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The main theme of this paper is the discussion of a family of extremal solutions of a
finite moment problem for rational matrix functions in the nondegenerate case. We will
point out that each member of this family is extremal in several directions. Thereby,
the investigations below continue the studies in Fritzsche et al. (in press) [1]. In doing
so, an application of the theory of orthogonal rational matrix functions with respect to
a nonnegative Hermitian matrix Borel measure on the unit circle is used to get some

insights into the structure of the extremal solutions in question. In particular, we explain
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0. Introduction

The present paper is a continuation of [1], where we began to study a family of distinguished solutions of a moment
problem for rational matrix-valued functions. The moment problem in question, called Problem (R), can be regarded as a
generalization of the truncated trigonometric matrix moment problem (see Section 1 for the exact formulation). For first
investigations on Problem (R) and related topics we refer to [2-4]. The considerations on Problem (R) are motivated by an
extension of the theory of orthogonal rational functions on the unit circle elaborated in [5] (see also [6-9]) to the matrix
case. From that point of view, the studies here are closely related to those in [10-12] as well.

One of the central aims of [1] was to extend the construction of a particular solution of Problem (R) pointed out
in [2, Theorem 31] to a whole family of solutions. In doing so, we have focussed on the so-called nondegenerate case. Roughly
speaking, this means that the given moment matrix G in Problem (R) has to satisfy an additional condition of regularity. This
condition is essential, since we used reproducing kernels of rational matrix functions to build the family of distinguished
solutions of Problem (R). Thereby, this family is parametrized by points w of the open unit disk of the complex plane which
are not poles of the underlying rational functions.
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In [1] we have shown that each member F,E”u)) of the family is extremal in several directions with respect to that point w
which plays the role of the parameter. For instance, the extremal properties there expose some entropy optimality and some
maximality property of right and left outer spectral factors with respect to the Lowner semiordering for Hermitian matrices
following the line of Arov and Krein in [13] (see also [14, Chapter 10] as well as [15, Chapter 11]). The paper at hand ties
directly in with this considerations. In fact, we explain further extremal properties of F,ﬁz and we give some information
on the structure of that distinguished solution. In the process, an application of the theory of orthogonal rational matrix-
valued functions with respect to a nonnegative Hermitian matrix Borel measure on the unit circle will be the basic strategy.
On that score, the considerations below can be regarded as a generalization of the investigations in [16], where the Szeg6
theory of orthogonal matrix polynomials is used to explore some extremal solutions of the matricial Carathéodory problem.
Effectively, we will see that substantial parts of the results obtained in this regard can be suitably extended to the studied
moment problem for rational matrix-valued functions here.
At first, we will recall in Section 1 some notations which we have already used in [1] and which we will apply in the

following as well. We also recapitulate an extremal property of F,f“u) which was shown in [1].

In Section 2, we will continue the investigations of extremal properties of F,§“u1 More precisely, we shall show that the
particular solution Frfau)) of Problem (R) provides us the maximum determinant extension with respect to w of the underlying
nonsingular Gram matrix G. These considerations are motivated by former investigations due to Dym and Gohberg [17] (see
also[18]), where a connection between solutions of extremal entropy and the problem of finding the maximum determinant
extension of an associated Pick matrix in the context of tangential interpolation problems is derived. Beyond a similar
interplay between both questions regarding Problem (R), we will see that F,ﬁ“,,)) can be actually characterized amongst the
solution set of Problem (R) via maximum determinant extensions (cf. Lemma 2.3 and Theorem 2.4).

In Section 3, we will start to apply the theory of orthogonal rational matrix-valued functions with respect to a nonnegative
Hermitian matrix Borel measure on the unit circle. Our main aim here is to get some more insights into the structure of

the matrix measure F,f"‘u)) As an intermediate result which is not less interesting, we will point out in Theorem 3.7 a similar

characterization of F,E",}) amongst the solution set of Problem (R) as already in [ 1, Theorem 5.2], but now in terms of orthogonal
rational matrix-valued functions. Moreover, based on these thoughts we are able to single out a peculiarity for the scalar
situation concerning the maximum determinant extension discussed in Section 2 (see Proposition 3.14).

In Section 4, we will discuss a distinguished pair of orthonormal systems associated with the nonnegative Hermitian
matrix measure F,ﬁ“u)) namely the canonical Szeg6 pair corresponding to (aj)fzol and F,E“,f, This pair is uniquely determined by
asequence (Ej)}’il of strictly contractive matrices, the so-called Szeg6 parameters, via certain recurrence relations. Generally,
these recursions are rational generalizations of those for the special situation of matrix polynomials developed by Delsarte
etal.in[19](cf.[20, Section 3.6]) along the classical case of orthogonal polynomials of Szeg6 [21]. The main result in Section 4
contains explicit formulas for the Szeg6é parameters corresponding to (aj);;ol and F,% (see Proposition 4.3). From these
formulas it becomes immediately clear that the Szegdé parameters E, 1, E;12, ... have a simple form. Effectively, we get
another characterization of F,ﬁ‘_",,i amongst the solution set of Problem (R) for the nondegenerate case based on this fact.

Via the matricial version of the Riesz-Herglotz Theorem (see, e.g., [20, Theorem 2.2.2]) an interrelation between
nonnegative Hermitian matrix Borel measure on the unit circle and matricial Carathéodory functions in the unit disk is given.

The central aim of Section 5 is to determine the Riesz-Herglotz transform .Q,E“U)J of the matrix measure F,E“,L) It turns out that
the matrix function £2,%)

“w is even rational and we will give a set of representations for Q,So‘,z Thereby, Theorem 5.8 includes a
sufficient condition for the fact that a matrix measure belongs to the solution set of Problem (R) for the nondegenerate case
and reveals the exceptional position of F,E"u)) (respectively, Q,S‘f‘u),) concerning this matter.

Finally, in Section 6, we will analyze Theorem 5.8 against the background of the concept of reciprocal measures. Actually,
we will study the reciprocal measure corresponding to the nonnegative Hermitian matrix measure F,.f“,f, on the one hand
and on the other hand we will reformulate the statement of Theorem 5.8 by dint of reproducing kernels of rational matrix

functions (see Proposition 6.3 and Theorem 6.5).

1. Preliminaries

Let Ny and N be the set of all nonnegative integers and the set of all positive integers, respectively. For each k € Ny and
each t € NoU {400}, let N, ; be the set of all integers n for which k < n < t holds. Furthermore, letD := {w € C : |w| < 1}
and T := {z € C : |z| = 1} be the unit disk and the unit circle of the complex plane C. The extended complex plane C U {oco}
will be designated by Cy. Throughout this paper, let p and q be positive integers. If X is a nonempty set, then the symbol
XP*4 stands for the set of all p x q matrices each entry of which belongs to X. If A € CP*9, then A* means the adjoint
matrix of A. For the null matrix which belongs to CP*9 we will write 0,,,4. The identity matrix that belongs to C?*? will be
denoted by I;. If A € C7*9, then detA is the determinant of A. We will write A > B (respectively, A > B) when A and B are
Hermitian matrices (square and of the same size) such that A — B is a nonnegative (respectively, positive) Hermitian matrix.
Recall that a complex p x g matrix A is said to be contractive (respectively, strictly contractive) whenl; > A*A (respectively,

I; > A*A).If Ais a nonnegative Hermitian matrix, then /A stands for the (unique) nonnegative Hermitian matrix B given by
B2 =A
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Lett € Nort = +o00, let (¢ jf:] be a sequence of numbers belonging to C \ T, and letn € Ny ;.Ifn = 0, then let 77, o
be the constant function on Cy with value 1 and let &, ¢ denote the set of all constant complex-valued functions defined on
Co. Let Py o := ¥ and Zy o := ¥.1fn € N, then let 7, , : C — C be the polynomial defined by

Tan(W) = [ J(1 — @u).
=1

let Ry » denote the set of all rational functions f which admit a representation

f= Dn
TTa,n

with some polynomial p, : C — C of degree not greater than n, and (using % = 00) let

n -1 n
Py.n = U {} and Zy, = U{Olj}.
j=1

Furthermore, for each k € Ny ; with o := 0, let

-1 ifOlk =0
—
Nk - Pk ifog #0 (1)
|oe]

and let the rational function by, : Co \ {%} — C be given by

O —u . 1
nkl — 1fue(C\{—7}
ba (W) i= 17— *H o (2)

— ifu = oo.
|o |

With certain n, r € Ny, we also use the notation

.0 ifr=00ron 1, 2, ..., Apir €D
blﬁ‘)‘r) = 1_[ b if oy j & D for somej € Ny ;. 3)
jelleNy rian¢¢#D}

Ontj

LetF e MC’Z (T, B71), where qu (T, B7) stands for the set of all nonnegative Hermitian g x q measures defined on the

o-algebra B of all Borel subsets of the unit circle T. The right (respectively, left) C9*?-module ﬁif,ﬁ will be equipped with
a matrix-valued inner product by

Ve, = [ @) FEa Y@

' (4)

(respectively, X, Y)r = /X(z) F(dz) (Y(z))*)
T

forall X,Y € R4, similarly as in [2]. (For details on the integration theory with respect to nonnegative Hermitian q x g
measures, we refer to Kats [22] and Rosenberg [23-25].) Moreover, if (Xi);_, is a sequence of matrix functions which belong

to the right (respectively, left) C?*9-module :Rgf,;’, then we associate the nonnegative Hermitian block matrix

of, = ([ov raznca)
T

Jj.k=0

n (5)
(respectively, H;f)n = (/Xj(z) F(dz) (Xk(z))*) ) .
T k=0

As a continuation of the studies in [2,4,1] we consider below the following moment problem for rational matrix-valued
functions, called Problem (R).

Problem (R). Letn € Nand o1, 02, ...,0, € C\ T. Let G be a complex (n + 1)q x (n + 1)q matrix and suppose that
Xo, X1, ..., Xy is a basis of the right C?*%-module Rq . Describe the set M[(e)™,, G; (Xi)i_,] of all matrix measures F

=10
belonging to M2 (T, Br) such that G)(<F:1 =G.
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Particular attention will be payed under the circumstance that some nondegeneracy condition holds. Recall that
(for n € Np) a nonnegative Hermitian g x q measure F on B is called nondegenerate of order n if the block Toeplitz matrix

(F) . (o(F)\n
T, = (6 )i k=0

is nonsingular, where (for some integer ¢)

P = fz‘lF(dz). (6)
T

We write M2"(T, Br) for the set of all F € M2 (T, Br) which are nondegenerate of order n.

In the following we will make essential use of the theory of reproducing kernels in (left or right) C4*?-Hilbert modules
of matrix-valued functions. Along the lines of the scalar theory which goes back to the landmark paper [26] by Aronszajn
this machinery can be extended to the matrix case (see, e.g., [27-31]). The reproducing kernels of the C?*?-Hilbert modules
of rational matrix-valued functions under consideration were intensively studied in [2,4,10] (see also [1]).

Let F € M2"(T, Br). In view of [3, Theorem 5.8] and [2, Theorem 10] one can see that by (R¢ ', (-, )r.r) (respectively,
(ﬁgf,,q, (-, -)r,p)) a right (respectively, left) C?*?-Hilbert module with reproducing kernel Kn(f’r’F) (respectively, K,ffxl’F)) is
given. The relevant kernel is here a mapping from (Cq \ Py.n) X (Co \ Pg,p) into C¥*9. For each w € Cp \ Pgyp, let

A®E - Co\ Py — €97 (respectively, n(f’,;f) : Cg \ Py, — C9%9) be defined by

n,w

A@D () = K%P (v, w) (respectively, %P (v) = K" (w, v)). (7

(. F) - (a,F)
That K. (respectively, K.,
means that A%, e RY (respectively, C\% € RL5T) and that

) is the reproducing kernel with respect to (R&y, (-, -)r.r) (respectively, (RE, ¢, e1))

(AP X)p = X(w) (respectively, (X,C*P)p; =X(w)), X € RIXI

nw °’ n,w a,n’

for each w € Cg \ Pq.. In fact (cf. [2, Remark 12]), if Xo, X, . . ., X;, is a basis of the right C?*9-module K27 (respectively,

Yo, Y1, ..., Yy is a basis of the left CY*9-module K¢ ")7), then this kernel can be represented via
K" (v, w) = En(0)(Gy ) (En(w))*  (respectively, K™ (w, v) = (Yu(w))*(Hy ) ™' T1(v)) (8)

)

forall v, w € Cg \ Py n, where the matrix G;f)n (respectively, H;F n

)is given by (5) and where

Yo

Y
&y = Xo, X1, ..., Xn) respectively, 7, .= | . . 9)

Yn
Furthermore (cf. [2, Remarks 13 and 14]), we explicitly point out that, if wq, wq, ..., w, are pairwise different points
belonging to Cy \ Py, and if X; = A,ﬁ‘f‘,;)i) (respectively, Y;, = Cn(fr,;,i)) for each k € Ny, then Xg, Xy, ..., X, is a basis of
the right C?9-module RL (respectively, Yy, Y1, ..., Y, is a basis of the left C?*9-module R2"7) and regarding (5) the

corresponding matrix G)((F L (respectively, Hgf ;) is positive Hermitian, where
F ,F . F ,F
Gy ) = (K& (wy, w))_y  (respectively, Hy ) = (K (wy, wi))h_o)-

(For more information on the reproducing kernels K,ff‘r’F) and Krfﬁ’F), we refer to [28,2,4].)
In view of Problem (R), letn € N, let o1, a2, ..., € C\ T, and let Xo, X1, . . ., X, be a basis of the right C?*9-module

Rg,an. Suppose that G is a nonsingular (n + 1)q x (n + 1)q matrix such that M[(«; }’:1, G; (Xk)j_ol # 9. Furthermore, let
w € Cp \ Py, and let
A, = Ko, X1, -, X)G ™ (Ko(w), Xy (w), ..., Xa(w))*. (10)

nw

Because of (7)-(10),if F € M[(aj)j’?zl, G; (Xi)k_ol, then it follows that
ALY = AL (11)
In particular (cf. [1, Remark 3.1] and [2, Remark 14 and Theorem 25]), we have

A®) (W) > Ogxq (12)

n,w
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and detA,ﬁ‘f?U (z) # 0 for each z € T. Furthermore, from [1, Theorem 3.4] we already know that, if w € D\ P, , and if

n(“u)) : B — C9%9is the nonnegative Hermitian measure defined by

@@ L1 @ @ (yy—1
Fo0(B) = o Lz —wp (Ap @) AT, (WAL, (2))7 Adz2), (13)
A

where A stands for the linear Lebesgue measure defined on 9B, then

Fi% € M@y, G (Kiol- (1)

Foreach w € D \ Py , (see [1, Remark 3.6]), the measure F,ﬁ“u), belongs actually to the set

M)}y, G Ki)i—ol N MIZ(T, By), (15)

where

o0
MEZ(T, By) = m MET(T, By).

m=0

In [1] it is shown that the solution Fn(“u), of Problem (R) is extremal in several directions with respect to the point w. In
particular, [1, Theorem 5.2] reveals the following.

Theorem 1.1. Let n € Nand ay,az,...,a, € C\ T. Let Xo, X1, ..., X, be a basis of the right C99-module RL and
suppose that G is a nonsingular complex (n + 1)q x (n + 1)q matrix such that M[(c; 1'-1:1, G; Xi_ol # 9. Furthermore,

let F € M[(aj)le, G; (Xi)k_o] and let Fn(au)) with some w € D \ P, , be the matrix measure defined by (13). Using (3), then:

(a) Suppose that there exists anr € N such that F € ,qu‘””(?l‘, B1). For every choice of otpy1, ¥ny2, ..., %nr € C\ Tand all
w € D\ Py nyr, it holds

1

1
F (o, F) (a,F)
A (W) = ATV (w) <~ — A (W) < - S oA ().
b7 (w)] by, (w)]
Moreover, if ani1, Qnta, - ., tnyr € C\T,if w € D\ Py ntr, if Xot1, Xnt2, - - - » Xntr are rational matrix functions such that
Xo. X1, . .., Xnr is a basis of the right C?9-module R, ., and if F,f‘i)nw is defined via (13) with respect to Xo, X1, . . . , Xntr
the matrix G;Ff., 4 and the point w, then the following statements are equivalent:

(i) B (w)[2 det A" (w) = det ALY, (w).
(if) by ()b AL = AL,

Lo 1 a(@F)
(iii) b(—a)An‘fH,w belongs to R
nr
(@)
. (a,F) (ot Fp )
(IV) An+r,w = An+r?u;l .
()
(v) Frgau)) = Fnir,w'

(b) Let r € N and apiq, Onsas - .., Oppr € C \ T. Suppose that w € D \ Py nr. Then F\%) belongs to MET(T, By) and

@ h(@ @) _ @R . @ _ A@F) . .
b,.; (w)b, . Any = Aniyy holds. In particular, Ay = Ayt ifand only if a, € D for each £ € Ny i1 4.

(c) Let w € D\ Py, and let (anﬂ-)]?’i] be a sequence of numbers belonging to C \ (T U {%}) containing some point v infinitely
many times. Furthermore, suppose that F belongs to ,MqZ’OO(T, Br) and that (i) is satisfied for allr € N. Then F = F,f“u),
The case n = 0 which includes just a condition on the total mass F(T) of some measure F € qu (T, B7) does not enter
into Problem (R). However, the following considerations concerning Problem (R) are actually practicable for that elementary

case as well. Note that, if Xj is a constant function defined on Cy with a nonsingular ¢ x q matrix Xq as value and if G is a
positive Hermitian g x q matrix, then thereisanF € ,Mg (T, B7) such that

/(Xo(z))* F(d2) Xo(z) = G (16)
T
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holds. In fact, by using the settings (10) and (13) in the case n = 0 as well, Agﬂ) is the constant function with value XOG”XS

F(a)

and the matrix measure is given by

£ T—wP i
(B) = /l; 7 |2X0 GX, A(dz), Be B, (17)
whereby (16) is satisfied by choosing F as F(“) (cf. [1, Remarks 2.2 and 3.5]).

In contrast to the studies in [1], we focus the considerations below on the situation that the underlying sequence (aj)
must be located in some sense in good position with respect to T. In doing so, 77 stands for the set of all sequences (aj)
of complex numbers which satisfy ooy # 1 forall j, k € N. For example, if (oz]) >, is a sequence of numbers belonging to ID)
then (a,) °, € T1. Moreover, if (oz])j"ol € 771, then obviously o; & T forallj € N.

2. On maximum determinant extensions of the given Gram matrix G

In this section we shall show that, for a fixed w € D \ P, ,, the particular solution F, (D‘lﬂ of Problem (R) given by (13)
provides us the maximum determinant extensions with respect to w of an underlying nonsingular Gram matrix G.
As an essential tool we will use a rational generalization of the notion reciprocal matrix polynomial. Let (ozj)j‘?"l € 77 and

let by, be the rational function given by (2) for eachj € N. If B(qo stands for the constant function on Cy with value I; and if

k
BY) = (]_[ b%) I, keN.,
j=1

then for each m € Ny the system Bff)o, Bff)], ..., B, forms both a basis of the right C?*4-module RS and a basis of the left
C9*9-module R (see, e.g., [3, Section 2]). Hence, if m € Ny andifX € Ry, then there are unique matrices A, A1, . .., Ap

belonging to C7*9 such that the representation X = Z OA]B(q) holds. Thereby, the reciprocal rational (matrix-valued)
function X'*™ of X with respect to (;)?°, and m is given by

m
xem= ) A B (18)

where (ﬂ] . is the sequence defined by By := am41—k for each k € Ny ,, and B; := «; otherwise (cf. [10, Section 2]).
LetX € Rgxn? with some m € No.Ifoj = Oforeachj € Ny p, then X is a q x g matrix polynomial of degree not greater than

m and X®™ is just the reciprocal matrix polynomial X of X with respect to T and formal degree m (as used, e.g., in [20]).
In general, there exists a ¢ x g matrix polynomial P of degree not greater than m such that the representation

1

To,m

X = P

holds. Concerning (18), this implies the identity

xteml 1 pim (19)
To,m

with some n € T (see [10, Proposition 2.13]). Furthermore (see [10, Lemma 2.2]), the rational matrix function X*™! is
uniquely determined by X via the formula

1 *
xlem @y = B (u) (x (j» , UEC\ (PymUZgm,mU{0}). (20)
’ u
In view of Problem (R) and (18) we observe the following.

Remark 2.1. Let (), € 7i.Lletn € Nand let Xo, X, ..., X, be a basis of the right C"*%-module R From [10,

Lemma 2.16] we know that X(g“'"], Xl[“'“], ..., X!*" is a basis of the left C?™*%-module R¢ ' and, for each F € ML (T, By),
[10, Remarks 2.4 and 4.2] imply

(/ X[“"](Z)F(dz)(X["‘”](z))*> =</ (Xj(z))*F(dZ)Xk(z)> :
jk=0 T J-k=0

Based on the transformation defined by (18) we present now a particular relation between the rational matrix-valued
functions given by (7)-(9) and the Gram matrices given by (5).
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Lemma 2.2. Let (oz]-)]?’; € 71. Let n € Ny and suppose that F € qu’”“(ﬂl‘, B1). Furthermore, let Xy, X1, . .., Xy be a basis of
the right C7*9-module R% and let Yy, Y1, .. ., Y, be a basis of the left C?*9-module R .

(@) Let X1 € RI*Y . The following statements are equivalent:

o,n+1°
(i) Xo. X1, ..., Xny1 is a basis of the right C?*9-module R}, ;.
(ii) The matrix X,E‘i{’“] (otny1) is nonsingular.

If (i) holds, then G, (etny1) = X001 (ctni)) Zngrn Xii ™ (eny1) and

n+1

F ,n+1 ,n+1
(SHAID LEARE P O ATHY G CATR
k=0

where the q x q matrix Z, 1., is given by the last (n +2)q x q block column (Z; 1., Z} 1.1, -+ -, Z} 1.0,1)" Of (G)((F,;H)*l.

(b) Let Yoy1 € R 1. The following statements are equivalent:

(iii) Yo, Y1, ..., Yoy1 is a basis of the left C9*9-module R1*?

a,n+1°
(iv) The matrix Y+

If (iii) holds, then Aﬁﬁ;?am (@n1) = Voo @ ) Zs 11 (VAT (1)) * and

(an41) is nonsingular.

n+1

(a,F) n+1 [ar,n+1] >
(Aniyan_'_])[a mHl = Ynir (ans1) E Zoi1.xYk,
k=0

where the q x q matrix 'z‘m;k is given by the last ¢ x (n + 2)q block row (E,H];O, an;h e Enﬂ;nﬂ) of (Hs((F,>n+1)_]-
(€) If Xny1 € R, such that (i) holds and if Yyiq = Xny1, then detZy, 141 = detZp1ins1.

Proof. Let X, belong to RI*? _. Since Xy, Xi, ..., X, is assumed to be a basis of the right C?*9-module K¢} and since

a,n+1*
B(Q) B(Q)

from [3, Remark 2.4] we know that B, B, ..., B} is a basis of the right C?*%-module R as well, it is not hard

ij{,, Bg)l, .., BY,, X,41 is a basis of the right C*9-module Ry, 1- Moreover,

[10, Remark 2.17] implies that B, B9, . ..., B, X, is a basis of the right C?*9-module R | if and only if (ii) is fulfilled.

.00 P10 0 .
Thus, (i) and (ii) are also equiva(lxent. {xNe suppose now that (i) holds. Because of (i), (7)-(9), an?fl (18) we obtain

to accept that (i) is satisfied if and only if

41
X(Ean N tny1)
[a,n+1]

_ (o +1)
AL (@) = Ko(), X1 (), e X1 )Gy )T
X,[,i’fﬂl(anﬂ)

for each v € Cy \ Py, nt1. Furthermore, if k € Ny ,, then in view of X;, € :Rgf,ﬁ and (18) it follows that X,E"‘"H](o:n+1) = Ogxq-
Consequently, we get

1
X([)a " ](an+1) Oq><q Zn+1;0
[or,n+1] . Z. .
X (otnt1) : n+1;:1
-1 ™M n+1 F) -1 : 1
(6ni) . = Gyni) 0 = P e,
: axq :
1
X ) X e/ s

Therefore, for each v € Cq \ Py 541, recalling that [4, Lemma 8] implies (Cé‘i&nﬂ)[m"“](v) = (Aﬁ?v)[“-”“](anﬂ) one can
see that

s 1
X (1)

; . X[a,n+1](an+1)
G ) @) = Ko@), X1 ), Xnn DG DT

,n+1
X2 ()
n+1

=Y X Zop i Xpr @),
k=0
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In particular, because of (18) (note also [ 10, Remarks 2.4, 2.7, and 2.8]) one can conclude that

n+1
,F n+1 ,n+1 ,n+1 ,n+1
Gt @ng1) = T o)) Y Zo (X 1) = K0T (0ni1) Zngrn i X5 ().
k=0

Hence, (a) is verified. Similarly, one can prove (b). Finally, (c) is an immediate consequence of (a), (b), and the equality

detA,ﬁf?am (Qtng1) = det C,E‘i&w (atnt1) which holds due to [10, Theorem 7.9]. O

The identities in Lemma 2.2 include an interplay between right and left structures, since by definition the rational function

(C,ii’f_ )am yleon+11 (respectively, (Aﬁ,o_‘;?am)["""“]) is related to the left (respectively, right) version of reproducing kernels,
qxq

but the expressions in Lemma 2.2 are given in terms of a basis of the right (respectively, left) C?*-module R ;.
We explain now the exceptional position of the particular solutions of Problem (R) given by (13) regarding maximum
determinant extensions of an underlying nonsingular matrix G.

Lemma23. Let w € D, let n € N, and let (; j?’:"l € T1 with ayyq = w. Let Xo, X1, ..., X, be a basis of the right C7*4-

module mgﬁﬁ and let G be a nonsingular (n + 1)q x (n 4+ 1)q matrix such that M[(;)}_;, G; Xi)j_o] # 9. Furthermore, let

=1
Xn+1 be a matrix function such that Xo, X1, ..., Xay1 is a basis of the right C*%-module R, |

(n+ 2)q x (n + 2)q matrix such that M[(ocj)}’jll, Gni1; (X)p101 # @. Then the inequality

and suppose that Gp1 is a

detG - |detX\ Y1 (w)[?

det AL, (w)

detGpyq <

(o)
is satisfied in which the equality holds if and only if Gp11 = G;F’Li)l where F,i”‘u)) is given by (13).

Proof. Observe that op1 = w implies w € D\ P, , and that (12) supplies detAff‘f,,(w) > 0. Hence, if G, is singular, then
(21) holds. We suppose now that G, is nonsingular. By virtue of M[(aj)]’?;“f, Gpt1; (Xk)zi(l)] # () and [1, Remark 3.1] one

can see that there existsan F € qu‘““ (T, ®B7) such that G, = G>(<F,31+1- Thus, Lemma 2.2 yields detX,E‘i?“J(w) # 0 and

,F ,n+1
det A" (w) = detZyypqner - [detX T (w) ),

where Z,, 1 1.,41 is the lower right g x g block in G;ll. Furthermore, the matrix G forms the upper left (n + 1)g x (n 4+ 1)q

block in Gn.1. Hence, from a classical result on matrices (see, e.g., [20, Lemma 1.1.7]) we infer detZ,1.,4+1 # 0 and

detG

detGyy = — >
" detZyy1:n41

Consequently, it follows that detA,(q‘i?w(w) # 0 and

det G - |detx\ %1+ (w)|?

(a,F)
dEtAnJrl,w(w)

det Gn+1 -

Since the choice of F and G, entails F € M[(aj)le, G; (Xi)k_ol, using part (a) of Theorem 1.1 we can conclude that (21)

is satisfied and that the equality holds in (21) if and only if

(a,F,ﬁf"u),)

(e,F) __
A _An-H,w .

n+1,w

(see [1, Lemma 3.3]), in view of G;11 = G

- T, P
Taking into account that the latter identity is equivalent to Gy Crw X 1

! X1 = Ox 1
the proofis complete. O

Note that, akin to Lemma 2.3, a connection between solutions of extremal entropy and the problem of finding the
maximum determinant extension of an associated Pick matrix in the context of tangential interpolation problems is
explained in [17]. However, the statement of Lemma 2.3 can be worked up such that we get here a similar characterization
of the particular solutions given by (13) in the whole solution set M[(¢; ]’f‘:], G; (Xi)k_o] as already given by Theorem 1.1,
but now in terms of maximum determinant extensions of G.

Theorem 2.4. Let ()7, € 71 andlet n € N. Let Xo, X1, . . . , Xy be a basis of the right C?*9-module REW and suppose that G is
a nonsingular (n + 1)q x (n + 1)q matrix such that M[(aj)]’?:], G; (Xi)g_ol # 0. Let F € M[(c; ]'-1:1, G; (Xk)i_ol- Furthermore,

let w € D\ Py, and let F,g"u)) be the matrix measure given by (13).
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a) Suppose that there exists anr € N such that a«; = w for each £ € Nyyq.ngr. For each € € Nyjpqnir, let X, € R be such
+1,n4 +1,n+ .l
that Xl[“‘e] (w) is nonsingular. Then the inequality

n—+r ¢
detG- [] [detx[™"(w)[?
detc? < =ntl (22)
o (det AL, (w))"

(@
is satisfied in which the equality holds if and only if G)((ij = G;(F’;L”ri

(b) Suppose that oy = w for each £ € Ny 1 o and that the equality holds in (22) for each r € N. Then F coincides with Fn(“l})

Proof. (a) Let £ € Nyt nyr. From Lemma 2.2 one can inductively find that Xo, Xy, ..., X, form a basis of the right CI*9-
module R]",. Furthermore, (14) and Theorem 1.1 imply

F)
det A" (w) = detA®) (w) and F) = F),
. . . . . . (FY
in which Fl("‘u)) stands for the measure defined via (13) with respect to the basis Xg, X1, ..., X¢, the matrix G)(( é“’), and the

point w. Thus, by a combination of Lemma 2.3 with part (a) of Theorem 1.1 we get inductively (22) and that the equality
holds in (22) if and only if

_ g
X.n+r T TX,n+re

(b) Since the assumptions in part (b) yield in view of (a) and (7)-(9) that the equality

AP aCF)

n+r,w n+r,w

holds for each r € N, the assertion of part (b) is a consequence of Theorem 1.1. O

Corollary 2.5. Let (), € 71 and let n € N. Let Xo, Xy, .. ., X, be a basis of the right C?*9-module REIW and suppose that G
is a nonsingular (n+ 1)q x (n+ 1)q matrix such that M[(aj)le, G; (Xi)g—ol # 0. Let F € M[(c; }’:], G; (Xk)}_ol- Furthermore,

let w € D\ Py, and let F,E“lf, be the matrix measure given by (13).

(a) Suppose that there exists an r € N such that ay = w for each £ € Npiq n4r. Let Yo, Y1, ..., Ynir be a basis of the right
C9*9-module Ry . Then the inequality

E)

(F)
detG Y, n+r

Y, n+r = detG

(23)

(@)
is satisfied in which the equality holds if and only if Gﬂ = G;F','J;

(b) Suppose that oy = w for each £ € Ny 1, and that the equality holds in (23) for each r € N. Then F coincides with Fn(“ui

Proof. Suppose that there exists anr € N such that oy = w for each £ € N1 p4r. Foreach € € Nyyq pyr, let X, € mgfg’ be

such that Xe["’e](w) is nonsingular. From Lemma 2.2 one can inductively see that the system Xy, X1, . . ., X, forms a basis
of the right C?*9-module R, .. Thus, if Yo, Y1, . . ., Yoy, is a basis of the right C?*9-module R, ., then there is a (unique)

complex (n 4+ r + 1)q x (n + r + 1)q matrix B such that
(YOa Yla ey Yn+r) = (X07X19 cee ,Xn+r) B.

In particular (see, e.g., [3, Remark 3.5]), this matrix B is nonsingular and it follows that
Gy, =BGy B, He ML(T, By).

Accordingly, the assertion is an easy consequence of Theorem 2.4. O

Remark 2.6. Let («; joil € 71, let Xp be a constant function on Cy with a nonsingular complex g x g matrix Xq as value, and

suppose that G is a positive Hermitian ¢ x q matrix. Furthermore, let F € qu('ﬂ‘, Br) satisfy (16), let w € D, and let Fé"g
be the matrix measure given by (17). Using the argumentations of Lemma 2.3, Theorem 2.4, and Corollary 2.5 based on [1,
Remarks 2.2, 3.5, and 5.3] one can verify the following:
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(a) Suppose that there exists an r € N such that o = w for eachj € Ny ;. Foreachj € Ny, letX; € CRZXJq be such that

Xj[“’j](w) is nonsingular. Then the inequality

(detG)H—l . l_[ Ideth[""j](w)lz

detG) < = 24
xr = |detXo |2 (24)
P . . . . (G . . . . .
is satisfied in which the equality holds if and only if Gf(F; = foi'“ . In particular, if Yy, Y, ..., Y, is a basis of the right
C9*9-module KL%, then the inequality
(F) (F(()a))
detGy, < detG, " (25)

F@
is satisfied in which the equality holds if and only if G|} = G;f;‘w).
(b) Suppose that «; = w for each j € N and that the equality holds in (24) (respectively, in (25)) for each r € N. Then the

matrix measure F coincides with Féo‘uz.

3. Orthonormal systems of rational matrix functions associated with F,f“,l,

In this section, we will begin by applying the theory of orthogonal rational matrix functions with respect to a nonnegative
Hermitian q x ¢ measure defined on % to get some insights into the structure of the solutions of Problem (R) given by (13).
In particular, we will point out here a similar characterization of these solutions in M[(c; ]’7=1, G; (Xi)j_o] as already given
by Theorem 1.1, but now in terms of orthogonal rational matrix functions on T (cf. [ 16, Section 4]).

Let (ozj)]‘?z"1 € T1and letF € qu (T, Br). Against the background of (4), a sequence (Yi);_, with T € Ny or T = 4-00 and

Yy € :jof for each k € Ny is called a left (respectively, right) orthonormal system corresponding to (; fzol and F when
(Ym7 Yn)F,l = Sm,nlq (respeCtiveIYa (me Yn)F,r = Sm,nlq)a m,ne NO,ra

where 8, , := 1inthe case of m = nand §,, , := 0 otherwise. If (L)_, is a left orthonormal system corresponding to (aj)j°=°1
and F as well as if (Ry);_,, is a right orthonormal system corresponding to (; J?:‘)] and F, then we call [(Ly);_q, (Ro)r_o] a pair
of orthonormal systems corresponding to (ozj)j'i1 and F.

We recapitulate at first some fundamental results on orthogonal rational matrix functions (which are shown in [10]).

Remark 3.1. Let (o fjl € Jiandt € Nort = +00. Furthermore, letF € qu(?r, Br) and suppose that [(Ly);_q, (Re)r_olis
a pair of orthonormal systems corresponding to (aj)fjl and F.If (Up)_, and (Vy);_, are sequences of unitary q x q matrices,
then obviously [(UiLk);_o, (RkVi)_o] is a pair of orthonormal systems corresponding to (aj)fzol and F as well. Moreover
(cf. [10, Proposition 3.7]), if [(L)r_q» (Rk)j_o] is some pair of orthonormal s!stems correspgnding to (ozj)]?'i1 and F, then
there exist sequences (Uy),_, and (Vi)_, of unitary g x g matrices such that Ly = UL, and Ry = RV for k € N ;.

Remark 3.2. Let («; ;’zol € J1and t € Nor v = +o0. Furthermore, let F € M%(T, %) and suppose that [(Li);_q, (Re)r_o]
is a pair of orthonormal systems corresponding to (aj)jo:"l and F. For each k € Ny ., the following statements are satisfied
(see [10, Remark 2.6, Corollaries 4.4, 4.7, Remark 6.2, and Theorems 6.7, 6.9, and 6.10]):

(a) There is a number z; € T such that the identities

z - det L (u) = detR(u) and det l**(u) = z, - det R** (u)

are satisfied for eachu € Cq \ Py p-
(b) If |ak| < 1, then det L vanishes nowhere in Cy \ (D U P, &) and det L,[f"k] vanishes nowhere in (D \ Py x—1) U T.
(c) If |ak| > 1, then det L vanishes nowhere in (D \ Py ;) U T and det L,[f“'kj vanishes nowhere in Co \ (D U Py k1)

In the following, in view of Problem (R), let (aj)j?;’l € 71, letn € N, let Xg, Xy, ..., X, be a basis of the right C?*9-module
R, and suppose that G is a complex (n + 1)q x (n + 1)q matrix such that M[(2)]_;, G; (Xi)i_ol # .

Remark 3.3. LetF € M[(¢; ]’.’:1 . G; (Xi)k—ol- Because of [ 1, Remark 3.1] and [ 10, Corollary 4.4] one can conclude that there is
aleft (respectively, right) orthonormal system (Yy)}_, corresponding to (aj)]?i] andF if and only if G is nonsingular. Moreover
(see, e.g., [1, Lemma 3.3] and [10, Theorem 4.5]), if (Yi);_, is a left (respectively, right) orthonormal system corresponding
to (; j’i] and F, then (Yy);_, is a left (respectively, right) orthonormal system corresponding to (ozj)j?’:"l and any measure

belonging to :M[(aj)]'?:], G; (X)p_ol-
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With regard to Remark 3.3, if [(Li)z_o, (Rk)i—o] is a pair of orthonormal systems corresponding to («;)72; and some F €
[(aj)j_], G; (Xi)p_ol, we call [(Li)}_q, (Rk)i_o] also a pair of orthonormal systems corresponding to M[ ()} L1, G Xi)p_ol-

Remark 3.4. Suppose that the matrix G is nonsingular and let [(Ly);_q, (Re);_o] be a pair of orthonormal systems

corresponding to M[(aj)j” 1» G; (Xi)p_o]. Recalling Remark 3.3 (note [3, Remarks 3.5, 3.6, and 3.18] and [10, Remark 3.4]),
one can see that a measure F € Mq (T, Br) belongs to M| (c))} i1 G; (Xk)_o] if and only if (Ly)}_, (respectively, (Ry),_g) is

a left (respectively, right) orthonormal system corresponding to (a]) 2, and F (see also [11, Corollary 4.13]).

Remark 3.5. Suppose that the matrix G is nonsingular and let [(Ly);_,, (Rk);_,] be a pair of orthonormal systems
corresponding to M[(c)1,, G; (Xk);_,]. Based on [10, Corollary 4.6] (note also Remark 3.2 and [ 1, Remarks 3.1 and 3.6]) one

=1
can conclude that if , € D, then the measure F,S .oy given by (13) with w = «,, admits, for each B € B, the representations
F@ ol Ly L,(2)) ™" A(dz
FO (B) = 2n/|z (L@ (@) ade),

(@) |0tn|2 _ _
Fra, (B) = / = (Ra(2))™* (Ra(2)) ™" A(d2).
B

an?

As already mentioned, we will translate the statement of Theorem 1.1 in terms of orthogonal rational matrix functions.
In preparation for that, we remark the following.

Lemma 3.6. Let (oz] ©°, € T1.Let T € Nor v = 400 and suppose that F e MEF(T, Br). Let [(Li)k—g> (Ri)—o] be a pair of
orthonormal systems correspondzng to (oz] >, and F. Furthermore, let k € N ; and let w € Co \ Py k-

(a) The following statements are equivalent:
(l) Rk(w) = quq~
(i) AL, = AT,
(1“) Lk(u)) = quq
() G = Gl
In particular, if (i) holds, then |w| # 1, where |ax| < 1 (respectively , |ayx| > 1) implies |w| < 1 (respectively, |w| > 1).
(b) Let by, be the function defined via (2). The following statements are equivalent:
(V) R (w) = Ogug.
(vi) A,(f‘wF ! = by ()b, AT,
(vii) LM (w) = 0gq.
(viii) C(a ) — = bg, (w)ba,(C(‘i{)w.
In particular, if (v) holds, then |w| # 1, where |ay| < 1 (respectively, |ai| > 1)implies |w| > 1 (respectively, |w| < 1).
Proof. (a) Note that F € M"z’r('ﬂ‘, B1) and [10, Corollary 4.4] provide us the existence of the pair [(L);_o, (Ri)}_o] Of

orthonormal systems corresponding to (ozj)]?’i] and F. Using some basic facts on reproducing kernels (cf. [10, Lemma 5.1]),
one can gain that

AT = ZR(R W)* = A, + Re(Re(w)* (26)
j=0

holds for each u € Cq \ P, k. Taking u = w, this implies directly the implication “(i) = (ii)". Conversely, since Remark 3.2
shows that there is some z € Cy \ P, x such that Ry(z) is a nonsingular matrix, from (26) it follows that (ii) leads to (i) as
well. Similarly, one can prove that (iii) holds if and only if (iv) is satisfied. Furthermore, in view of Remark 3.2 one can see
that (i) and (iii) are equivalent. Also by Remark 3.2 one can find that, if (i) holds, then |w| # 1, where || < 1 (respectively,
lag| > 1) yields |[w| < 1(respectively, |lw| > 1).

(b) Letu € Cy \ Py k. Because of (26) and (18) (see also (20)) we get

s — N
(A’(:,)tuF))[a,k] — bak(A(ot ,F) )[a,k 1] + Rk(U)R][(a <J.

k—1,u
Consequently, recalling that [4, Lemma 8] provides us particularly the identities (A,(qu Hylekl () = (C,ff"f )ylekl () and
(A,ioi’f?u)[“*k_”(w) = (C,f‘i F)w)l‘" k=11(y), we have

(&M ) = by, (w) ()W) + Re ()R (w).

1w
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Again taking (18) into account we obtain
= D (W) Dy, + w
C(a P b w) “w)b kClEalF)u (R’oz K ())* R[a K 27)

Therefore, (v) implies (viii). Since there is some z € Cy \ P, such that R,O‘ K (z) is a nonsingular matrix (see Remark 3.2),
from (27) it follows that (viii) leads to (v) as well. Similarly, one can conclude that (vii) is tantamount to (vi). Furthermore,
in view of Remark 3.2 one can see that (v) and (vii) are equivalent. Remark 3.2 also shows that, if (v) holds, then |w| # 1,
where |a| < 1 (respectively, |a| > 1) yields |w| > 1 (respectively, |lw| < 1). O

Let (a] 1 € T1.Ifameasure F belonging to the set stated in (15) is given and if [ (L) 2, (Rk)z=,] is a pair of orthonormal
systems correspondmg to (ozj)f:"l and F, then in view of Remarks 3.1 and 3.3 (note also [10, Corollary 4.4]) one can see that
the elements L and Ry, for each k € Ny , are determined by the underlying matrix G in Problem (R). As the following result
emphasizes, the remaining elements of such a pair of orthonormal systems concerning the class of particular solutions given
by (13) have a specific structure. For technical reasons, based on (2), we use thereby the notations (3) and

_ Ty.0 ifr=0o0rapt1, i, oo, pir €D
b = I b if &y € D for some j € Ny, (28)
Jje{leNy riapq €D}

Onj
with certain n, r € Ny (where 7, ¢ is the constant function on Cy with value 1).

eorem et (o € Jrandletn € et Xo, X1, . - - n be a basis of the right -module Ry n an suppose that
Th 3.7. Let (o)j, dl N. Let Xo, X1, . . . , Xu be a basis of the right C9*9-module RY’; and hat G

is a nonsingular (n+ 1)q x (n+ 1)q matrix such that M[ (o)} =1 G (Xi)p_ol # 9. Furthermore, let F € M[(cj)} L, G Xi)p_o]-

(a) Suppose that there exists an r € N such that the measure F belongs to Mq’"+r (T, Br). For each point w € D \ Py nqr and
each pair of orthonormal systems [(Lk)”” (Rk)”+’] corresponding to (aj)joo] and F the following statements are equivalent:

(i) For each £ € Nyi1 ntr, one of the identities L, (w) = Ogxgq, Re(w) = Ogxgq, [‘ Hw) = Ogxgq, OF R}f‘ Ow) = Ogxq holds.
(ii) There exists a unitary q x q matrix U such that the representation
1—|oner? w—u
Lnr(u) = ] B wuy/A ) (A“” ) (w)
1—|wl*? 1—a,u
is satisfied for eachu € C \ Py p4r if otnyr € D and that
—1
[a,n+r] _ lotnr? =1 w—u (@) (@) () [er,n]
Ry = | S T e WU () (A7)
holds for eachu € C \ Py nyr if atpyr € C\ D.
(iii) For each £ € Nyi1.n4r, there exist unitary q x q matrices U, and V, such that

1-— |Ol[|2 o o, ! o o
Le(u) :‘/Wl — b;g o WUAY () (APl ),
- el
1— |0lg|2 o o o o !
R@(”)Z\/W1 — bfﬂ? w1 EEY M @) G5 (w) v
- e

foreachu € C\ P, ¢ if oy € D and that

loel2 =1 w — !
Rk“’“(m:,/—'w'z] b(“’ L U/ASY () (AP W),
[a, €] |°“-7|2 -1 w-— B (a,F)~[e,n] (a,F) -
= nw (W e
L (u) |w|21_au b @€ @) [e% (w) v

foreachu e(C\IP’aufag e C\D.
(b) Let r € Nand let w € D \ Py, ,. Then the measure F\%), defined by (13) belongs to M%""" (T, %) and for each pair of
orthonormal systems [ (Ly)s6, (Ri)jio] corresponding to ()72, and Fpy @) it holds (i). Moreover, for each £ € Npt1.n4r, €ither

the identities Ly (w) = Ogxq and Re(w) = 0g4xq are satisfied or the relatlons LE"‘ Yw) = Ogxq and RE”‘ Yw) = 0Ogxq, Where
Le(w) = Ogxq holds if and only if o, € D.

(c) Let w € D be such that ajw # 1 foreachj € N and let the sequence (ozj)j’:;o] be containing some point v infinitely many times.
Furthermore, let F € =ME’Z’OO(’]I‘, Br) and let [(Lk)2,, (Ri)pe,] be a pair of orthonormal systems corresponding to (ozj)f:o] and

F.If (i) holds for all r € N, then F = F.%).
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Proof. Taking into account (14) and that (11) holds since the measure F belongs to M[(«; JT':], G; (Xi)k_o). the assertion

of (b) (respectively, (c)) is a consequence of part (b) (respectively, part (c)) of Theorem 1.1 and Lemma 3.6 (note also
[1, Lemma 5.1]). It remains to prove (a). Let w € D \ Py nr and let [(L)i1g, (Re)pio] be a pair of orthonormal systems

corresponding to (o ]9'21 and F. In view of the assumption F € M%‘"“(T, B1) and [10, Corollary 4.4] the existence of such a
pair [(L)ptg, (R0l is ensured.
“(1) = (iii)": Let £ € Npyq p4r. Using (i), (3), and Lemma 3.6 we get

b(a)

JF R JF
b AP = AP and b (w)b)_,_ 4D =P . (29)

n;—n—1 n—n—1

Let by, be the rational function given via (2). Because of the Christoffel-Darboux formulas for orthogonal rational matrix
functions (see [10, Lemma 5.1 and Theorem 5.4]) we have

-1
(1 = ba,bay WAL, = (1= ba,bay (w)) D ReRe(w))* = L LS (w))* — Re(Re(w))*.
k=0

Thus, the first identity in (29) leads to

(1 = ba, by, (W) )b, (w)bE)

n;{—n—1

AP = LW (W) — Re(Re(w))™. (30)
We suppose now that o, € D. By (i) and Lemma 3.6 we see that the equalities
Li(w) = 0gxq and Ry(w) = Ogxq (31)

are satisfied. From (30) and the second identity in (31) it follows that

(1 = b by (W))bY)_ W)bE)_ (AT = L w))*.

n;—n—1 nd—n—1""n,w
Therefore, we obtain particularly
(1 = |ba, ()P bY) (W) PASY (w) = L w) (@ (w))* (32)

n;{—n—1

and because ofA,(,‘fﬁ;,F) € :Rgf,ﬂ, (28), (3) and (18) (see also (20) and [ 10, Section 2]) moreover
(bay = by Wby (Wb AT = L)Ly (33)

n;{—n— n;{—n—

Duetooy € Dand w € D \ Py p4r, from Remark 3.2 we know that the matrix LE“‘“(w) is nonsingular. Since the polar
decomposition of a complex g x g matrix and (32) yield the existence of a unitary g x g matrix U, such that the identity

L w) = /1= |be, (w)? b, ()] AR (w) U

is satisfied, since (1) supplies n, € T, and since (2) implies
by, (1) — b, (w) 11 —oqw| [1— o> w—u 1
. L =1 — 5 —, ueC\{—¢,
/1 — |by, (w)? T1—aw \ 1—|wl*1—opu 7
one can see from (33) that there is a unitary g x g matrix U, such that the representation

T— ol w—u~ -1
= [ 0t T e

is fulfilled for each u € C \ P, (. Similarly, based on the second identity in (29), (31), and the Christoffel-Darboux formulas
for orthogonal rational matrix functions in [ 10, Theorem 5.4] one can verify that there is a unitary g x g matrix V, such that

1— o2 w—u ~ -1
Re(u) = ‘/W e b CEN W GG (W) Ve, ue C\ Pay.

Now, let oy € C \ D. Taking into account (aj)fjl € 71 we have then || > 1. By virtue of (i) and Lemma 3.6 we see that

LY (w) = 04 and R(w) = 0guq. (34)
A combination of (30) with the first identity in (34) leads to

(1 = by, ba, (W) )bL)_,_ (w)b)_ AP = —Ry(Re(w))*.

n;{—n—1""n,w



B. Fritzsche et al. / Journal of Computational and Applied Mathematics 235 (2010) 1008-1041 1021

Therefore, we obtain particularly

(Ibay (W) [* = Dby, (W) PALD (w) = Re(w) (Re (w))* (35)
and
(buy (W) — ba )b (Wb (ASD)m = Ry (w)R. (36)

Because of |a¢| > 1and w € D \ Py pr, from Remark 3.2 we know that the matrix R, (w) is nonsingular. Since (35) yields
the existence of a unitary g x q matrix U, such that

Re(w) = \/Ibg, (w)[2 = 1[b)_,_ ()| AL (w) U

is satisfied, since (1) supplies n, € T, and since (2) implies
ba, (W) — by, (u 1—ow| [|logl2—1 w—u 1
Ctg( ) W()=77£| l | |Z| . iy UGC\{},
/1bo, (W)> — 1 1—oqw |\ 1—|w]*1—oqu oy
one can see from (36) that there is a unitary q x g matrix U, such that the representation

[, 0] |0‘l|2 — 1 w—u >y @R @]
Rg ) = b,«, f—n— 1(U)Ul Any (W) (An,ﬁ) )< (w)
—|wl? 1 —u

holds for each u € C \ P, ;. Similarly, based on the second equality in (34) (note also (29) and [10, Theorem 5.4]), one can
verify that there is a unitary g x g matrix V, such that

|a(|2 -1 w-— o o, o o -
LE"’”(”):\/]1 B @D w0y 6D )V
— u

is satisfied for each u € C \ P, ¢. Thus, (i) implies (iii).

“(iii) = (i)”: This implication is obvious.
“(iii) = (ii)”": Because of (iii) and (11) it follows particularly (ii).
“(ii) = (iii)”: Let Xu11, Xnt2, - - - » Xner be matrix functions such that X, X1, ..., X, is a basis of the right C9*?-module

JR" ! for each £ € Nyy1.n4r (NOte Lemma 2.2). Suppose that (ii) holds. Recalling that we have already proved part (b) and
the fact that (i) results in (ii), in view of (ii), (14), Remark 3.1, and (18) one can see that there is a pair of orthonormal

systems [(Lk)ZIg, (Rk)””] corresponding to (o2, and F,f"i,)) such that Ln+r = Ly, is satisfied if @,y € D and that

§n+r = Ry holds if oy, € €\ D. Since [(Ly)j 15, (Re)pio] is a pair of orthonormal systems corresponding to (@), and F,
from [11, Corollary 4.13] (see also [3, Remark 3.5]) we get that this is equivalent to the identity

E) (P
GX nir GX n+r*

Furthermore, we have already shown that (i) implies (iii). Thus, taking (11) and part (b) into account, by using Remarks 3.1
and 3.4 one can finally conclude (iii). O

Note that the special choice of (ozj)J‘?:"l according to part (c) of Theorem 3.7 relating to a fixed point v is taken to simplify
matters. One can also choose some other sequences. However, not all sequences lead to the desired uniqueness. In view
of [1, Proposition 2.1] one can see that this question is closely related to the existence of a unique solution in an infinite
interpolation problem of Nevanlinna-Pick type.

Based on Theorem 3.7 we can see that similar representations as in Remark 3.5 are fulfilled concerning the measure Fé”lz
defined by (13) forany w € D \ Py .

Corollary 3.8. Let (ozj 2, € Tiandletn € N. Let Xp, X1, .. Xn be a basis of the right C99-module RY;! and suppose that G is
a nonsingular (n + 1)q x (n+ 1)q matrix such that M[(c;)7! G; (Xi)p_ol # 0. Furthermore, let £ € Ny o0, let w € D\ Py g,

and let F,i,,)J be the measure defined by (13). If [(Lk)2,, (Ri)peol is a pair of orthonormal systems corresponding to (aj)fil and

=1
F%), then Frfo‘u), admits, for each B € B, the representations
11— o [*| _
F (B) = / N (Le(2) ™" (Le(2)) ™ A(d2),

2
F) (B) = / - '“" |(Re@) ™ (Re@) " ().
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Proof. Let z € T. Taking (14), some rules to calculate reciprocal rational matrix functions (see [10, Section 2]), and

|’5,(fz_n_l (z)| = 1into account, an application of Theorem 3.7 implies

1— o Jw—z

Ce@)'Le@ = r () @) (A, ) A @)
1—wl [1- @zl
_ Izl e~ |2 @ @ @ ()
T Z—apl WAnw(z)(A (W) AL (2)

in the case of oy € D and

RZ(Z)(R[(Z))* — (R[Dt,l](z))*R[ot,e](z)

loe> — 1 |w —z[? i
= Tl 1P ((A(ot) )[a n](z)) (A(a) (w)) 1(/‘,(3,1))[“’"](2)
|ag|2 -1 |Z — | a o - o
= a1 S e @A) T A @)
- &y

if oy € C\ D. Furthermore, because of [ 10, Remark 6.2 and Lemma 6.5] the equality
(Le(2))"Le(2) = Re(2) (Re(2))*

holds. Consequently, the assertion follows in view of (13). O

Remark 3.9. Let (o) 21 € 7, let Xo be a constant function on Cy with a nonsingular matrix X, belonging to C%*? as

value, and let G > 0g,q. Furthermore, let F be a measure belonging to M"z(T, Br) such that (16) is fulfilled. Using the

argumentations of Theorem 3.7 and Corollary 3.8 based on [1, Remarks 2.2, 3.5, and 5.3] one can verify the following:

(a) Suppose that there exists an r € Nsuch that F € MZ'(T, Bp). Ifw € D\ Py, and if [(Li)}_q. (Rk)}_o] is a pair of
orthonormal systems corresponding to (aj)"ol and F, then the following statements are equivalent:

(i) For eachj € Ny, one of the identities Li(w) = Ogsq, Rj(w) = Oguq, LI*”! () = Ogcq, or R/ (w) = 0gq holds.
(ii) There exists a unitary q x g matrix U such that the representatlon

L) = ﬂ W= b(“’ L WUVG X
|w|2 ‘l_
is satisfied for each ueC\Py, lfOlr € D and that
o> —1 w— T(@)
Ry = [ b"‘ WUVG X
W = TE Tl

is satisfied for eachu € C\ P, if oy € C\ D.
(iii) For eachj € Ny, there exist unitary q x q matrices U; and V; such that

1= o2 w —u 5 [ @) @F)\ [0,0]
Li(u) = TP 1= b i1 (WU /A (w) (Ao o O W),
1= g2 w (o[) (@.F)\[a,0] @h, )
Ri(u) = T w1 -1 WGy )W)y Gy ()

foreachu e C\ Py jifaj € D and that

ol oy 162 =T W =t (@.F) (@,F)\ [0,0]
R = T ) oy A (W) AP,
il y — 162 =T W =t L)) @F)

i = [T ,b @)y [P ) v,

foreachu € C\ P, jifoj € C\ D.
(b) Letr € Nand let w € D \ P, ,. Then the matrix measure Fé"il)) defined by (17) belongs to ,qu’r(’]l‘, Br) and (i) is satisfied

for a pair of orthonormal systems [(Ly)}_,, (Rk)}o] corresponding to (c;)72; and Féa“)} Moreover, the matrix measure

Fé”‘u)) admits, for each j € Ny, and each B € B, the representations

1-—
F (B) = / 1= ley :2'(L,<z>) (Li(2)) ™ A(d2),

Fy) (B) = = / 1= Jo ]' '(R @) (Ri(2)) ! A(d2).
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(c) Let w € D be so thatojw # 1forj € N, let (aj) °, be containing a point v infinitely many times, let F € ME °°(’]T Br),
and let [(Ly)2,, (Ri)pe,] be a pair of orthonormal systems corresponding to (ozj) >, and F. If (i) holds for all r € N, then

the matrix measure F coincides with Féau)).

Remark 3.10. If F € =MC’Z’OO(’]I‘, Bt),if n € Ny, and if w € D, then Theorem 3.7 and Remark 3.9 imply that the following
statements are equivalent:
(i) If (aj)w] € 77 fulfilling ojw # 1 for eachj € N and if [(Ly)72,, (R)i2,] is a pair of orthonormal systems corresponding

to ()i, and F, then one of the identities L, (w) = Ogxg, Re(w) = Ogxq, L ”](u)) = Ogxg, OT R[“ Iw) = 0gxq holds
when E € Npt1,00
(ii) There exists a sequence (ozj *1 € 77 fulfilling &jw # 1for eachj € N and containing some point v infinitely many times

such that one of the four identities L, (w) = Ogxq, Re(w) = Ogxq, Li“ Sw) = Ogq, OT R["‘ Ow) = Ogxq holds in case
£ € Nyy1,00, Where [(L)2, (Ri)RS,] is a pair of orthonormal systems corresponding to (oej)"i] and F.

Now, we are going to translate [ 1, Proposition 6.4] in terms of orthogonal rational matrix functions. Thereby, the following
insight into the reproducing kernels given by (7)-(9) will be essential.

Lemma 3.11. Let (ozj)(’o1 € 71. Let T € Nor t = +o00 and suppose that F € ,Mq‘T(T B). Furthermore, let [(Li)r_q, (Ri) o]
be a pair of orthonormal systems corresponding to (ozj <, and F. Let k € Ny ; and let b,, be the rational function defined by (2
Then the rational matrix function ®, given by

bo LT Re if €D
O = 1 37
T RIM fagec\D G7)
bak

admits the representation
b LR ™ if oy eD
Or=11
¢ RELT faceC\D,
ok

wherein the involved inverse values of matrix functions are well defined on (D \ P, ) UT, the matrix ©(w) is strictly contractive
foreach w € D\ Py and &y (z) is a unitary matrix for each z € T. Moreover, for allu,v € (D \ Py k) U T, the following
statements are equivalent:

(1) Ok(u) = Or(v).

(ii) u = vor (A% (v) = 0yrq.

(iif) u = vor (C%™) M (v) = 0guq.

Proof. Letu € (D\P, ) UT.Inview of (2) we see that by, (1) # 0in the case of o € C\D. Moreover, because of(oc]-)]?’i1 €T

and Remark 3.2, we know that the matrices L,O‘ K (u) and R[O‘ k](u) (respectively, R, (u) and Ly (u)) are nonsingular if o, € D
(respectively, if o € C \ D). In particular, the function @ is well defined via (37). Furthermore, since

.k .k
L = ReR™

(which holds due to [10, Remark 6.2 and part (a) of Lemma 6.5]), we get the other representation of ®; from (37). In view
of [10, Lemma 5.1 and Corollary 5.5] we have additionally

k
(1 = bay by, @))ALT = (1 = by by, ) D Ri(Ry(w)* = L L ()™ = by by, W) Ri (Ric(11))* (38)
j=0

and analogously
(1 = b Wby )G = R W) *REM = by, ()b (Le(w)*Ly. (39)
A combination of (38) and (37) leads to

@ W) = by, @) ALY @ @Y W) = 1y — Ok ) (Or(u))* (40)



1024 B. Fritzsche et al. / Journal of Computational and Applied Mathematics 235 (2010) 1008-1041
if o, € D and in the case of ¢y € C\ D to
(Ri@) ™" (I W) > = DAY () (Re(w)) ™ = Iy — Or(u)(Op(w))*. (41)

DuetoF € M%7 (T, $B1) and [2, Corollary 19] the matrix A,ﬁ"‘f) (u) is positive Hermitian (cf. (12)). Thus, foreach w € D\ Py,
based on (40), (41), and the fact that (2) implies |bak(w)|' < lifoy € Das well as |by, (w)| > Tifay € C\ D one can
conclude that ®,(w) is in each case a strictly contractive g x q matrix (see also [10, Section 7]). For each z € T, since (2)
yields |b,, (z)| = 1, from (40) and (41) it follows that ®y(z) is a unitary g x g matrix. Moreover (see (18) and (20)), forming
in (38) and (39) the reciprocal rational matrix functions with respect to the underlying points «q, a1, . . ., ok, @, wWe get

(bay, — bay, )AL ®H = by, LM (u) Ly — by ()R ()R
and
(bey, — ba WGV = by ReRE™ (1) — by (WL L (w).

Looking at some v € (D \ Py x) U T, the equivalence of (i), (ii), and (iii) can be reasoned from the considerations above and
the fact that by, (u) = b, (v) holdsifand only ifu =v. O

The sequence (O);_, of rational matrix functions given by (37) occupies a key role in what follows. It contains much
information on the pair [(L);_q, (Rk)¢_,] of orthonormal systems.

Proposition 3.12. Let (a, 21 € Tyandn € N. Let Xo, Xy, . .., Xn be a basis of the right C?*9-module quq and suppose that G

is a nonsingular (n + 1)q x (n + 1)q matrix such that M[(aj i1 G; X)p_ol # 0. For w € D\ Py p, let Fn(“ui be the measure
given by (13). Let [(Ly)}_qs (Ro)i_o] be a pair of orthonormal systems corresponding to M [(a]-)j’-;], G; (Xi)p_o] and let @, be

given by (37) with respect to L, and Ry, Furthermore, let v, w € D \ Py .. Then F,E“v) = ,5”3 holds if and only if ©,(v) = O, (w).

Proof. Note that F € M[(cj);, G; (Xk);_o] implies (11). Let P, ,, be the (unique) g x g matrix polynomial such that

=1

1
A" = —P
e Ta,n h

is fulfilled. From [1, Proposition 6.4] we already know that F,E‘”,} = F.%) holds if and only if v = w or 13,,[!",],1 (v) = Ogxq.

Furthermore, (19) shows that P[”] (v) = 044 is equivalent to (A(O‘) yenl(yy = 0Ogxq. Hence, taking Remark 3.3 and (11) into
account, an application of Lemma 3.11 yields finally the assertion. O

We comment marginally that by using the same argumentation as in the proof of Lemma 3.11 one can also verify the
following statement.

Remark 3.13. Let (oz] ©, € Ti.Lett € Nort = +ooand suppose thatF ,MZT(T Br). Furthermore let [(Li) ko> (Ri)r—o]

be a pair of orthonormal systems corresponding to (cx] ~,and F. Let k € Ny ;. Then the inverse ®, ! of the matrix function
Oy given by (37), i.e.

! R'LY
-1 P
O, =1by © B
bak(L," N7IRe ifax € C\ D,

ekl f g, €D

admits the representation

[, KTy —1 :
(“)k_l _ beka Lk lfOék e

bk RE9) T if ey € C\ D,

wherein the involved inverse values are well defined on C \ (D U P, ), the matrix (®,(w)) ! is strictly contractive for each
w € C\ (DUTUP, ), and (O(z)) ! is a unitary matrix for eachz € T. Moreover, forallu, v € C\ (DUP, ), the following
statements are equivalent:

(i) (@)™ = (Ok(v) ™,

(ii) u = v or (A") M (v) = Ogq-
(iii) u = v or (G4 *H (v) = Ogq.
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At the end of this section we still single out a peculiarity for the scalar situation ¢ = 1 concerning the maximum
determinant extension stated in Lemma 2.3.

Proposition 3.14. Let (¢; ]9'21 € Ty and n € N be such that oy € D for each k € Ny 1. Let Xo, X1, ..., Xy be a basis of
the linear space R, and suppose that G is a nonsingular matrix such that M[(c; }7:1, G; (Xi)k_ol # 9. Furthermore, let X,
be a function such that Xo, X1, ..., Xn+1 1S a basis of Ry ny1 and let G4 be a nonsingular (n + 2) x (n 4 2) matrix. Then
M[(aj)}:]], Gni1; (X)p 11 # @ if and only if there is a w € D such that the equality

(@)

(Fw)
Gni1 = Gx,n+1 (42)

holds, where F,.(,“JJ is the Borel measure defined by (13) in the particular case ¢ = 1.

Proof. Note that P, ;11 C Cp \ (D U T) since ax € D for each k € Ny ;41. Thus, we have D = D \ Py 41 and D = D \ Py 5.
In view of (14), if there is a w € D such that (42) holds, then it follows immediately that

ML) Grir: X2l # 9. )

Conversely, we suppose now that (43) holds. Hence, thereisan F € =M]Z (T, B7) such that

Gyt = Guir. (44)
Because of (44) and the nonsingularity of G, ; we get that F belongs to :Mlz’”Jrl (T, Br) and that there is a pair of orthonormal

systems [(Lk),’:;ré, (Rk)ZIé] corresponding to (ozj)j?’;’1 and F (note Remark 3.3 and [10, Corollary 4.4]). Since there is a
polynomial p,1 of degree not greater than n + 1 such that L, admits the representation

Pn+1

Ln+1 -

,
To,n+1

the fundamental theorem of the algebra implies along with Remark 3.2 (see also [ 10, Lemma 3.11 and Theorem 4.12]) that
there exists a w € D such that L, 1(w) = 0. Therefore, by virtue of part (a) of Lemma 3.6, (11), (14), and Theorem 1.1 we
obtain the equality

(@.F%)

(@F)  _ ala,F) _ pl@) _
A _An(flw _An(flw _An+1,1u .

n+1,w

G

(@)
Hence, recalling that from [ 1, Lemma 3.3] we know that A@D A(a’F"’“') holds if and only if G)(<F,:1+1 = Gy »'1, by (44) one

n+1,w n+1,w
can finally conclude that

()
_ B _ (Fn,w)
Gni1 = Gx,n+1 = Gx,n+1’

i.e. we get (42). Consequently, the proof is complete. O

a)
W

Propositions 3.12 and 3.14 hold in the case n = 0 as well. In particular, for some v, w € D, the identity Fé“v) = Féfﬁ is
satisfied if and only if v = w.

Casually mentioned, according to the family (Fé )wep Of matrix measures given by (17), statements analogous to

4. Szego parameters corresponding to the measure F,ﬁ"‘,}

In [12] distinguished pairs of orthogonal systems of rational matrix-valued functions on T, namely the so-called Szeg6
pairs, are studied. These pairs are determined by an initial condition and a sequence of strictly contractive ¢ x q matrices,
the so-called Szegé parameters, via certain recurrence relations. In the following we will calculate Szeg6 parameters which
correspond to the particular solution of Problem (R) for the nondegenerate case given by (13). At first we recall the associated
terms and definitions briefly.

Let og := 0 and (oz]-)j?’zo1 € T71. For k € Ny, let i, be the number defined by (1). Furthermore, let F € .MqZ‘OO(T, Br) and let
[(Li)2gs (Re)p2,] be a pair of orthonormal systems corresponding to (o ;;01 and F. Then [(Ly);2,, (Ri)2,] is called a Szegd
pair of orthonormal systems corresponding to (ozj)f:"l and F when, for all j € N, the following holds:

() 1f (1 — |o5)(1 — |&j_1]) > O, then

nimi—1(1 = |11
1-— EjCQ;]

R (o) R (5-1)) ™" > Ogxq (45)
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and
nimi—1(1 — |oj-11?)
1 — a4
(1) If (1 — Joy (1 — |aj,1|) < 0, then

(L][a’j](O[j_l))ile[T{_”(af_]) > Ogxq- (46)

logj_1]? —
11 (Rj(aj D)L @o1) > g (47)
- ] J 1
and
7 e _
1]7"}5’4 ) L(eg-1) 7" > Ogq. (48)
— ajdj—

If one chooses additionally Ly and Ry as the constant function on Cy with value +/F(T) ~' then the Szegb pair
[(Lk)R2gs (R, ] of orthonormal systems corresponding to (ozj 1andF is unique (cf.[12, Remarksz 2 and 2.3]). It is called

the canonical Szegé pair of orthonormal systems correspondmg to (a] 2, and FUIf[(L)2,, (Ro)p2,] is the canonical Szegd
pair of orthonormal systems corresponding to (ozj ©,and F, then (E])]“] given by

- 1L](OtJ 1)(RW (@)~ if (1 — lej—1D(1 — ley) > 0
njtj— 1(R o) Liley-))™)* i (1= o1 = Joy) < 0

is said to be the sequence of Szegé parameters corresponding to (aj) 2, and F.
Note that, subject to Remark 3.2, all of the inverses in (45)- (49) are well defined.

Ej = (49)

Remark 4.1. Let oy := 0 and (ozj 1, € Ti.Suppose that F € ,Mqoo(ﬂr Br). Furthermore, let [(L)p2,, (Re)p2,] be the
canonical Szegé pair of orthonormal systems corresponding to (aj) ~, and F and let (Ej) be the sequence of Szegd
parameters corresponding to (ozj)°_°l and F. Let j € N.In view of Remark 3.2 and Lemma 3 11 one can see that E; is a
strictly contractive q x g matrix (see also [12, Proposition 2.9]). Moreover, from [ 12, Corollary 2.12] we know that, for each
u € C\ Py, the following recurrence relations hold:

(@) If (1 = o5)(1 — |ej_1]) > O, then

1— a2 1—a_qu -1 i
Li(u) = ! == g~ BE (b (L) + R W),

1-— |0{j_1|2 1-— o

1— |Ol'|2 1—a_u . -1
R = o e G @R @ + L Bl — B
1= ]

(b) If (1 — |aj)(1 — |ej_1]) < O, then

o> =1 1—@u . [ 1]
Lj(u) = — 1— |o(- ]|2 1 —au lq — EjEj (bofji1 (u)Eij_l(u) + R]-_1 (u)),
J— )
|as|2 -1 1—o_qu e —1
Riw) = — | ~ PR %u (boy_, R_1 WE; + L ) /I, — EE;
J— )

Remark 4.2. Let (oz] ©, € Trand n € N. Let Xy, Xi, ..., X, be a basis of the right C?*?-module JRZ » and suppose that
G is a nonsingular matrlx such that M[(c;)}! i G (Xk)k:o] # (. As already mentioned in Section 1, the set stated in (15)

is nonempty. Moreover, if F and F are measures belonging to this set and if (Ej)fjl (respectively, (ﬁj ]‘-’il) is the sequence

of Szegd parameters corresponding to (aj)f:"l and F (respectively, F ), then the identity E; = ﬁj holds for eachj € Ny , by
definition (see also Remarks 3.1 and 3.3).

Let (aj)°° € TJ1, letn € N, let Xo, Xy, ..., X, be a basis of the right C9*9-module Ra n» and suppose that G is a
nonsingular matrix such that M[ ()} i1 G; (Xk)k o] # 0. In view of the comments above (see particularly Remarks 3.3
and 4.2), if [(Ly) 2y, (Rk)g=,] is the canonical Szegé pair of orthonormal systems corresponding to (aj) >, and some measure
F belonging to the set stated in (15) (respectively, (EJ)°_°1 is the sequence of Szegé parameters correspondmg to (ozj)]:
and such a measure F), then we call [(Ly);_,, (Ri)z_] also the canonical Szegé pair of orthonormal systems corresponding to

[(a])]_], ; (Xi)k—ol (respectively, (EJ)” 1 the sequence of Szegé parameters corresponding to M[(c;)}: JE (Xi)eol)-

The Szego parametersE; 1, E 12, .. for any of the particular solutions given by (13) have a 51mple form and can be used
to characterize these matrix measures as follows.
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Proposition 4.3. Let w € D and let (oc] 2, € T fulfillojw # 1 forallj € N.Let n € N, let Xo, X1, . . ., Xn be a basis of the right
C?™9-module RY, and suppose that G is a nonsingular matrix such that M[(ozj)j 12 G; Xi)p_ol # 9. Furthermore, let F,.(,Oif, be
the matrix measure given by (13) and let (Ej) be the sequence of Szeg6 parameters corresponding to (oz] ~,and Fé“,,))

(a) The equality E,, = Og4xq holds for eachm € Ny oo and
Env1 = {—?o(?’u%) ot €0\, 0
where O, is given by (37) regarding the matrix functions L, and R, of the canonical Szegé pair [(Ly);_q, (Ri)k_ol of
orthonormal systems corresponding to M[ (o) Jay G; Xik_ol-
(b) Let F € M[())_;, G; Xi)p_ol N Mq (T, Br) be such that the sequence of Szegé parameters corresponding to (oz,)‘x’1 and
F is given by (E))2

=1’
Jast where (ozj °, contains some point v infinitely many times. Then F coincides with the measure F,E“,,)}

Proof. (a) From [1, Remark 3.6] we know that F%) € ML (T, Br). Hence, the canonical Szegd pair [(L);2,, (Rk)fjoo]

of orthonormal systems (respectively, the sequence (E])C’O1 of Szegd parameters) corresponding to (oc])c’o1 and F,%, @) is well
defined. In particular, for each j € N, the rational matrix function ©; given by (37) with respect to [(Ly)2,, (Rk)k:O] is well
defined. Taking (14) into account, by definition it follows that [(Ly);_,, (Ri)k_o] is the canonical Szegé pair of orthonormal
systems corresponding to M [(a]-)j’?zl, G; (Xi)g_ol- Therefore, @, is of the form fixed in the assertion of (a). Let £ € Nyj1 .
We consider at first the case oy € D. In view of part (b) of Theorem 3.7 it follows that R,(w) = 0g444. Consequently, the
recurrence relations in Remark 4.1 imply

bay (R 1 (w) + LV (w)E, iy €D
bay_, (IR (w)E, + LT (w)  ifop g € C\D.

axq —

Recalling Remark 3.2 and (37) we get E;, = —©®;_1(w). A similar argumentation leads to E;, = —(O;_1(w))* ifay, € C\ D.
So, we have shown (50). Since Remark 3.2, Theorem 3.7, and (37) supply @;_1(w) = 0gxq for £ — 1 > n, it follows that
E; = Ogyq foreachm e Ny .

(b) Let the underlying sequence («;)2; € 77 contain some point v infinitely many times. Furthermore, we suppose that
F e ,M[(ozj)j”:], G; Xi)p_ol N ,Mcioo(ﬁl‘, B) is such that the sequence of Szegd parameters corresponding to (o;,)]?‘i1 and F
is given by (Ej)}’i]. Because of the definition of [(Ly);2,, (Rk)je,] according to the proof of (a) and the recurrence relations
in Remark 4.1 it follows that [(Ly) 2, (Rk)z=,] is the canonical Szegd pair of orthonormal systems corresponding to (aj)j°=°1

and F. Thus, Theorem 3.7 provides us F = Fp @ 0

Corollary 4.4. Let n € N and ((x]) ©1 € 71 be such that a, € D. Let Xo, X1, ..., X, be a basis of the right C?*9-module JRqu

and suppose that G is a nonsingular matrix such that M[ ()7, G; (Xi)k_o] 75 . Furthermore, let F,Saa)n be the matrix measure

=1
defined by (13) and let (E]) , be the sequence of Szegd parameters corresponding to (a] ©,and Fn(aa)n

(a) The equality E; = g4 holds for each £ € Nyy1 o
(b) Let F € M[())}. L G Xi)p_ol N Mq (T, Br) be such that the sequence of Szeg6é parameters corresponding to (a]) >, and

F is given by (E;)°,, where (a] | contains some point v infinitely many times. Then F = F,E"Qn

=1
Proof. Taking into account that (ozj)f:"l € 71 and o, € Dimply o, € D \ P, , and that (2) yields by, («vy) = 0, the assertion
is an easy consequence of Proposition 4.3. O

Note that Proposition 4.3 (in combination with Remarks 3.1 and 3.3) can be used to obtain another approach to the
statement of Proposition 3.12.

Remark 4.5. Let w € D and let (oz, ©, € 7 fulfillyw # 1forallj € N. Let X, be a constant function on Co with a

nonsingular complex g x g matrix Xp as value and let G be a positive Hermitian g x q matrix. Furthermore, let F; (o ) be the

matrix measure given by (17) and let (Ej) be the sequence of Szegd parameters corresponding to (aj)"c] and Fy (a) . Using

the argumentation of Proposition 4.3 based on [ 1, Remarks 2.2 and 3.5] and Remark 3.9 one can verify that:

(a) The sequence (Ej)]‘?:"1 is givenby E; = —wljifo; € DorE; = —wlyifa; ¢ Dand by E;; = 0gyq form € N\ {1}.
Particularly, if w = 0, then E; = 0y, forallj € N.

(b) Suppose that F € ,qu’oo(’[r, Br) such that (16) is fulfilled and that the sequence of Szegé parameters corresponding to
(a))2; and F is given by (E;);Z,, where ()2, contains some point v infinitely many times. Then F = Féo’i
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Remark 4.6. IfF € qu’m(?l‘, Br) and if n € Ny, then Corollary 4.4 and Remark 4.5 imply that the following statements are
equivalent:

(i) For each (o;)2 21 €T such that o, € Dincase n € N, the sequence of Szeg6 parameters (E] >, corresponding to (ozj
and F fulfills E; = 0g,4 for each £ € N;1q .

(ii) There is a sequence (ozj)""l € 71 with,, € Dincase n € N containing some point v infinitely many times such that the
sequence of Szeg6 parameters (E} >, corresponding to (oc] 2, and F fulfills E; = 0g,4 foreach £ € Ny .

We mention marginally that the statement of Remark 4.6 remains true, if one abstains from «;, € D in case n € N. This
can be proved, based on [12, Theorem 3.5 and Corollary 3.6].

5. On the Riesz-Herglotz transform of the measure F,ﬁ“,?,,

Recall that a function 2 : D — C%9 which is holomorphic in D and for which the real part Re £2(w) of £2(w) is
nonnegative Hermitian for each w € D is called a g x q Carathéodory function (in D). We will write C4(DD) for the set of all
q x g Carathéodory functions (in D). In particular, if F € M2 (T, Br), then £2 : D — C9*9 defined by

2w )—/—F(d)

belongs to the set (D) (see, e.g., [20, Theorem 2.2.2]). We will call this matrix function £2 the Riesz-Herglotz transform of

(the nonnegative Hermitian q x q Borel measure) F.
In this section we will give some information on the structure of the Riesz-Herglotz transform .Q(") corresponding to
the measure F,ﬁa,,)J given by (13) with some w € D \ P, . In particular, based on the duality concept for orthogonal systems

presented in [32], we will show that the matrix function 9,5“,,)) admits some representations in terms of orthogonal rational
matrix functions. To formulate the statement we need some preparations.
In what follows, let Ly and Rq be nonsingular complex q x g matrices fulfilling

LiLo = RoR}, (51)

and let (aj) 2, € T1.Let T € Nort = 400 and let U; be a complex 2q x 2q matrix such that

if (1 — Jog1(1 = |eg]) >0

US, U = PJoa ! 52
ol {—Jqq if (1— log_1)(1 — lag) < 0 (52)

for eachj € Ny ., where jgq is the 2q x 2q signature matrix given by

oo = I Ogxq
M \Ogxg

and where we use for technical reasons again the setting oy := 0. Furthermore, we put

1— |oy? .
LT (= (1= ) > 0
1— |ajq]? ! !
Pj =
9 =1 (1 ey (1 = ) < 0
— [ if(1 =D =) <
1— |ogj_q]? ! !

for eachj € Ny ;. Asin [11, Section 3] we define sequences of rational matrix-valued functions (Ly);_, and (Ry);_, by the
initial conditions

Lo(u) =Ly and Ro(u) =Ry (53)

for each u € C and recursively by

Li(u) 1—au (e (Wl Ogxq Li_1(u)
(R;M(u)) /’11_%"!( Opq lq) R w) G4

foreachj € Ny ; and eachu € C\ Pq ;. The pair [(Li);_o, (Re);_o] of sequences of rational matrix functions is called the pair
which is left- generated by [(a)7. i1 (Uj)j’:l; Lo, Ro].

Observe that besides the underlying matrices Ly and Rq also the underlying sequence (Uj)j’:l is uniquely determined
by such a pair [(Lv)z_q, (Rk)i_o] (see [11, Proposition 3.14]). Because of (54) and [11, Remark 3.5] one can write the
recurrence relations also in a right version. Moreover, if F € M‘i’(ﬂl‘ Br) and if [(Li)g_q» (Rk)j_o] is a pair of orthonormal
systems corresponding to (oc])r ; and F, then in view of [11, Remark 3.5, Definition 3.6, and Theorem 4.12] there exists a
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sequence (UJ) ~_, of complex 2q x 2q matrices fulfilling (52) such that [(Lx);_,, (Rk)f_o] is @ pair which is left-generated by
[(O‘J)]_v (Uj)f_l, Lo, Ro], where the nonsingular complex g x g matrices Ly and Rq fulfilling (51) are given via (53). Based
on this fact and the Favard-type theorems pointed out in [11, Theorems 4.4 and 4.9] we will use the notation dual pair of
orthonormal systems as explained below.

Letm € Ngor m = 400, let F € M%™(T, Br), and let [(Li)jtg, (Re)po] be a pair of orthonormal systems corresponding
to (ozj)j";1 and F. At first we consider the case m = 0. Obv10usly (cf. [10, Remark 5.3]), there are nonsingular complex g x q

matrices Ly and Ry satisfying (51) and (53). The pair [(L})?_,, (Rf)?_,] which is given, for each u € C, by
L¥(w)=L,* and Rj(u)=R,*

is called the dual pair of orthonormal systems corresponding to [(Lk)k 0 (Rk)k ol-Now, let m € Norletm = 400 and,
by virtue of [11, Remark 3.5, Definition 3.6, Proposition 3.14, and Theorem 4. 12] let (U) © , be the unique sequence of
complex 2q x 2q matrices fulfilling (52) for each j € Ny, such that [(Ly)j.,, (Ri)io] 1S the pair which is left-generated
by [(oz]-)j'L; (Uj)j";]; Ly, Ro] with some nonsingular complex q x g matrices Ly and Ry satisfying (51) and (53). Taking into
account that (51) implies (L, *)*L, * = R, " (R, *)* and that (52) yields that the complex 2q x 2q matrix j,qU;jqq has the same
property for each j € Ny, the pair [(L{)fL,, (Rf)i,] which is left-generated by () 1; (GgqUidga)itys Lo ™5 Ry “Tis said to
be the dual pair of orthonormal systems corresponding to [(Li)iLo, (Ri)itol-

Suppose that [(L*’&)k o (R#)k ] is the dual pair of orthonormal systems corresponding to [(Li);L,, (Rk)i,]. Because
of [32, Theorem 4.2] and (19) we know that, if k € N, and if F, : By — C9%? is the matrix measure defined by

Fu(B) = / 1 Jon ||2|(L @) (W(2)) ™ A(d2),

then the Rlesz—Herglotz transform 2 of F, admits, for each v € D \ P, x, the representations

ouw) < | W OEE) T ifaeD 55
— (L)LY () ifa € C\ D,

2wy = | RETODTTRD @) ifey €D (56)
—Rf () Re(v) ™! ifag € C\ D.

Subsequently, with a view to Problem (R), let (ozj)jw] € 71, letn € N, let Xp, X1, ..., X, be a basis of the right C?*4-

module {Rgan, and suppose that G is a nonsingular matrix such that M[ ()} i1 G G; Xk_o]l # 9. Keeping Remark 3.3 in
mind, if [(L)_g, (Rk)k_o] is a pair of orthonormal systems corresponding to M| (o))} i1 G; (Xi)¢_o], then we will henceforth
speak of the dual pair of orthonormal systems corresponding to [(Ly);_g, (Ri)j_o] as well.

Remark 5.1. Let [(Ly);_o, (Rk);_o] be a pair of orthonormal systems corresponding to the set M| ()} o1 G (Xi)p_ol and let
[(Lf);}zo, (Rf)ﬂ;o] be the dual pair of orthonormal systems corresponding to [(Lk)}_o, (Rk)k_o]. Because of Remark 3.5, (55),

and (56) one can see that, if o, € D and if F,E”Qn is the matrix measure given by (13) with w = «,,, then

2,0 = A" AU @)™ and 249, ) = RFIE) T ®RD )

n,an

foreachv € D\ Py ,, where Qé‘ﬁn stands for the Riesz-Herglotz transform of Fg“;n

One can extend the statement of Remark 5.1 regarding (F,gf"ul)wem\p“ as follows.

Remark 5.2. Let £ € Npiq0, let w € D\ P,y and let F,§“,}, be the matrix measure defined by (13). Furthermore, let
[(Li)Zo, (Ri)gZo] be a pair of orthonormal systems corresponding to ()2, and F(O‘) and let [(LF)22,, (RF)52,] be the dual
pair of orthonormal systems corresponding to [(Ly);2,, (Rk)2,]- In view of Corollary 3.8, (55), and (56) one can realize that

the Riesz-Herglotz transform .Q,E"‘u), of F,% is given, for each v € D \ P, ¢, by

0 ) = | E I OE W) ifer €D
T = (Le(0) T LY (v) ifa, € C\D,

200 ) = {ml;'.u(v))1(@[%“(”) ifa €D
—R (0)(Re(v)) ™" ifap € C\D.

Remark 5.3. Let ()7, € 71 and n € N.LetXo, X1, . . ., X, be a basis of the right C?*9-module ;' and suppose that G is a

nonsingular matrix so that M[ ()L, G; (Xk)z_o] # 9. Furthermore, let w € D\ Py, let F,E“l}) be the matrix measure defined

=1



1030 B. Fritzsche et al. / Journal of Computational and Applied Mathematics 235 (2010) 1008-1041

by (13), and let 9,5“1,)) be the Riesz-Herglotz transform ofF(“) By Remarks 3.2 and 5.2 (note also (19) and [11, Lemmas 3.11,
3.12, and Theorem 4.12]) one can find that 9(“) is the restriction of a rational matrix function which is holomorphic in a
disk enclosing T. In particular, it follows that 52,5 w is holomorphic and bounded in D and that

G

li
Jim €™ = Ogeg
where CEF”’“’ is given by (6) for £ € Ny relating to F,f”u)) (cf. [33, Remark 12 and Corollary 5]).

In the following, if E is a strictly contractive ¢ X q matrix, then we use the setting
J—EE ' E/l,—FE
H(E) = . -
E*/1, — EE* V1, — E*E

The matrix H(E) plays an important role in the theory of orthogonal matrix polynomials on the unit circle developed in [19]
(see also [20, Section 3.6]).

Remark 5.4. Let (E;)’_, be the sequence of Szegé parameters corresponding to the solution set M[(c;)}:
(using the notation glven by (1)) let

" 1. G (Xl and

I, Ogxq .
H(E; f(1—|a_1])(1—|a; 0
<quq nini—1 g &) if( lj-11)¢ o) >

Iy Ogxq Ogxq  Iq i
——= | H(E; (1= |oj—1)(1 — | 0
<0qxq ey, ) HE) (T1 07 )i (1 = gD (1~ ) <

for each j € Nj,. In view of [12, part (c) of Proposition 2.9] and [20, Lemma 3.6.32] one can see that (52) is
satisfied for each j € Ny ,. Consequently, from [12, Theorem 2.11] (cf. Remark 4.1) it follows that the canonical
Szeg6 pair [(Li)g_g> (R 0] of orthonormal systems corresponding to M[(j)i;, G; (Xk)g_o] is just the pair which is

Uj =

=1
left-generated by [(a]-)] 15 (UpE Jar VF(T) ! ,F(T)™ ] This implies that the dual pair [(L Vi—os (R )i—o] of orthonormal
systems corresponding to [(Ly),_g, (Ri)i_o] is the pair which is left-generated by [(«;)}. [ (U}*)j:], JVF(T), s/E(T)], where

I Ogx .
0 q -ﬂl H(-E)) if (1= lej—1 D —|og]) > 0
Ut — axq  NjNj-1lq
Sl % Ve (%9 )it — e - e <0
Ogxqg  Milj—1lg ! I Ogxq 7 ! '
Lemma 5.5. Let (ocj)c"’1 € Tyandn € N. Let Xo, X1, . .., Xu be a basis of the right C?*%-module RL and suppose that G is a

nonsingular matrix so that M[ (o)} i1, G Xi)p_ol # 9. Let [(Li)}—o> (Rk)p_o] be the canonical Szegé pair of orthonormal systems
corresponding to M[ ()} L, G (Xi)p_ol and let [(Lf);}zo, (Rf)}}zo] be the dual pair of orthonormal systems corresponding to
[(Li)g—g> (RK)p_ol- Furthermore, let K be a contractive q x q matrix, let by, be the rational function given by (2), and let v € D\Py .

(a) If oy € D, then the matrices LI*™ (v) + by, (v)Ry(v)K and R (v) + by, (v)KL,(v) are nonsingular, the equality
(@™ () = b, (VR VK) L™ (0) + be, (V)R (V)K) ™!

= (R*™(v) + by, (V)KL () (RH* ™M (v) — by, (V)KLE (v)) (57)
is satisfied, and
Re((LH!*" (v) — ba,.(v)Rif(v)lO(L‘“’"J(v) + by (VR (V)K) 1) > Ogeq- (58)

(b) If a, € C\ D, then the matrices R, (v) + L“" M ()K and L, (v) + I(R[“ " (v) are nonsingular, the equality

b (v) by, (U)

-1
<R§(v)——AAJAA(Lfﬂ%”Rv)K> <Rn(v)4— lﬁ*“(v)K)
by, (v)

be, (v)

-1
= (Ln<v> + KRL“'(v)) (Lﬁ(v) - LK(Rﬁ)‘“’”'w))
b, (V)

be, (v)

is satisfied, and

_ # #\[a,n] 1 [ee,n] >_1
Re ((Rn (v) — ban( )(L ") (v)K) (R,1 (v) + Tﬂ (v)L" (v)K > Ogxq-
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Proof. Let ®, be the rational matrix function defined by (37) with respect to L, and R,,. Suppose that «; € D. Since K is a
contractive g x g matrix and since from Lemma 3.11 we know that ®,(v) is a strictly contractive g x g matrix, Lemma 3.11
and some elementary properties of strictly contractive g x g matrices (see, e.g, [20, Remark 1.1.2 and Lemma 1.1.13]) imply
that the matrices LL"’"] (v) + by, (V)R; (v)K and RL""”‘ (v) + be, (V)KL, (v) are nonsingular. We consider now the special case
that K is a strictly contractive g x g matrix and we assume without loss of generality that «,,; € D. Furthermore, let L, 4,
Ry, LF nepoand R¥, . be the rational matrix functions which are given, for allu € C \ Py 41, by

n+1
1—anu
Lop1(u) = pn_Hﬁ«/l — KK (ban (u)Ly(u) + K*R*M (u)),
Un+1
Rop1(u) = pnﬂl - (ban(u)Rn(u)+L[“ Mw)K*)/1 — KK*
n+1U
1—
Liyq (u) = pn+1ﬁ\/1—l(*( (b WLF () — K* (RO (w)),
Unt1
and
1

T by, RS ) — () ) VT

R¥, (u) :=
n+1( ) Pn+1 T —

Taking into account o, 1 € D, the fact that with K also K* is a strictly contractive g x g matrix (see, e.g., [20, Lemma 1.1.12])
and Remark 5.4 (see also Remark 4.1 and [ 12, Remark 3.2 and Theorem 3.5]), in view of (55) and (56) we see that the setting

|Oln+l|

FB) = —
|Z — appa)?

—————(Li11@) L1 (2)) F A(d2), B € By,

leads to a measure belonging to eMg (T, B1), where the Riesz-Herglotz transform £2 of this matrix measure F admits, for
eachu € D\ P, ,, the representations

2@) = ) W@ W)™ = (@M () — b, WRE WK) (L™ (1) + b, (W)R, (W)K) ™!
and
2 = R W) TN RE D w) = RO (W) + by, (WKL (1) T (R (w) — by, (WKL ().

Choosing u = v we get (57) and (58) when K is a strictly contractive g x q matrix. Now let K be an arbitrary contractive
q x q matrix. Thus, if (t] . is a sequence of numbers belonging to the open interval (—1, 1) such that lim;_,  t; = 1 holds,
then (t]l()fi1 is a sequence of strictly contractive q x q matrices such that lim;_, o, ;K = K. Based on this fact and the already
proved case relating to a strictly contractive g x g matrix, one can conclude that (57) and (58) are satisfied (as well, if Kis a
contractive g x q matrix). Therefore, the proof of part (a) is complete. The assertion of part (b) can be similarly verified. O

Lemma 5.6. Let (ocj)"o1 € 71.Let T € Nor t = 400 and suppose that F € ,Mq’T(T B). Furthermore, let [(Ly);_q, (Ro)r_o] be
a pair of orthonormal systems correspondmg to (a,) 2, and F and let [(Lff)k —o» (R#)k o] be the dual pair of orthonormal systems
correspondmg to [(Lk)k 0» Rr—ol If [(Lk)k 0 (Rk)k ol is another pair of orthonormal systems correspondmg to ()2, and
F and if (L ) (R )k—ol stands for the dual pair of orthonormal systems correspondmg to [(Lk)k o (Rk)k ol then for each
k € Ny . there are unitary q x q matrices Uy and Vy such that Lk ULy, Rk = R\Vy, Lk = UkLk, and Rf = Rka hold.

Broof. Let k € No . Because of Remark 3.1 we see that there are unitary q x q matrices Uy and V such tilat the identities
L, = ULy and R, = RV, are fulfilled. Since [32, Lemma 5.1 and Theorem 5.4] imply that Lf (respectively, Lf) is the rational
matrix function which is uniquely determined via Ly (respectively, L) by the integral formula

Lt(u) = f < 2 Ly(2) — Zt uLk(u)) F(dz) l:';
T \Z—U Z—U

. ~ 2z
respectively, L, (u) =
T \Z —

foreachu € C\ (TUP, x), it follows that Z,f = UkL;f holds as well. Similarly, based on [32, Lemma 5.1 and Theorem 5.4] we
getRf =RIV,. O

T - 25 “Zk(u)) F(dz) 1:;)
u —Uu
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Next, we will present a technical result which establishes a connection between linear fractional transformations
generated by dual pairs of sequences of rational matrix functions and the solution set of an interpolation problem of
Nevanlinna-Pick type. As in [1, Proposition 2.1], if £2 : D — C%*9 is holomorphic in D, then we use here the setting

2(v) ifveD
ﬁ(v) = 1 o (59)
(2(2)) wecroun.

Ift e Ngandifv € C\ T, then ﬁ(f)(v) means the value of the tth derivative of the matrix function £2 at the point v.
A function S : D — CP*9 which is holomorphic in D and for which the matrix S(v) is contractive for each v € D is called
ap x q Schur function (in D). The set of all p x g Schur functions (in D) is denoted by 4,4(D) in the following.

Lemma 5.7. Let (o)), € 71 and n € N. Let Xo, X1, . .., X, be a basis of the right C**9-module RIY and suppose that G is

a nonsingular matrix such that M[(c; ;':1, G; (Xk)p_ol # 9. Let b, be the rational function defined as in (2). Furthermore, let

[(L)j—o» (Ri)i—o] be a pair of orthonormal systems corresponding to M[(e)i;, G; (Xi)j_o] and let [y, (REY_,] be the
dual pair of orthonormal systems corresponding to [(Li)g_q, (Ri)k_ol- If S € 84xq (D), then there is a unique 25 € C4(D) which
admits, for each v € D \ Py ,, the representations

(LD ) — by VRSN AEW) + by R, S@) " if ay €D

2s(v) = 1 # [a,n] " 1 (a.n] -1 . (60)
<ban(v)(Ln) )S(v) — Rn (U)) (WLn (v)S(v) + Rn(v)) if ay, gD,
(R (0) + by (0)S W)L () ™ (R (@) = by, SLE@)  if aw €D

25(v) = 1 ] —1 o , | -
<ban<v)s(U)R” ® +L”(v)) (ban(ws(”)(’%) ) - Ln(v>> if an ¢ D,

wherein the involved inverse matrices exist. Moreover, if S and T are functions belonging to 8,.4(ID), if £25 and 21 are the unique
functions belonging to Cq(ID) which are given by these relations, and if §2s and $2r are defined via (59), then:

(a) Let ap := 0, let m be the number of pairwise different points amongst («; j"=0, and denote these points by y1, v, - - ., Ym- Let
Iy be the number of occurrence of yy in (aj)}‘:ofor k € Ny . Then ﬁét)(yk) = @;t)(yk) holds for allk € Ny, and t € N j,—1.

(b) If v € D\ (Py.n UZqy n U{0}), then the relation S(v) = T(v) holds if and only if £25(v) = 27 (v). In particular, S = T ifand
only if 25 = $2r.

(c) Let k € Ny . If y € D (respectively, yy € C\ D), then S(yx) = T(yx) (respectively, S(%) = T(%)) is equivalent to

(1, (]
28 ) = 2% (n).

Proof. LetS € 44,4(D). In view of Remark 5.4, Lemma 5.6, (18) (see also [10, Remark 2.8]), and the fact that if U and V are
unitary g x g matrices, then USV forms a function belonging to 4,.4(ID) as well, one can see that there is a unique 25 € C4(D)
fulfilling (60) for each v € D \ P, wherein the involved inverse matrices exist, when we have shown this statement
concerning the particular choice of [(Li);_o, (Rk);_o] as the canonical Szeg6 pair of orthonormal systems corresponding to
M [(ozj)j'?:1 , G; (Xi)p_ol- However, recalling that P, , is a finite set, this follows by Lemma 5.5 and [20, Lemma 2.1.9]. Similarly,
we can conclude that £25 admits, for each v € D \ P, p, also the representation (61). Now, let S and T be functions belonging
to $4xq (D), let £2s and £2r be the unique functions belonging to G, (D) which are given via (60) for each v € D \ Py, and let
ﬁs and §T be defined via (59). In addition, let v € D \ P, ,. An application of [32, Proposition 3.3] yields

Ry ) = RO @) @), L )REQW) = LE(v)R(v),

_ 2
bay, (V) La ()AL *M (v) + LE )L (v)) = _277n71 E"' vBY) (v),
(1 —a@v)? '
and
o,n H#H #y [, 1-— |Otn|2
bay (W) R ()RE (v) + RE' M (V)R (v)) = =21 ——5 VB, (v).
1 —ow? “

Therefore, if &, € D, then (60) and (61) imply by setting
Rr, = L7 ™ (V) + by, Ry (0)T(v) and Ls, := R¥™(v) + by, (0)S()La(v)
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the equality
2r(v) — 2s(v) = (LH*" (W) — by, VIREW)T@)R; ), — Lg L (RN (v) — b, (0)S W)L (v))
= Ly, (RE"™(0) + by, (0)S @)Ly () (L™ (0) — by, (V)RG ()T (v))
- ((Rf,*)[“’"](v) — ba, (V)SW)LF W) L™ (0) + b, (V)R ()T (0))Ry

— lanl? _ _
= 2 (1_ A—awy (Hba,(w) L, (T(v) = S)Ry . (62)
Similarly, by setting
Rr, = ! LM (@) T (v) + Ry(v) and L, = SR ™ (v) + Ly (v)

ba, (V) ) by, (v)
ifa, € C\ D, then (60) and (61) lead to

2 ~ ~
2r(v) — Qs(v>—zm(' enl” (]‘[ba,(v))L;L(T@)—S(v))R;,L. (63)

Letu e C\ (DUTUP,,).Because of (59), (62), and a continuity argument it follows that

Q1) — 2s(u) = 2* 'a”|2 (Hb (u)) L} ( (7> -5 ( ! >>*ﬁ—1 (64)
j u S.u

in the case of o, € D, where (note (2) and (18))

Ry = — L[‘”’](u)( (1)>*+R(u) D= —— <T<1>>*R[“'"](u)+L(u)
" by, (1) u A M by, (1) u n e

Similarly, based on (59) and (63) we get

- . R 2 n 1 *
Q2rw) — 25(u) = 2nn — |0; |)2 (]_[ ba,(u)) < < ) =S <5>> Ry, (65)

in the case of &, € C \ D, where

Rs. = L™ () + by, (u)Ry (1) (s (%)) . Lry =R (W) + by, W)Ly (u) (T (%)) .

Thereby, one can conclude the fact that the matrices ﬁsyu, fr,u, Rs 4, and Lr, are nonsingular from Remark 3.13 (cf.
Lemma 5.5). Since, for each k € Ny p, the function

h = ﬁ baj
j=0

has a zero of order I, at the point y; due to the choice of (yj)j”;] and (2), from (62)-(65) one can reason that at any rate

ﬁs([) () = ﬁét) (7

foreachk € Ny , and t € Ny, 1. Moreover, since the function h has no further zeros, in view of (62) and (63) we see that
the equality S(v) = T(v) is equivalent to £2s(v) = £27(v) for some v € D \ (Py.n U Zy n U {0}). Consequently, taking into
account that P, , U Z, , U {0} is a finite set and that the functions S, T, §25, and §2; are holomorphicin D, we get thatS =T
holds if and only if £2 = £2r. Thus, parts (a) and (b) are verified. It remains to prove part (c). Let k € Ny p,. Furthermore, let

1 — |oy|?
nn%|2 ifm=1

(1 —aaye)

= 1— o]’

e [] Gy, ifm=>2.
A= @m? joiy gy
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In view of (2) and the choice of (yj)j”;l we see that ¢, # 0. Besides, taking into account that b,, (yx) = 0 holds and the fact
that by setting g := b , we get
-1 if Yk = 0
=2 L =1 Ve ifye #0
Myl — D) [l Vi ’
a straightforward calculation on the basis of (62) yields the equality

1 Ck
I! (|2 — D)k
if o, € D. Similarly, in the case of «, € C \ D, one can find that (65) leads to

15 oW 500 Ck - 1 1\\*
—2 ) — =2 = =————L7 (T(=)-S(=)) R}
Ii! T Gl = )l T Vi Vi S’

Therefore, if y, € D (respectively, if y, € C\ D), then the equality S(yx) = T (k) (respectively,S(yék) = T(%)) is equivalent
to the identity 2 (y) = 2% (). D

1
[U3) —
o0 =

I I - _
— 21 (y) — sz“’(m = L, (T(n) — SR,

Theorem 5.8. Let (o)X 2 € T1and n € N. Let Xo, X1, ..., X, be a basis of the right C?*9-module ,ﬂgfn‘? and let G be a
nonsingular matrix such that M[(;)} i1 G Xk)i—ol # 9. Let by, be the rational function defined as in (2). Furthermore, let
[(Lk)j—g- (RK)i—o] be a pair of orthonormal systems corresponding to M[(c;)’: im0 G; (Xi)k_o] and let [(Lf)ﬁzo, (Rf);jzo] be the
dual pair of orthonormal systems corresponding to [(Li)k_g, (Ri)i_ol- Let S € 8qxq(D). Then:

(a) There is a unique Fs € MqZ(T, Br) such that, for each v € D \ Py ,, the Riesz-Herglotz transform $2s of Fs admits (60) and
(61), wherein the involved inverses exist.

(b) The matrix measure Fs belongs to M [(ozj)le, G; (Xi) ol

(c) If w € D\ Py, if ®yis the rational matrix function given by (37) with respect to L, and Ry, and if S stands for the constant
matrix function on D with value —(©®,(w))*, then Fs coincides with the matrix measure F,ﬁ“,z defined by (13).

Proof. (a) From Lemma 5.7 we already know the existence of a unique matrix function £2s € C4(D) such that £25 admits,
for each v € D \ P, p, the representations (60) and (61), wherein the involved inverse matrices exist. Let T be the constant
function on D with value 04,4 (Which belongs to $;,4(ID)). Because of (60) with S = T and [32, Proposition 3.5] (see also (55)
and (56)) we obtain that £27(0) is a nonnegative Hermitian matrix. Hence, part (a) of Lemma 5.7 shows that the matrix £25(0)
is nonnegative Hermitian (for any S € $,,4(ID)). Therefore, in view of the matricial version of the Riesz-Herglotz Theorem
(see, e.g., [20, Theorem 2.2.2]) we get that there is a unique measure Fs € M (T, Br) such that the matrix function £2s is
the Riesz-Herglotz transform of this matrix measure Fs. N

(b) Recalling (19), (55), (56) and (60) with S = T, from [32, Theorem 4.2] we can realize that [(Ly);_,, (Ri)k_o] is a pair of
orthonormal systems corresponding to (oz]) >, and Fr. Thus, Remark 3.4 implies Fr € M[(ozj)] 1> G; (Xi)p_ol in this particular
case. Based on that and the interrelation between Problem (R) and an interpolation problem of Nevanlinna-Pick type for
matrix-valued Carathéodory functions stated in [ 1, Proposition 2.1], by virtue of part (a) of Lemma 5.7 we can conclude that

the measure Fs belongs to M[ (). JEH & (Xi)p_o] as well (when S is an arbitrary function belonging to 8.4 (D)).

(c)Letw € D\ Py p, let @, be the matrix function given by (37) with respect to L, and R,, and let S be the constant function
on D with value —(®,(w))*. In view of Remark 5.4, Lemma 5.6, (18) (see also [10, Remark 2.8]), and (37) we can see that
part (c) is proved, when we have shown this concerning the particular choice of [(Ly);_o, (Rk);_o] as the canonical Szegd

pair of orthonormal systems corresponding to M [(aj)]'?:p G; (Xi)p_ol- This will be verified, using a similar argumentation

as that for Lemma 5.5. Let the Riesz-Herglotz transform of Frfau), be denoted by .(2,5"2) From (14) and [1, Remark 3.6] we

know that F(O‘) belongs to the set stated in (15). Thus, in view of Remarks 4.2 and 5.4 (see also [12, Section 2]) there are
(uniquely determined) rational matrix functions L, Ry, Lf, and R# for each £ € N;pq,o such that [(Ly)p2,, (Ri)2,] is the

canonical Szeg6 pair of orthonormal systems corresponding to (ozj) >, and F, (“,,)J and that [(L Vico (R )ieol is the dual pair
of orthonormal systems corresponding to [(Ly)2, (Rk)jeol, Where we assume without loss of generality that o;1; € D.
Consequently, taking into account Remark 5.4 and that S is the constant function on D with value —(®,(w))*, Remark 5.2,
part (a) of Proposition 4.3, and the recurrence relations presented in Remark 4.1 yield, for each v € D \ P, ,, the identity

20w = G @G )T
= (LH™ M () + by, (VRE () (O (w))*) (L*™ (V) — by, (V)RR (V) (O (w))*) ™!
= (L5 (v) — by, (VR V)S ) (L™ (V) + b, (V)R (V)S V)" = 25(v)

ifa, € Dand similarly .Q,S“,,)J (v) = £2s(v) inthe case of o, € C\D.Because of Lemma 5.7 and (a) it follows that F,E"u)) =F. O
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Note that the representations (60) and (61) of the Riesz-Herglotz transform £25 of the measure Fs (which correspond
to a solution of Problem (R) subject to Theorem 5.8) depend on the concrete choice of the pair of orthonormal systems
[(Li)k—gs (Rk)—o] corresponding to the solution set M[(ocj)j'zl, G; (Xik)p_o] (with associated dual pair [(Lﬁ)ﬁzo, (R}f)ﬁzo]).
However, by virtue of Lemma 5.6 one can see that this is not so essential.

The rational matrix functions L,, R, Lﬁ, and Rﬁ occurring in (60) and (61) can be constructed from the given data in
different ways. In view of the recurrence relations for orthogonal rational matrix functions one needs to determine the
corresponding matrices, which realize those. Thereby, one can apply the formulas presented in [11]. Moreover, because
of Remark 5.4 one can particularly use Szegé parameters to obtain representations of the form (60) and (61). Besides via
(49), the associated Szegé parameters can be calculated by the integral formulas in [12, Section 4] as well. In addition, the
functions Lﬁ and R¥ can be also extracted directly from L, and R, by using the integral formulas in [32, Section 5].

Based on part (c) of Theorem 5.8 and (59) we obtain the following characterization of the fact that, for v, w € D \ Py,

the measures F\% and F,S"‘u), coincide (cf. Proposition 3.12).

Corollary 5.9. Let (ozj)j’:;o] € Tyandn € N. Let Xo, Xy, ..., X, be a basis of the right C9*?-module :Rg,x,ﬂ and suppose that G is

a nonsingular matrix such that M[(aj)}’zl, G; X)p_ol # 9. For w € D\ Py p, let the measure F,E“,,)) be given by (13), let Q,ﬂ"‘,f,
be the Riesz-Herglotz transform of F,Ef”u),, and let ﬁn(”u), be defined by (59). Let ®, be the matrix function given by (37) based on
a pair [(Li)p_g, (Re)i_o] of orthonormal systems corresponding to M| (c; }1:1, G; (Xi)p_ol Let g := 0O, let m be the number of
pairwise different points amongst («; ]’7:0, and denote these points by y1, ¥, . . ., Ym. Let Iy be the number of occurrence of yy in

(aj)J’?ZO for k € Ny . Furthermore, let v, w € D \ P, . Then the following statements are equivalent:

(i) Fa = Fico.

(ii) Thereis someu € C \ (T U Py, U Zq.p U {0}) such that 2\%) (u) = 2\ (u).
(iii) There is some k € Ny p, such that (2%)® () = (2% ().

(iv) For each k € Ny p,, the identity (2\%)® (1) = (2\%)® (v holds.

(V) Oy(v) = On(w).

Proof. Recalling (59) and the matricial version of the Riesz-Herglotz Theorem (see, e.g., [20, Theorem 2.2.2]), the
equivalence of (i), (ii), and (v) is a consequence of part (c) of Theorem 5.8 and part (b) of Lemma 5.7. Furthermore, the
implications “(i) = (iv)” and “(iv) = (iii)” are trivial. To complete the proof, we show finally that (iii) implies (v). However,
this implication follows from part (c) of Theorem 5.8 along with part (c¢) of Lemma 5.7. O

Corollary 5.10. Let (), € 71 and n € N. Let Xo, X1, ..., X, be a basis of the right C?*?-module RIW and suppose that G

is a nonsingular matrix such that M[(2)]_;, G; (Xi)j_ol # ¥. Let Yo, Y1, ..., Yny1 be a basis of the right C?*9-module R

For w € D\ Py p, let F,f“,f) be given by (13). Furthermore, let v, w € D \ Py ,.. Then the following statements are equivalent:

(i) % = F.
() (a)

. (Fp.v) (Fa,w)
(ii) GY.’:’!;—‘I = GY,r;:-tl-

(o) (@)
. o . F F
Moreover, if ant1 = v or apy1 = w, then (i) is equivalent to det G;"ni)l = det G; r;:i)l

Proof. Because of (14) we have

F)
GX,n
and (oej)jo:ol € 77 implies that the point «ny1 belongs either to C \ (T U Py, U Zy n U {0}) or to Z, , U {0}. Taking this and
Lemma 2.2 into account, Corollary 5.9 along with the interrelation between Problem (R) and an interpolation problem of
Nevanlinna-Pick type for matrix-valued Carathéodory functions stated in [1, Proposition 2.1] yields the equivalence of (i)
and (ii). On the basis of that, Corollary 2.5 shows that (i) is equivalent to

FR)
=G= GX ,n

@ @
Fa) (Fa')
detGy '\, = detG, '\

in the case of 11 = woray .y = vaswell. O
Remark 5.11. Let (o)), € 77 and n € N. Let Xo, X1, .. ., X, be a basis of the right C?*?-module RIW and suppose that G

is a nonsingular matrix so that M[(c;) G; (Xi)pol # 9. Letw € D\ Py, and let .Q,% be the Riesz-Herglotz transform
of the measure F,E”‘lz given by (13). Furthermore, let [(Ly)};_,, (Rk)k_o] be a pair of orthonormal systems corresponding to

n
j=1>
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M[(aj)le, G; (Xi)kol, let [(Lf)ﬁ;o, (Rff),f;o] be the dual pair of orthonormal systems corresponding to [(Ly);_q, (Rk)i_ols
and let by, be defined as in (2). Because of part (c) of Theorem 5.8 and Lemma 3.11, for each v € D \ P, ,, we obtain

21 ) = (CH*™ (W)L (W))* + bey ()be, WIRE (V) Ra(w))¥)
x (L™ () (L™ () — by, (V) Dy (W)RA (V) Ry (w))*) ™!

and
2 (v) = (R (w))*R&™ (v) — by, (W)ba, (V) (Ly (W) Ly (v)) ™"
x ((R™ (w))* (R ™M (v) + by, ()b, (V) (Ly (W) *LE (),

wherein the involved inverses exist (note also (38), (39) and (11)). Therefore, [10, Corollary 5.5] and [32, Proposition 3.1]
yield, for each v € D \ P, ,,, the identities

n n -1
25 w) = (1 T ZRf(vak(w»*) (Z Rk(vak(w»*)
k=0 k=0

n -1
2,0 0) = (Z(Lk(w»*Lk(v)) ( .

k=0

and

2 n
s Xojak(w)) L (v))

k=

Remark 5.12. Let (aj 2, € T1,let Xg be a constant function on C, with a nonsingular complex g x g matrix X, as value,

and let G be a positive Hermitian g x g matrix. Furthermore, let w € D and let F @ » be the measure defined by (17). Using
a similar argumentation as for Theorem 5.8 and Remark 5.11 based on [1, Remark 3 5] and Remark 4.5 one can see that, for
each v € D, the Riesz-Herglotz transform .Qé?‘“)) of Fé‘fl) is given by

1+vw *GXf

28 (v )=

6. On reciprocal nonnegative Hermitian measures

IfF € qu (T, B7) is such that the total mass F(T) is a nonsingular matrix and if £2 stands for the Riesz-Herglotz transform
of F, then £2(w) is a nonsingular matrix for all w € D and the function £2~! belongs to C,(ID), where (£2(0))~! is a positive
Hermitian q x q matrix (see, e.g., [20, Proposition 3.6.8]). Based on this and the matricial version of the Riesz-Herglotz
Theorem (see, e.g., [20, Theorem 2.2.2]), the unique F¥ e MQZ(T, B) fulfilling

(@)~ =/Z+JF#(dz), w €D,
TZ—w

is called the reciprocal measure corresponding to F (cf. [20, Definition 3.6.10]).

Remark 6.1. Let (ozj)ool € Tiandn € N. Let Xp, X1, ..., X, be a basis of the right C?*9-module R and suppose that
G is a complex matrix such that M[(a” 1 G Xi)p_o] # (. Furthermore, let there exist an F € M[((x” 1 G Xi)p_o]
such that det F(T) # 0. Since Xp, X1, ..., X, is a basis of the right C?*9-module J?gx,,q and since the constant function

with value I; belongs to ngf,f’, from [3, Remark 3.7] one can conclude that each element Fewm [(ap)T

G; (Xi)p_o] fulfills
detﬁ(T) # 0. Moreover, based on [32, Lemma 4.5] it is not hard to accept that if F is a measure belonging to qu(’ﬂ‘, B)

such that detl:'(?l‘) # 0, then Fe M[(aj)j’?:p i (Xi) kol is equivalent to F* e M (o))} et G)((Fn), Xi)p_ol-

=1

In view of Remark 6.1, if (Ol])oc1 € T1,ifn € N, if Xo, X1, ..., X, is a basis of the right C?*9-module Ra n,and if Gis a

matrix such that M[(;)}. L, G (Xi)p_ol # ¥, then we will write shortly G* for the matrix G)((F,n) which is given based on the

reciprocal measure corresponding to an F € M[ (o))’ i1, G (Xi) ko] fulfilling the condition det F(T) # 0.

Remark 6.2. Let (0‘1)001 € J1andn € N. Let XO, X1, ..., X, be a basis of the right C?*9-module R and suppose that
G is a nonsingular matrix such that M[(ocjj 10 G; Xi)p_ 0] #+ 0.IfF € ,M[(oc]j 1» G; (Xi)i_ol, then by [3, Remark 5.3 and
Theorem 5.6] one can see that det F(T) # 0. Moreover, [3, Theorems 5.6 and 7.2] imply that G* is a nonsingular matrix.

In the following we will analyze the statement of part (c) of Theorem 5.8 against the background of the concept of

reciprocal measures. Taking into account Remarks 6.1 and 6.2 we study at first the question to which extent one can
interchange the construction of measures given by (13) with the formation of reciprocal measures.
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Proposition 6.3. Let (o)), € 71 andn € N. Let Xo,X1, ..., X, be a basis of the right C?*9-module R and let G be

a nonsingular matrix such that M[(a,-)j’?:p G; X)g_ol # 9. Furthermore, let w € D \ Py, let F,.foi,), be the measure given

by (13), and let (F,&fﬁ),)# be the reciprocal measure corresponding to Fé“,f) Then (F,Ef’u),)# coincides with the measure (F* ),(1“2” given

by (13) concerning Xy, X1, - . . , X,, the matrix G¥, and w if and only if w € Z,, U {0}.

Proof. First of all we note that the measure (F,Eft},)# is well defined because of (14) and Remark 6.2. Moreover, in view of
the choice of G* and Remark 6.2, the measure (F#);‘f,),) is also well defined. Let £2 and £2 be the Riesz-Herglotz transform
of (F,ffxlf,)# and (F#),ﬁ‘fﬂ)v, respectively. Furthermore, let [(Ly);_o, (Ri)i_o] be a pair of orthonormal systems corresponding to
.M[(aj)f:], G; (Xi)g_ol, let [(Lf)ﬁzo, (Rf)}jzo] be the dual pair of orthonormal systems corresponding to [(Li);_o, (Rk)i—ol.
and let ®, be the rational matrix-valued functions given by (37) with respect to L,, and R,,. We suppose now that o, € . An
application of part (c) of Theorem 5.8 yields for each v € D \ P, , the representation

2() = " (V) — ba, (VR(V) (On (W) ILP' ™ (V) + by, (VIR (V) (On(w))*) .
Since an application of [32, Theorem 4.6] provides us that [(Lf)zzo, (Rff),’}zo] is a pair of orthonormal systems corresponding
to M[(c; ]’7:1, G*; (Xk)p_ol, from Theorem 5.8 it follows similarly that

2(v) = (L") + by, (VRO W) (LH™™ () — b, (WIRE W) (O] (w)*) ™"
foreach v € D\ Py n, where OF (w) = by, (W) ((LH* ™ (w))~'R¥(w). By virtue of part (b) of Lemmas 5.7 and 3.11 one can
see that the equality £2 = 2 is equivalent to

D ()L (w) (R (w)) ™" = —bi, (w) (LDH'*™ (w)) ™' RE (w)
or in other words to

ey, (w) (L)' ™ W)Ly (w) + Ry (IRE ™ (w)) = Oq. (66)
Analogously, one can verify that 2 = £ is equivalent to (66) when a, € C \ D. Since from [32, Proposition 3.3] we get

1-— |0‘n|2

bay (W) (L™ (w)Ly(w) + REWIRE M (w)) = =21y ————
(1 — w)?

ng{)n (w),
the definition of Bff)n and (2) imply that (66) holds if and only if the point w belongs to Z, , U {0}. Consequently, taking into
account the matricial version of the Riesz-Herglotz Theorem (see, e.g., [20, Theorem 2.2.2]), the proof is complete. O

The next aim is to reformulate the statement of Theorem 5.8 in terms of reproducing kernels by using the concept of
reciprocal nonnegative Hermitian measures.

Let (ozj)j?;’l € 71, letn € N, let Xo, X1, ..., X, be a basis of the right C?*9-module :Rgf,ﬁ, let G be a nonsingular complex
(n+ 1)q x (n+ 1)q matrix such that M[(c; }’:], G; (Xi)k_o] is nonempty, and let w € Cp \ Py, ,. Henceforth, over and above
(10), we use the setting

X(gvl.n] (w) * X([)Ot,n]
X[avn] X[avn]
o= | et | (67)
'Ea.n](w) Igoz,n]
Because of Remark 2.1, (5), (7)-(9), and (67), if F € M[(c; ]'?:1, G; (Xi)g_ol, then
Cr(z(,)[ﬁzF) = ngau); (68)
In particular (cf. (12) and [4, Proposition 11]), we have
Cn(‘jz,(w) > Ogxq, W € Co \ Py . (69)
Taking Remarks 6.1 and 6.2 into account, similar to (10) and (67), we put additionally
A = Xo, X, X)) (6F) T Xo(w), Xy (w), - ., Xa(w))* (70)
and
X(ga,n] (w) * X(Ea,n]
X[a,"](w) B X[ut,n]
Sl I KGR )

fa.] fa.]
no( (w) nOl
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Lemma 6.4. Let (o)), € 77 and let n € N. Let Xo, X1, ..., X, be a basis of the right C*9-module RET and let G

be a nonsingular matrix such that M[(c; ]f':], G Xp_ol # 9. Let [(Li)k_g> (Rk)i_o] be a pair of orthonormal systems

corresponding to M[(c; ]’721, G; (Xi)p_o] as well as let [(Lff Vieos (R}‘f )i—o] be the dual pair of orthonormal systems corresponding

to [(Lk)j_gs (R)R_o ). Furthermore, let A,(fgn, C,S?’Jn, Aﬁ,‘f’&f), and C,Sf”o;n#) be given by (10), (67), (70) and (71) with w := «,,. Then:

(a) There exist uniquely determined q x q matrices Uy, V,,, Uff, and Vﬁ such that

—1 —1
Ly = U/ Ao, (o) A, Ry = (€)™ Ci%, (@) Va,

—1 —1
Lh = Ul AV (o) (A% and  RE = (&)« G (o)

hold. In particular, the matrices U, V,, U¥, and V¥ are unitary.
(b) The rational matrix-valued function ©, given by

—1
begy/ At (@) A )71 €0 () if an €D
-1

1 .
T‘/ Cria () (C )= TIAD JAR, (an)  if 0y € C\D

on

O, = (72)

admits the representation

—1
Doy A () (AL () )1 G (@) if e €D

On=1 7 .
VGl @) GO (AL ™)AL, @) e e C\D,
an
wherein the inverse values of matrix functions are well defined on (D \ Py ) U T, the complex q x q matrix On(w) is strictly
contractive for each w € D \ P, n, and ©,(z) is a unitary q x q matrix for eachz € T.
(¢) The matrices LI*™ (o), RI*™ (ary), (L)1 * ™ (ary), and (R¥)!*™(av,,) are nonsingular and 2, := (L%)1*™ (o) (L™ (o)) !

-1
defines a nonsingular matrix which fulfills 2, = (R*™ ()~ (R¥)1 <" (), 2, = /ALY (00) (UF) U /A, (0) , and

-1
2, =/C (an) V, (ViH*/ C\%® (). Moreover, if F € ML()i= 1, G; (Xi)i—o), if £2 is the Riesz-Herglotz transform of
F, and if Qis given via (59), then 2, = ﬁ(an).

-1 —1
(d) Lf = Upy /AL, () 27 A and RE = (Gt em @21 /G, (an) V.

Proof. Let F € M[(c; 1”21, G; (Xk)y_ol- Taking the definition of the relevant objects into account (note, in particular, (11),
(12), (68), (69), Remark 3.3, [1, Remark 3.1], and the choice of [(Ly);_o, (Rk);_o]), [10, Theorem 4.5] along with the polar

decomposition of matrices yields that there are unitary g x g matrices U, and V,, such that

—1 —1
Ly = Uny/A2, (o) (A% and R, = (C)1 ™/ G0, (o) Vi

Since Remark 3.2 shows that the matrices L, (z) and R, (z) are nonsingular for a z € T, the matrices U, and V,, are uniquely

determined by these relations. In view of the assumption F € M [(aj)j'?:] , G; (Xi)p_o] and Remark 6.2 the reciprocal measure
F* corresponding to F is well defined and the matrix G* is nonsingular. Because of the choice of G* and the fact that
[32, Theorem 4.6] entails that [(L}f),’jzo, (Rf)ﬁzo] is a pair of orthonormal systems corresponding to M[(¢; ]’?:1, G*; Xi)p—ols
a similar argumentation as above provides us that there exist unitary q x q matrices Uﬁ and fo such that the equalities

—1 —1
L = Ub AL () AL and RE = (&)« Gy (n) Vi

hold, where the matrices are thereby uniquely determined. Thus, (a) is verified. Part (b) is then a consequence of (a) and
Lemma 3.11. We now prove part (c). In view of Remark 3.2 we see that the matrices L% (a,), R (a,), (L) (ary),
and (R¥)*"(q,) are nonsingular. Furthermore, from [32, Proposition 3.3] we know that (R¥)le-niflenl — gle.nl(p#yle.n],
Therefore, the complex g x g matrix

2y = (LD @) (G () ™!
is well defined, nonsingular, and admits the representation

2, = (R;[;X’n] (%1))71 (Rﬁ)[a,n] (otp).
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This in combination with (a) and (18) (see also [10, Remarks 2.4 and 2.8]) leads to

—1 —1
2o = AL (@) U U AT (), 20 =G (@) Va(VH* C%Y ().

Let £2 be the Riesz-Herglotz transform of F. Moreover, let ¥, be the function given by

o [
—L 'L ifo, € C\D.
Let Fs be the matrix measure belonging to M[(c; }’=1, G; (Xi)k_o] stated in Theorem 5.8 relating to the special choice of S as

the constant function on D with value 0. By virtue of (55) we see that the restriction of ¥, onto D\ P, , has a holomorphic
extension £2, to D. In fact, in view of Theorem 5.8 we see that §2, is the Riesz-Herglotz transform of the measure Fs. Thus,

since F and Fs belong to M[(c; ]’f‘:], G; (Xi)k_ol, the interrelation between Problem (R) and an interpolation problem of

Nevanlinna-Pick type for matrix-valued Carathéodory functions explained in [1, Proposition 2.1] yields particularly
2(an) = 2n (o).
Consequently, in the case of o, € D we have
2o = L)' () (L (@) ™! = (o) = L) = 2(en).
Similarly, if ¢, € C\D, then the definition of £2,, (note the choice of ¥,, (18), and (20)), (59), and a continuity argument imply
2 = LD (o) (L () = — (-Qn <1>>* = 2u(on) = 2(en).

n

Hence, part (c) is shown. Finally, by using (c) we obtain

-1 -1 -1 -1
VAR () =Un/A () 27", CSP () VE=2,'/C%, (@) V.

Accordingly, taking (a) into account, we obtain (d). O

Theorem 6.5. Let ()7, € 77 and n € N. Let Xo, X1, . . ., Xy be a basis of the right C?*9-module REW and suppose that G is

a nonsingular matrix such that M[(e)i;, G; (Xi)j_o] # ¥. Let Aff‘;n, c,if';n, Af{f‘&f) , and C,Sf’o;f ) be given by (10), (67), (70) and
(71) with w = oy, Let by, be the function defined as in (2) and let $2, be the complex q x q matrix as in Lemma 6.4.

(a) If S € 84xq(D), then there is a unique Fs e qu (T, $Br) such that the Riesz-Herglotz transform $2s of this measure Fs admits,
foreach v € D\ P, p, the representations

-1 —1
25(v) = (A;i'jjkv)Q;*\/AS:?&n(an) — ba, (W)(CP) M () 2,1 %, () s<v))
—1 1 -1
x (A;‘f‘gn<v)\/Af£‘&n<an) + e, (V) (G )M (0)/ Ci%, (etn) S(v)) :
1 1 -1
25(v) = <\/c,5,°i3n(an) C\) (V) + bu, (V)S (V) Ara, (etn) (A,Ef‘;n)[”’"](v))

-1 —1
x <\/C£?£n<an> 2,7*C%H (v) — bg, (V)S (V) Aa, (ctn) ﬂ;‘(Af,f';j?)W’"](v))

in the case of «;, € D and

. 1 ” -1 ~ ” -1
25(v) = (WA;?;,?(sz;*\/A;,;n(an) S() — (C5P e )21/ O, (o) )
-1
1 o ! o !
x (b (U)Af,‘f;n(vn/Az,;n(ocn) S() + (€)M (v)y/ Cie, (o) ) :

-1
1 o ! o !
(b (U)sw)\/cé,,zn(an) C () + AV, () (A,&‘?;n)[“~"]<u>>
1 o - —% o - - n
x (b (U)S(w\/cé,;n(an) 2,7C4P () — Ao, (o) fznl(A;ﬁ;?)[“’](v))

if an € C\ D, wherein the involved inverse matrices exist.

f25(v)
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(b) The matrix measure Fs belongs to M(izys G Kigo -
() If w e D\ Py p, if @, is given by (72) and if S stands for the constant matrix function on D with value —(®,(w))*, then Fs
coincides with the measure F, @ w defined by (13).

Proof. Using some fundamental rules to calculate reciprocal rational matrix-valued functions (see (18) and [10, Remarks
2.4 and 2.8]), a combination of Theorem 5.8 with Lemma 6.4 leads to the assertion. O

Corollary 6.6. Let (ozj)?o1 € Tyandn € N. Let Xg, X1, . . ., X, be a basis of the right C?*%-module RYy! and suppose that G is
a nonsingular matrix such that M[(a;)! i1 G Xi) o] ;é @. If ay € D, then the Riesz—Herglotz transform .Q,E"’ofn of the matrix

measure Fn(”,zn given by (13) with w = «,, admits, for each v € D \ P, ,,, the representations

20, (0) = AL LA, ()71 and - 2,7, (v) = (G, ()72, G ),

" »0n n,an n,an n,an n,an n,an

where A%, C\% AP and ¢%Y are the rational matrix functions given by (10), (67), (70) and (71) with w := «,, and where
£2,, is the complex q x q matrix as in Lemma 6.4.

Proof. Since (2) implies the relation by, (o) = 0, the assertion follows immediately from Theorem 6.5 and (72). O

Note that Corollary 6.6 is closely related to Remark 5.1. Moreover, one can extend the statement of Corollary 6.6 to an
arbitrary element of the family (F,ff’i,),)wem\pm as follows.

Remark 6.7. Let (ozj)‘?o1 € 71 and n € N. Let Xg, X1, .. ., X; be a basis of the right C?*9-module K¢ and suppose that G is
G; (X)r_ol # . Furthermore, let £ € Nypiq 00, letw € D\ Py 4, let Fé“l,{ be the
matrix measure defined by (13), and let (F,Ef”u)))# be the reciprocal measure corresponding to F,ﬁ“,,)) Based on Remark 5.2 and

Lemma 6.4 (note also [10, Remarks 2.4 and 2.8]) one can conclude that the Riesz-Herglotz transform .Q,(I“,,)) of F,ﬁ“,,), admits,
foreach v € D \ P, ¢, the representations

a nonsingular matrix such that M[(e))_;,

A FEE*) @F%) , .
Al (R (@) T A " o) ifory € D

a, ,(lau)) — 1 - &, (Fpw :
(Ao w)) 1<9£"$ (j>> @EFDON ) ife, € C\D,
s ’ o7

@F%) e~ B .
(€ )T (20 @)y, ™ (v) ifor, €D

29 ) = — @
. ¢ F*) 1 (@.Fa%) 1.
oy ™ () (9,55‘,3, (7@ )) (™))~ ifay € C\D.

29 ) =

n,w

As an aside we mention that, with a view to (16) and the family (Féﬂ)wem of measures given by (17), analogous statements
as presented in this section hold for n = 0 as well. This can be read out from Remark 5.12 (cf. [ 16, Section 10]).
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