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Abstract

We construct an N = 1 supersymmetric Lagrangian model for the massive superspin-1 superfield. The model is described
by a dynamical spinor superfield and an auxiliary chiral scalar superfield. On-shell this model leads to a spin- 1

2 , spin- 3
2 and

two spin-1 propagating component fields. The superfield action is given and its structure in the fermionic component sector is
presented. We prove that the most general theory is characterized by a one parameter family of actions. The massless limit is
shown to correspond to the dynamics of both the gravitino and superhelicity- 1

2 multiplets.
 2002 Elsevier Science B.V.

PACS: 04.65.+e; 11.15.-q; 11.25.-w; 12.60.J

1. Construction of a supersymmetric Lagrangian
formulation for free arbitrarily high spin massive fields
is still an unsolved problem in field theory. Although
free non-supersymmetric Lagrangian models for any
integer or half-integer spin massive field have been
presented long ago [1], the off-shell supersymmetriza-
tion of these theories is a non-trivial problem. For
this purpose the results of Ref. [1], given in the con-
ventional field theory formalism, are practically use-
less. This is to be expected since these theories have
a complicated auxiliary field structure, which would
lead to complicated off-shell supersymmetry transfor-
mations. Therefore, we must develop a new, quite in-
dependent approach. The realization of supersymmet-
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ric theories is usually carried out in the framework of
the superfield formalism. Superfield methods were the
basis for solving the analogous problem for supersym-
metric massless theories [2] (see also [3,4]) both for
Minkowski and for AdS spaces.

In the recent paper [5] we have constructed a
superfield Lagrangian model for the N = 1 massive
multiplet with superspin- 3

2 having the highest spin-2.
This model is a natural off-shell supersymmetric
generalization of the known Fierz–Pauli theory [6] and
describes the dynamics of massive component fields
with the spins 2, 3

2 and 1. We also found that such a
superfield formulation demands taking into account an
auxiliary general vector superfield.1

1 See the on-shell formulation of the dynamical superspin- 3
2

multiplet in a recent preprint [7].
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The purpose of this Letter is to continue the work
[5] and develop a superfield Lagrangian formulation
describing the dynamics of a massive multiplet with
superspin-1 having the highest component field of
spin-3/2. Such a model looks like a supersymmetric
generalization of the massive Rarita–Schwinger the-
ory [8]. It is worth noting from the beginning that the
structure of the models with integer superspin super-
fields should differ from theories with half integer su-
perspin. This is analogous to the difference between
conventional field models with integer and half inte-
ger spin fields [1].

To derive a superfield action for the massive
superspin-1 model we will refer to the procedure out-
lined in Ref. [5]. We begin with a superfield that
carries the massive irreducible representation of the
Poincaré supergroup. The corresponding representa-
tions are characterized by the massm and superspin Y .
On-shell, they contain propagating component fields
of spins (Y − 1/2, Y,Y,Y + 1/2) [4]. Using a suitable
superfield, we construct the most general quadratic su-
perfield action. This action reproduces the conditions
that describe the irreducible representations in the
space of superfields [4] as a consequence of the equa-
tions of motion. This procedure fails if we work with
only the superfields corresponding to the given irre-
ducible representation (we call such superfields physi-
cal). The solution to this problem is to couple the phys-
ical superfield to an auxiliary superfield within the
action. In the case of superspin-1, the role of the physi-
cal superfield is played by a complex spinor superfield
Vα and the auxiliary superfield is a chiral scalar super-
field Φ .

We note activity and recent progress in higher spin
field theories. It was noted in Ref. [9] that massive
irreducible representations in Minkowski and (A)dS
spaces can, in principle, be obtained from massless
theories by dimensional reduction. This suggests a
derivation of massive models from massless models
in higher dimensions. Higher spin massless models
have been formulated in arbitrary dimensional con-
stant curvature spaces [10].2 This may open a pos-
sibility for constructing massive models in constant
curvature spaces. However, applying the above de-

2 Also it is worth pointing out a new development of massless
higher spin theories [16,17].

scribed procedure to supersymmetric theories cannot
be straightforward since supersymmetry has not been
universally formulated for all dimensions. Alterna-
tively, supersymmetric massive higher spin field theo-
ries may also be derived from superstring theory since
any string model contains an infinite tower of higher
spin massive modes (see, e.g., [11]). However, there
is no guarantee that such an approach leads to field
dynamics corresponding to irreducible representations
of the Poincaré supergroup. Finally, there was some
progress in the study of massive field dynamics in con-
stant curvature space [12–15]. The corresponding su-
persymmetric formulation is unknown.

This Letter is organized as follows. We discuss
the conditions necessary for an arbitrary superfield
to form an irreducible massive superspin-1 represen-
tation. Then, we construct the superfield action that
leads to these conditions as a consequence of the equa-
tions of motion. To clarify the structure of the super-
field action obtained, we analyze the form of this ac-
tion in the fermionic sector and show that it reproduces
the conventional Rarita–Schwinger and Dirac on-shell
equations. We give a brief discussion of the massless
limit and find that it is equivalent to standard superfield
actions for the gravitino [3] and the superhelicity- 1

2 su-
permultiplets [4].

2. We seek a multiplet which contains a massive
spin-3/2 field at the θ θ̄ level. We would also like
this theory to be comparable with the known grav-
itino multiplet in the massless limit. Since the grav-
itino multiplet is described by a spinor superfield
[3], we choose an arbitrary spinor superfield Vα as
the physical superfield. We must find the appropriate
conditions for this field to form an irreducible rep-
resentation of massive supersymmetry. To find these
conditions we will use the theory of projectors devel-
oped in [18] and subsequently modified for massive
superfields (see, for example, [4]). First, this field must
satisfy the Dirac equation3

(1)i∂a�V α̇ +mVα = 0.

3 In this equation and throughout this presentation, we use
superspace [19] conventions. Here an underlined vector index
simultaneously denotes the usual Minkowski 4-vector index as well
as a pair of undotted and dotted Weyl spinor indices.
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Next, we seek the conditions that diagonalize the
superspin Casimir operator. The superspin operator, as
described in [4], acting on this field is given by

(2)CVα =m4
(

3
4
I + 3

4
P(0) + B

)
Vα,

where P(0) is the linear subspace projection operator
and B is given by

(3)B = 1
4m2

(
MαβPβ α̇ − �Mα̇β̇Pαβ̇

)[
Dα, �Dα̇].

Here, Pa = −i∂a , the momentum operator, and Mαβ
is the Lorentz generator written in the spinor repre-
sentation SL(2,C). If Vα is in the chiral subspace,
it would satisfy a superspin-1/2 representation since
P(0)Vα = 0 and BVα = 0. If Vα is in the linear sub-
space, i.e.,

(4)D2Vα = 0, �D 2Vα = 0

then the combination BVα becomes

(5)BVα = 1
8m2Dα

�D 2DβV
β + 1

2
Vα.

If Vα satisfies the following conditions:

(6)DαVα = 0, �Dα̇�V α̇ = 0

then BVα = 1
2Vα . Thus CVα = m42Vα = m41(1 +

1)Vα , and Vα satisfies a superspin-1 representation. At
the component level this representation contains spin-
( 1

2 ,1,1,
3
2 ) fields. The conditions (4) restricts Vα to the

linear subspace, while the conditions (6) select out the
superspin-1 state of that subspace. Note, that because
this field has only one species of spinor index, we do
not need the supplementary condition ∂aV α = 0 which
is usually applied to massive representations.

Thus, we have shown that an irreducible super-
spin-1 representation can be obtained using the gen-
eral superfield Vα . At the θ θ̄ level, this representation
contains a spin- 3

2 component field. The superfield Vα
must satisfy the Dirac equation (1), and be in the lin-
ear subspace (4). We also require the conditions (6) to
select the superspin-1 state of the linear subspace.

3. Now that we know the conditions required to
make Vα a superspin-1 irreducible representation, we
search for an action that reproduces these conditions
as a consequence of the equations of motion. We pro-
ceed by writing the most general action quadratic in

Vα . Then, we show that this action cannot produce the
required on-shell equations: (1), (4), (6). Finally, we
show that the superspin-1 representation can be ob-
tained by coupling Vα to a chiral scalar superfield Φ .

To begin constructing the action, we set the mass
dimension of Vα so that the spin-3/2 component field
has the canonical mass dimension. The most general
action quadratic in Vα and constructed from spinorial
covariant derivatives is

S[Vα] =
∫
d8z

{
α1V

αDα�Dα̇�V α̇ + α2V
α�Dα̇Dα�V α̇

+m(
V αVα + �Vα̇�V α̇)

+ βV αD2Vα

+ β∗�Vα̇�D 2 �V α̇
(7)+ γV α�D 2Vα + γ ∗�Vα̇D2 �V α̇}.

Here α1 and α2 are real. The equation of motion for
the superfield Vα is

Eα := δS
δV α

= α1Dα�Dα̇�V α̇ + α2 �Dα̇Dα�V α̇ + 2mVα

(8)+ 2βD2Vα + 2γ �D 2Vα = 0.

Taking �D 2Eα = 0 and setting β = α1 = 0, implies that
�D 2Vα = 0. The equation of motion now takes the form

(9)Eα = α2 �Dα̇Dα�V α̇ + 2mVα = 0.

Next, taking DαEα = 0 yields:

(10)−α2

2
D2 �Dα̇�V α̇ + 2mDαVα = 0

and we are forced to set α2 = 0 if we want DαVα = 0.
With this choice, (9) now reads 2mVα = 0, thus elim-
inating the entire superfield Vα on-shell. This proce-
dure fails whether we choose to set �D 2Eα = 0 first,
as in this derivation, or DαEα = 0 first. This means
that the most general action cannot produce the proper
on-shell equations to make Vα an irreducible represen-
tation. This does not come as a surprise. In Ref. [3], it
was shown that the most general massless action can-
not give rise to a single irreducible representation of
supersymmetry [18]. Using the same arguments as in
[3], one can see that the addition of mass terms alone
cannot ensure that the action describes one irreducible
representation. We need a different mechanism to re-
move the unwanted subspaces and make Vα the proper
irreducible representation.
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We are forced to couple Vα to an auxiliary field to
alleviate the situation. If the auxiliary field vanishes
on-shell, the consistency of the equation of motion
will then imply a differential constraint on Vα . Once
Vα is constrained, the above action can reproduce
the correct on-shell conditions. We choose a chiral
scalar superfield Φ with the hope of removing the first
term in Eq. (10). This term arises from the variation
of a coupling term of the form Φ�Dα̇�Vα̇ . The most
general form of the auxilliary sector of the action is
the following:

Saux[Vα,Φ]

(11)

=
∫
d8z

{
−1

2
ΦDαVα − 1

2
�Φ�Dα̇�V α̇ + γ1Φ �Φ

}

+ m

2
γ2

∫
d6zΦΦ + m

2
γ ∗

2

∫
d6z̄ �Φ �Φ.

The equations of motion become

(12)
δ(S + Saux)

δV α
= 0 ⇒ Eα + 1

2
DαΦ = 0

and for the auxiliary field

δSaux

δΦ
= 0 ⇒

(13)
1
8

�D 2DαVα − 1
4
γ1 �D 2 �Φ +mγ2Φ = 0.

Note that if Φ = 0 we would have �D 2DαVα = 0, the
desired differential constraint. Contracting �D 2Dα on
(12) we have

(14)γ3 �D 2D2 �Dα̇�V α̇ + 2m�D 2DαVα + 8�Φ = 0,

where γ3 = α1 − 1
2α2. Using the equation of motion

for Φ we have

{1 + 4γ1γ3}8�Φ + {
γ1 − 2γ ∗

2 γ3
}
4m�D 2 �Φ

(15)− 16m2γ2Φ = 0.

The following choices of coefficients will constrain Φ
to vanish

(16)γ1 = − 1
4γ3
, γ2 = − 1

8γ32 .

From (13), the vanishing of Φ implies the following
condition on Vα

(17)�D 2DαV
α = 0, D2 �Dα̇�V α̇ = 0.

The equation of motion for Vα , now takes the same
form as Eq. (8). Multiplying by �D 2 and setting α1 =
β = 0 we have �D 2Vα = 0, and D2 �Vα̇ = 0. Then the
equation of motion becomes (9) exactly. Contracting
Dα on Eq. (9) now yields 2mDαVα = 0. With this
result, Vα is fully irreducible in the superspace. The
equation of motion now takes the form of the Dirac
equation

(18)−2iα2∂a�V α̇ + 2mVα = 0.

Thus, with α2 = −1, Vα will satisfy (1), (4), and (6)
on-shell. We can now write the full action

S[Vα,Φ]
=

∫
d8z

{
−V α�Dα̇Dα�V α̇ +m(

V αVα + �Vα̇�V α̇)
+ γV α�D 2Vα + γ ∗�Vα̇D2 �V α̇ − 1

2
Φ �Φ

− 1
2
ΦDαVα − 1

2
�Φ�Dα̇�V α̇

}

(19)− m

4

∫
d6zΦΦ − m

4

∫
d6z̄ �Φ �Φ.

We would like to point out that all coefficients have
been determined except for γ . The γ terms are inter-
esting because they are purely auxiliary. We illustrate
this by formally integrating over the superspace, i.e.,∫
d8z

{
γV α�D 2Vα

}

(20)

= 1
8

∫
d4x

{
γD2 �D 2V α

∣∣�D 2Vα
∣∣

− γ

2
Dβ �D 2V α

∣∣Dβ �D 2Vα
∣∣}.

On-shell (20) vanishes since �D 2Vα = D2Vα = 0. We
can also exhibit the irrelevance of these terms by
considering the following field redefinition:

(21)Vα → Vα + a

m
�D 2Vα,

where a is an arbitrary complex number. With this
redefinition we can change γ to any arbitrary num-
ber, without influencing the on-shell results of the La-
grangian. Although these terms are purely auxiliary in
the massive theory, they will play an important role in
understanding the massless limit.
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We have given a two real parameter family of ac-
tions, governed by one complex parameter. These ac-
tions lead to the on-shell equations which describe
an irreducible superspin-1 multiplet. The off-shell de-
grees of freedom include the physical spinor super-
field Vα and an auxiliary chiral scalar fieldΦ . On-shell
Φ = 0, and Vα becomes an irreducible representation
of the Poincaré supergroup having superspin-1.

4. Here we give the fermionic component action
and show how the equations of motion reproduce the
correct fermionic massive representations. We will
see that there are two propagating fermions of spin-
1
2 and spin- 3

2 . The spin- 3
2 field has no divergence

and satisfies the Rarita–Schwinger equation, while the
spin- 1

2 field satisfies the Dirac equation.
Using the following component definitions:

Vα| = λα, DαΦ| = φα,
−1

4
D2Vα

∣∣∣∣= ηα, −1
4

�D 2Vα

∣∣∣∣ = χa,

(22)Dα�Dα̇Vβ
∣∣∣∣=ψαα̇β, 1

16
D2 �D 2Vα

∣∣∣∣ =Λα,

we formally integrate over the fermionic coordinates.
The fermionic sector of the action becomes

Sf =
∫
d4x

{
ψβa

(
i

4
∂bψ̄

β̇
a + m

4
ψβa − i

4
∂aφβ

)

+ i

8
φα∂aφ̄

α̇ + m

8
φαφα + 1

2
φαΛα

+Λαψ̄α̇αα + 2mΛαλα
− 8γχαΛα + iχα∂aχ̄ α̇

(23)+ 2mχαηα + h.c.
}
.

It is trivial to see that on-shell Λα = χα = ηα = 0.
By taking the divergence of the ψ̄ equation of motion,
such that the φ̄ term becomes i�φ̄α̇ , and substituting
the φ equation of motion, we see that φα = 0. This
leaves the following equations of motion:

(24)i∂bψ̄
β̇
a +mψβa = 0,

(25)∂bψαb = 0,

(26)ψ̄a
α̇ + 2mλα = 0.

The trace of (24) − (25) yields the Dirac equation on
ψαα̇α :

(27)i∂aψ
βα̇
β +mψ̄β̇αβ̇ = 0.

Thus, (26) implies that λα also satisfies the Dirac
equation. Using these facts, one can show that the trace
of (24) + (25) leads to

∂bψ̄(α̇β̇)β + 2i�λ̄α̇ = 0 ⇒

(28)∂b
(
ψ̄(α̇β̇)β − 2

3
i∂β(α̇λ̄β̇)

)
= 0.

Taking this symmetric divergenceless field as the
gravitino

(29)�̂� α̇β̇β := ψ̄(α̇β̇)β − 2
3
i∂β(α̇λ̄β̇)

we can now show that the symmetric part of (24)
implies the Rarita–Schwinger equation on �̂:

− i
4
∂β̇ (βψ̄α)(α̇β̇) +

i

4
∂α̇(βψ̄

γ̇
α)γ̇ + m

2
ψ(αβ)α̇

= − i
4
∂β̇ (β �̂�α)α̇β̇ + m

2
�̂αβα̇

(30)+
(

−1
6

+ 1
2

− 1
3

)
∂α̇(β∂α)β̇ λ̄

β̇ = 0.

Here, we have used (26) and the Dirac equation on
�λβ̇ extensively. Thus, the gravitino satisfies the Rarita–
Schwinger equation

− i
2
∂β̇ (β �̂�α)α̇β̇ +m�̂αβα̇

(31)= 1
2
εabcd∂

[c�̂� d]β̇ +m�̂αβα̇ = 0.

In summary, the fermionic sector of (19) describes
two propagating fermions. �̂(αβ)β̇ satisfies (31) and
(28), thus, forming a spin- 3

2 representation, and ψαβ̇α
forms a spin- 1

2 representation. All other fermionic
components of Vα vanish except, for λα which is
proportional to ψαβ̇α .

5. The analysis of the massless limit of the action
(19) is quite interesting. As it turns out, this limit
describes a reducible representation of the massless
Poincaré supergroup for arbitrary values of γ . But,
in the special case when γ = 1

4 , the representation is
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irreducible and corresponds to the standard gravitino
multiplet.

The irreducible representation corresponding to the
gravitino multiplet is given by the chiral field strength
Wαβ := �D 2D(αVβ) [3] and it’s equation of motion:

(32)DαWαβ = 0.

It is invariant under the gauge transformations:

δVα =Λα + iDαK,
(33)K = �K, �Dα̇Λα = 0.

We will show that for arbitrary values of γ this
multiplet is contained in the massless limit of (19).
The gravitino multiplet is described in detail in [3,20,
21]. The connection between the different formalisms
is stated rather concisely in [4].

Setting m= 0 leads us to the following action:

Sm=0[Vα,Φ]

(34)

=
∫
d8z

{
−V α�Dα̇Dα�V α̇ + |γ |V α�D 2Vα

+ |γ |�Vα̇D2 �V α̇ − 1
2
Φ �Φ − 1

2
ΦDαVα

− 1
2

�Φ�Dα̇�V α̇
}
.

Here, we have absorbed the phase of γ = |γ |eiφ by
making the following field redefinitions:

(35)Vα → e−
i
2φVα, Φ → e

i
2φΦ.

This is only possible now because m= 0.
To see what gauge symmetries are present we

look for the massless representations implied by the
equations of motion. The equations of motion for Vα
and Φ are:

(36)E′
α := −�Dα̇Dα�V α̇ + 2|γ |�D 2Vα + 1

2
DαΦ = 0,

(37)
1
8
D2Φ + 1

8
D2 �Dα̇�V α̇ = 0.

Taking the divergence of (36), i.e., ∂α̇αE′
α , and substi-

tuting for Φ using (37) we find

∂β̇
αE′

α = − i
8

�Dα̇ �W(α̇β̇) +
i

2

(
4|γ |2 − 1

4

)
�D 2D2 �Vβ̇

(38)= 0.

Note that if |γ | = 1
4 we have the equation of motion

for Wαβ , (32). At this point we turn our attention to

the following projection of (36):

(39)

Dα
�D 2D2

16� E′
α = 1

2
�Dα̇D2 �V α̇ + 2|γ |Dα�D 2Vα = 0.

This equation is of the form, 4|γ |H = − �H , which
requires that either |γ | = 1

4 or Dα�D 2Vα = 0. Since
Dα�D 2Vα = 0 ⇒ D2 �D 2Vα = 0, we see that (38) is
equivalent to the equation of motion of Wαβ , (32),
for any value of |γ |, meaning thatWαβ propagates for
arbitrary γ .

When |γ | = 1
4 the action (34) is equivalent to the

descriptions of the gravitino multiplet given in the
literature.4 This was shown in detail in [4]. In the
case where |γ | �= 1

4 , Eq. (39) implies the equation
of motion for a superhelicity- 1

2 representation. That
is, Dα�D 2Vα = 0 means that the chiral field strength
Ωα = �D 2Vα is an on-shell representation of the mass-
less Poincaré supergroup. The gauge transformations
that leave bothWαβ andΩα invariant are:

δVα =Λα + iDαK,
(40)�Dα̇K = 0, �Dα̇Λα = 0.

In comparison to the gauge transformations that leave
only Wαβ invariant, (33), there is less gauge freedom
here since K is a chiral field.

We have shown that the m = 0 limit of the super-
spin-1 model (19) generically forms a reducible rep-
resentation of the massless Poincaré supergroup. This
massless model (34) contains superhelicity-1 and
superhelicity- 1

2 irreducible representations. Further-
more, if we set γ = 1

4 , this model contains only the
superhelicity-1 state, and is equivalent to the gravitino
multiplet.

6. To summarize, we have presented a new 4D,
N = 1 supersymmetric model which describes propa-
gating spin-3/2, spin-1 and spin-1/2 massive fields.
The model is completely formulated in terms of a
spinor superfield Vα and chiral scalar superfield Φ .

4 We point out that there exists another off-shell formulation of
the gravitino multiplet in the literature (see second paper in [2] and
[4]). Such a formulation is given in terms of a constrained complex
linear transverse vector superfield or equivalently in terms of spin-
tensor superfield *αβα̇ .
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The superfield Vα is propagating and carries the
superspin-1 massive irreducible representation of the
Poincaré supergroup. The chiral superfield Φ is aux-
iliary and its role is to ensure the existence of a La-
grangian formulation that is compatible with the con-
ditions defining the massive irreducible representation
of superspin-1. The corresponding superfield action is
given by Eq. (19).

Eq. (19) actually represents a two parametric family
of actions that all lead to the same on-shell dynamics.
In the massless limit, this two parametric family of
actions becomes a one parametric family of actions
(34). These massless models describe propagating
helicity-3/2, helicity-1/2 and two helicity-1 fields.

In terms of massive theories with arbitrarily high
integer superspin, the superspin-1 theory is the sim-
plest. In the same sense the model constructed in
Ref. [5] is simplest Lagrangian for half-integer higher
superspin massive fields. We believe that these two
models can be considered as the basis for construct-
ing Lagrangian superfield models with arbitrary inte-
ger and half-integer superspins.

Note added

Near the completion of our work, we noted the
appearance of a work by Engquist, Sezgin and Sundell
[22]. Their work seems closely related to both the
topic of this Letter as well as to some of the research
that has appeared in [2] which presented results on
AdS geometry, SUSY and higher spin multiplets.

“The art of doing mathematics consists in finding
that special case which contains all the germs of
generality.”

—D. Hilbert
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