Conclusions: The available evidence suggests that DS in STEMI is associated with better clinical and procedural outcomes, in particular lower mortality, as compared with CS.

TCT-18
Predictors of LVEF Improvement after Primary Stenting in ST-Segment Elevation Myocardial Infarction: The HORIZONS-AMI trial
Gregory Serruys1, Alexandra Lansky2, Ke Xu1, Rosana Mehran1, Gregg W. Stone1
1Columbia University Medical Center, New York, NY, 2Associate Professor, New Haven, United States, 3Cardiovascular Research Foundation, New York, NY, 4Icahn School of Medicine Mount Sinai, New York, NY, 5Columbia University Medical Center and the Cardiovascular Research Foundation, New York, United States

Background: Decreased LVEF at presentation during STEMI has been established as a predictor of morbidity and mortality. Many patients have improvement in LVEF over time due to recovery of hibernating or stunned myocardium. Little data exists on the clinical and angiographic predictors of improvement in LVEF after stenting.

Methods: In HORIZONS-AMI 3,602 patients with STEMI were randomized to bivalirudin vs. heparin and a glycoprotein IIb/IIIa inhibitor; stents were implanted in 3,202 patients. Ischemia-driven TVR of the infarct-related artery (IRA) required recurrent angina and/or signs of ischemia and ≥50% diameter restenosis, or ≥70% diameter stenosis even in the absence of ischemia. Result: TVR occurred in 219 (6.9%) patients at 1 year. 392 (12.9%) at 2 years, and 437 (14.4%) at 3 years. Repeat PCI was performed in 410 (93.0%) patients and CABG in 48 (11.4%, not mutually exclusive). TVR was ischemia-driven in 418 patients (95.7%). TVR was due to restenosis in 343 patients (80.2%) and disease progression in 94 (19.8%). Patients with TVR without TVR had similar rates of death (6.6% vs. 6.3%, P = 0.87), but markedly higher rates of M1 (35.3% vs. 2.7%, P < 0.0001) and non-CABG major bleeding (13.8% vs. 7.8%, P < 0.001). Of the 151 MI events in the TVR group, 29 (19.2%) occurred before (average 35 days) TVR, 13 (8.6%) occurred after (average 166 days) TVR, and the rest (72.2%) occurred on same day as TVR. Half of the MI on TVR occurred within 48 hours of it, suggesting that TVR was the result of the MI. Target lesion definite ST occurred in 29.2% of TVR patients and in 0.4% of non-TV group, P < 0.0001. Only one third of them occurred beyond 1 year. Independent predictors of TVR were more extensive CAD (HR = 1.18 per diseased vessel, P = 0.006), smaller vessel size (HR = 1.37 per mm, P = 0.006), longer lesion length (HR = 1.01 per mm, P = 0.003), scheduled angiographic follow-up (HR = 1.41, P = 0.001) and treatment with bare metal rather than drug-eluting stents (HR = 1.59, P < 0.0001).

Conclusions: TVR occurs in 1 of every 7 STEMI patients within 3 years after primary PCI, is usually due to restenosis rather than disease progression, and is strongly related to adverse outcomes (but not death).

TCT-20
Pressure-controlled Intermittent Coronary Sinus Occlusion (PICSO) in Acute ST-segment Elevation Myocardial Infarction: Final Results of the Prepare RAMSES Study
Tim P. van de Hoef1, Bobin Nijveelt2, Martin van der Ent3, M. Meuwissen2, Ahmed Khatib3, Wichert J. Kuijt6, Joanna J. Wykrzykowska7, Jan G. Tijssen8, Albert C. van Rossum3, Gregg W. Stone7
1Academic Medical Center - University of Amsterdam, Amsterdam, Noord Holland, 2VU University Medical Center, Amsterdam, Amsterdam, Netherlands, 3Maasstad Hospital, Rotterdam, Netherlands, 4Amphia Hospital, Breda, Netherlands, 5Bern University Hospital, Bern, Switzerland, 6Academic, Amsterdam, Netherlands, 7Academic Medical Center - University of Amsterdam, Amsterdam, MI, 8Academic Medical Center and the Cardiovascular Research Foundation, New York, United States, 9Academic Medical Center, Amsterdam, Netherlands

Background: Myocardial perfusion is impaired in up to 40% of patients after primary PCI (pPCI) for ST-segment elevation myocardial infarction (STEMI), which is associated with adverse clinical outcomes. Pressure-controlled intermittent coronary sinus occlusion (PICSO) aims to improve microvascular perfusion after pPCI by intermittently increasing the pressure in the cardiac venous outflow tract by means of a balloon-tipped catheter in the coronary sinus. We evaluated the safety and feasibility of adjuvant PICSO after pPCI for STEMI, and its effects on infarct size and myocardial function.

Methods: We enrolled 30 patients after successful pPCI for anterior STEMI. PICSO for 30 minutes was attempted, and the quantity of PICSO therapy provided throughout the procedure was documented (mm Hg of coronary sinus pressure modulation). Infarct size and myocardial function were assessed by cardiovascular magnetic resonance (CMR) at 2-5 days and 4-months post-pPCI, and the results were compared with those obtained before the PCI.

Results: PICSO could be initiated in 19 patients (63%). Major adverse safety events occurred in 1 patient (3%). When PICSO could be initiated, median PICSO duration was 88.8 min (Q1–Q3: 72.0–89.6 min), and could be maintained for 90(±2) minutes in 12 patients (40%). However, the quantity of PICSO therapy varied from 15 to 2735 mmHg.