23), (24) and spectral controllability of system (1)–(5), we can realize this principle
using operator CT instead of L2

0:

�21 =−inf (CTf′′; f)FT

where the in�mum is taken over

f∈FT
0 ; (CTf; f)FT = 1

and

f1 : − (CTf′′
1 ; f1)FT = �21:

Further,

�2n =−inf (CTf′′; f)FT ;

where the in�mum is taken over

f∈FT
0 ; (CTf; f)FT = 1; (CTf; fj)FT ; j = 1; : : : ; n− 1

and

fn : − (CTf′′
n ; fn)FT = �2n; n∈N:

Thus we �nd �n; fn and, using (25), we can also �nd ’′
n(0); n∈N.
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7. Solution of the spectral inverse problem

In this section we show how to recover function p(x) (i.e., xj and pj) by known spectral data
{�n; ’′

n(0)}, n∈N.
Consider system (10)–(12) and introduce operator R̂

T
:FT →FT ,

(R̂
T
f)(t) = wf

x (0; t):

From (13) we have

(R̂
T
f)(t) =

∞∑
n=1

af
n (t)’

′
n(0) =

∞∑
n=1

[’′
n(0)]

2
∫ t

0
f(�)

sin
√
�n(t − �)√
�n

d�: (26)

So we know R̂
T
if we know the spectral data.

Introduce now operator Ĉ
T
:FT →FT ,

(Ĉ
T
f; g)FT = (wf(·; T ); wg(·; T ))H:

It is easy to see that

(Ĉ
T
f; g)FT =

∞∑
n=1

[’′
n(0)]

2
∫ T

0
f(t)

sin
√
�n(T − t)√
�n

dt
∫ T

0
g(s)

sin
√
�n(T − s)√
�n

ds: (27)

Similarly to (19)–(21) from (26), (27) we obtain the analog of the relation (22)

Ĉ
T
=− 1

2 (S
T )∗I2T R̂

2T
ST :

Let us �nd a control f0 such that

wf0 (x; T ) =



1; x6X (T );

0; x¿X (T ):

We have (for any g∈C∞
0 [0; T ])

(Ĉ
T
f0; g)FT = (wf0 (·; T ); wg(·; T ))H

=
∫ X (T )

0
wg(x; T )

1
p(x)

dx

=
∫ T

0
(T − t) dt

∫ X (T )

0
wg

tt(x; t)
1

p(x)
dx

=
∫ T

0
(T − t) dt

∫ X (T )

0
wg

xx(x; t) dx

=−
∫ T

0
(T − t)wg

x(0; t) dt

=−
∫ T

0
(T − t)(R̂

T
g)(t) dt
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=−(�T ; R̂
T
g)FT

=−([R̂T
]∗�T ; g)FT :

Here �T (t) :=T − t and we took into account that wg
x(X (T ); t) = 0 for g∈C∞

0 [0; T ].
Hence function f0 satisfy equation

Ĉ
T
f0 =−[R̂T

]∗�T :

Since system (10)–(12) is exactly controllable (Proposition 1), this equation has a unique solution
for any T6L. Finding f0, we can also �nd the function

�(T ) := (Ĉ
T
f0; f0)FT =

∫ X (T )

0
wf0 (x; T )wf0 (x; T )

1
p(x)

dx

=
∫ X (T )

0

1
p(x)

dx:

Therefore for all T except a �nite number of points we have

d�(T )
dT

=
1

p(X (T ))
dX (T )
dT

: (28)

Di�erentiating (16) we obtain

1 =
1√

p(X (T ))
dX (T )
dT

;

which together with (28) gives us p(x) at points of continuity of this function. Finite number of
discontinuity points of d�(T )=dT determines the points xj.
This completes the identi�cation problem. One can prove that the method works also for a string

with arbitrary positive piecewise C1 function p(x). Numerical experiments con�rm e�ciency of the
method.
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