
An Implementation of Role-Base Trust

Management Extended with Weights on

Mobile Devices

Davide Fais 1 Maurizio Colombo2

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Pisa, Italy

Aliaksandr Lazouski3

Dipartimento di Informatica
Universita di Pisa

Pisa, Italy

Abstract

This paper describes the implementation of a library for the management and evaluation of Role-based
Trust Management (RT) credentials and policies written in RTML, also extended with weights, in mobile
devices. In particular, it describes the implementation of the library in J2ME. It is worth noticing, that
RTML credentials are XML-like documents and thus the capability of porting these features on mobile
devices makes the overall framework very interoperable with other RT frameworks (as for GRID systems).
As policy language, we use actually a variant of RTML, whose policies are added with weights and are able
to express quantitative experience-based notions of trust. It allow also to encode certain reputation and
recommendation models. The obtained results show how the implementation on mobile devices is feasible
and the running time acceptable for several applications.

Keywords: role-based trust management, reputation, mobile devices, policy language, computer security.

1 Introduction

Trust management is a promising approach to authorize entities in open, distributed,

heterogenous computer environments. Trustworthiness of the entity determines ac-

cess permissions. Trust value is assigned to every entity and based on credentials

the peer possesses and/or experience accumulated by previous interactions with

1 Email: davide.fais@iit.cnr.it
2 Email: maurizio.colombo@iit.cnr.it
3 Email: lazouski@di.unipi.it

Electronic Notes in Theoretical Computer Science 244 (2009) 53–65
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.038
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82440304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:davide.fais@iit.cnr.it
file:maurizio.colombo@iit.cnr.it
file:lazouski@di.unipi.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


the peer. A credential certifies some attributes (e.g. roles)issued to the peer by

an attribute authority. Accessing the resource the peer usually needs to present

a set of credentials signed by multiple decentralized authorities. Role-based trust

management (RT) framework [8,7,6] is especially suitable for attribute-based access

control in large-scale, distributed systems with decentralized attribute authorities.

RT exploits a notion of a role as peer’s attribute that can be delegated. We ex-

tended RT assigning a trust measure or weight to peer’s roles in order to incorporate

experience-based trust capabilities [9]. The prototype, RT’s credentials and policies

enhanced with trust weights and the evaluation engine, is described in this paper

and was successfully implemented on mobile devices.

Several trust management frameworks supporting attribute-based authorization

have been proposed last years, e.g. RT, PolicyMaker [1], KeyNote [2], SPKI [3],

etc. We concentrate on RT as it has some specific advantages. RT constitutes

a declarative, logic-based semantic foundation, support for vocabulary agreement,

strongly-typed credentials and policies, more flexible authority delegation structures

[7]. RT is a theoretically-based and practically-implementable approach which en-

compasses role-based access control (RBAC) and trust management. Flexibility

and expressiveness of RT framework bases on the notion of role exploited in the

assignment of access permissions to the role’s holder. RT assumes delegated, linked

and parameterized roles.

Heterogenous computer environment compounds various types of devices inter-

acting with each other to accomplish some particular goal. To use RT authorization

framework and to allow peers interoperate seamlessly we need implement RT on dif-

ferent devices and platforms. RT framework has been successfully implemented and

deployed in several environments [4,7]. In this paper, we focus on the implemen-

tation of RT framework on mobile devices supported J2ME. Original semantics of

RT policies and credentials written in RTML policy language [5] was extended by

trust weight associated with the role. We also introduced an algorithm to compute

trust weight’s values for roles. As a matter of fact, the prototype integrated both

credential-based and experience-based trust models in a single framework. We opti-

mized the framework and did some assumptions during implementation taking into

account power and computational limitations of mobile devices. The final prototype

was able to verify, validate RTML with weight credentials pushed to or pulled by

the mobile device. Applying inference rules to RT credentials and local access rules,

the deduction engine returned the complete set of the requestor attributes with as-

signed trust values and consequently access permissions. We did some performance

tests to measure applicability of the framework.

The paper is structured as follows. In Section 2, we recall the role-based trust

management framework. In Section 3 we show its flexible extension with weights

and the corresponding evaluations algorithm. We then show the prototype imple-

mentation on mobile devices in Section 4. Example of credentials, policy statements

and some performance evaluation are given in Section 5. Finally, Section 6 contains

our conclusions and future work.

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–6554



2 Role-based Trust Management

The RT Role-based Trust-management framework for access control provides pol-

icy language, semantics, deduction engine, and concrete tools such as application

domain specification documents which help distributed users to maintain consistent

use of policy terms (e.g., see [7,11]). RT purpose is to manage access control and au-

thorization problems in large-scale and decentralized system. Such problems came

out when independent and autonomous organizations, whose membership change

very rapidly, wish to share their resources. RT combines the strength of Role-Based

Access Control (RBAC) and trust-management (TM). RBAC was developed for

access control in a single organization in which the control of role membership and

role permissions is relatively centralized in a few users, RT takes from it the notion

of role as instrument to assign permissions to users. TM is an approach to dis-

tributed access control and authorization in which access control decision are taken

on the base of policy statements made by multiple principals. From TM, RT takes

the principles of managing distributed authority through the use of credentials, as

well as some notation denoting relationships between those authorities. The main

concept in RT is the notion of roles, each RT principal has its own name space for

roles, and each role is compounded by the principal name and a role term. For

example, if KA is a principal and R is a role term, then KA.R is the role R de-

fined by principal KA and can be read as KA’s R role. Only KA has the authority

to issue policy statements defining which are the members for the role KA.R. A

role in RBAC can be viewed as a set of principals who are members of this role.

Granting a permission to a principal means to making the principal a member of

the set corresponding to the permission, granting a permission to a role implies the

assertion that the set corresponding to the permission includes as a subset the set

corresponding to the role.

2.1 Parametric Roles

Roles in RBAC are atomic strings, sometimes this fact should be too limited. Could

be desirable to use the same name for a large numbers of roles with few differences

among them. To address this feature RT introduced the notion of parameterized

role with the following data types:

• Integer types. An integer type is ordered.

• Closed enumeration types. Could be both ordered and unordered.

• Open enumeration types. An Open enumeration type is unordered.

• Float types. A float type is ordered.

• Date and time types. There are predefined types and they are ordered.

A role term takes the form r(p1, ..., pn), in which r is a role name, and each pj takes

one of the following three forms: name = c, name = X and name ∈ S, where

name is the name of a parameter of r, c is a constant of the appropriate type, X is

a variable and S is a value set of the appropriate type. Variables make equal two

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–65 55



parameters in the same role definition.

2.2 RTML credentials

An RT credential has an head and a body. The head of a credential has the form

A.r(p1, ..., pn), in which A is an entity, and r(p1, ..., pn) is a role name. For each i

in 1...n, pi is a data term having the type of the ith parameter of r. A data term

could be either a constant or a variable. A credential with the head A.r(h1, ...hn)

defines the role A.r(h1, ...hn). A is the issuer of the credential. In the following are

presented into an abstract syntax six types of credentials, each having a different

form of body corresponding to a different way of defining role membership.

• Simple Member A.r(p =′ value′) ← D

The credential issuer is A and the role membership includes the D principal (A and

D are possibly the same). In general a Simple Member represents a certification

about which roles has been acquired by a user, it is signed by the entity who

released this roles. The body part is a Principal identifier.

• Simple Containment A.r ← B.r1

An ExternalRole is the body part of the credential. A defines that the role

membership includes all entities included in the external r1 role issued by the B

principal (A and B are possibly the same). The dimension of A.r should be no

less than that of B.r1.

• Linked Containment A.r ← A.r1.r2

The body part consists of a LinkedRole element, which contains two or more

elements. The credential issuer is A and the role membership includes all entities

from the external r2 role issued by the P principal where P is a member of r1 of

the default principal A. The dimension of A.r should be no less than that of P.r2

• Intersection Containment A.r ← A.r1 ∩ B.r2

The body part consists of an Intersection element, which contains two or more

roles; it could be an external role if the referred role is issued by an external entity

or it could issued by A itself. The role membership includes all entities which are

simultaneously members from the internal r1 role and the external r2 role issued

by the B principal.

The following two definitions can be express using the previous rules:

• Simple Delegation A.r ⇐ B[: r2]

The credential issuer is A who delegates its authority over r to B, in other words,

A trusts B’s judgment on assigning members to r. When r2 is present it works as

a sort of control; B can only assign members of A.r2 to A.r. A Simple Delegation

could be expressed using a Simple Containment and an Intersection Containment:

A.r ← B.r ∩ A.r2

• Advanced Delegation A.r ⇐ r1[: B.r2]

The credential issuer is A who delegates its authority over r to members of A.r1.

When B.r2 is present it works as a sort of control; each member of A.r1 can

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–6556



only assign members of B.r2 to A.r. In other words an Advanced Delegation

could be expressed using a Linked Containment and an Intersection Containment:

A.r ← A.r.r1 ∩ B.r2

2.3 XML syntax for credentials

RTML is an XML-based data representation for RT policies and credentials which

implements the RT framework. It includes data types to encode permissions, a

mechanism for identifying principals, data-structures to define a common vocabu-

lary and a semantic relation that determines when, given a set of policy statements

and a set of user credentials, a query is true. RTML uses three types of document:

• ApplicationDomainSpecification

Defines a suite of related data types and role names, called a vocabulary. The use

of a role name needs to refer to the ADSD in which the role name is declared.

• Credentials

Defines one or more credentials issued by an entity, this document should be

signed by the entity who released these credentials.

• AccessRules

Defines the rules which control the access to a role or group.

In the following we describe these documents.

2.3.1 Application Domain Specification Document (ADSD)

As previously disclosed, the use of a shared vocabulary constitutes a critical point

in those systems which represent the rights as attributes, such as the Grid environ-

ment. To delegate permissions on resources, all the principals involved in the chain

need to use consistent terminology to specify resource permissions and delegation

conditions. If some of them use incompatible schemes, their credentials cannot be

meaningfully combined and some intended permissions cannot be granted. The def-

inition of a role is meaningful only if all the parts involved are allowed to access

the role structure and possibly the permissions granted to it. An ADSD defines a

vocabulary which implements this structure using standard data type or defining

new ones, this document has to be public. This grants RT to have a strongly typed

credentials and policies. A credential which uses a role term needs to refer the

particular ADSD which defines the role name and all its data types.

2.3.2 Credential documents

In a ”trust-management” approach, a requester sends a request to an authorizer

who specifies an access-policy, expressed as a set of access rules, which govern

the accesses to protect resources. The requester adds a set of credentials to the

request and the authorizer decides whether to authorize this request by answering

the question: ”Do the access rules and credentials authorize the request?”.

Credential and AccessRules have the same structure; they define one or more

rule contained into a root-element called CredentialStore tag:

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–65 57



<CredentialStore >

<Credential id=’#1’>. . .</Credential>

. . .

<Credential id=’#n’>. . .</Credential>

</CredentialStore>

Each rule definition is compound of three elements.

(i) Prologue

It contains all the informations used afterwords in the document, it counts a

DefaultDomain and zero or more ImportDomain which refers all the ADSDs

necessary to recover the structure of all the roles involved, one or more Principal

containing the public key of the entities in the credential and a Issuer that

points to the Principal who issued the role, it could be an IntegerValue or

a StringValue but it has to be a KeyValue as defined in the XML Signature

Standard to offer guarantee of security.

(ii) Credential

RTML defines a set of Credential/AccessRule definition, each containing a

HeadRoleTerm and a body. Different kinds of definitions contain different el-

ements as the body part. We adopt an abstract syntax in describing these

definitions; r represents the HeadRoleTerm, r1 and r2 represents other role

terms, we assume A as the credential issuer while B and D represent generic

issuers.

(iii) VerificationData

It contains a ValidityTime element, and an optional signature part consisting

of a Signature element as specified in the XML Signature Standard.

2.3.3 AccessRule Documents

As already expressed in 2.3.2, Credential and AccessRule documents have the same

structure. The main difference consists that the Issuer value is not present in the

AccessRule document; it defines a policy and the issuer of these rules is the policy

issuer itself. Furthermore the Signature element is missed too, the issuer does not

need to verify its policy.

3 Extension with weights

In our framework, reputation of users can be calculated according to properties that

a user possesses with respect to services, rather than a role that he/she covers. As

an example, reputation of a user can be calculated based on past experiences of

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–6558



other services with respect to that user. The more the user has been well-behaved

with that service, the more the service will positively recommend interactions with

that user. Thus, by rephrasing what stated above, a simple member credential

A.r(v) ← D can be read as A asserts that D has property r with degree (weight) v.

Services emit two kinds of credentials, either expressing trust towards good be-

haviors of users, or recommending someone able to express that a user has a good

behavior. The first kind of credentials expresses trust towards a functionality (e.g.,

towards good behaviors), and we denote them by A.f(v) ← D, i.e., A trusts D for

performing functionality f with degree v. The latter are credentials of recommen-

dation, denoted as A.rf(v) ← D, and they express the fact that A trusts D as a

recommender able to suggest someone for performing f .

Recommendations can be transitive. The transitivity step is encoded into RT

by a linking containment of the form A.rf ← A.rf.rf . This statement says that if

A defines B to have property A.rf , and B defines D to have property B.rf , then

A defines D to have role A.rf , i.e., D is trusted to act as a recommender according

to A.

The indirect functional trust step is encoded as A.f ← A.rf.f . This statement

says that if B has role A.rf and C has role B.f then C has role A.f . B, that

has the role A.rf , is the recommender, i.e., A trust B for choosing someone that

is trusted for performing f . C, that has role B.f , is trusted to perform f by B.

Hence, C is indirectly trusted to perform f by A.

Also, one can define a set of functionalities, e.g., a range of possible values for

f , and the relative simple containment credentials are, e.g., as follows:

• A.files(p, v) ← D. A trusts user D with degree v for operating on a file.

• A.socket(p, v) ← D. A trusts user D with degree v for operating on a socket.

There must be explicit rules for combining trust weights. Thus, we consider

two operators, namely the link operator ⊗ and the aggregation operator �, for

combining the trust measures. Generally speaking, the former is used to compose

trust weights, while the latter is used to compare, select or aggregate trust weights.

We give some specific examples of semiring-based trust measures. Assume that we

want to consider the weight with maximal trust, then:

• ⊗ is the multiplication on real numbers (for instance between 0 and 1);

• � is the maximum between two real numbers.

Here, we recall the language given in [10], for enriching part of RTML with trust

measures.

• A.r(p, v) ← D. The role A.r(p) is covered with weight v.

• A.r(p) ←v2
A1.r1(p1). According to A, all members of role A1.r1(p1) with weight

v1 are members of role A.r(p) with weight v = v1 ⊗ v2.

• A.r(p) ← A.r1(p1).r2(p2). If B has role A1.r1(p1) with weight v1 and D has role

B.r2(p2) with weight v2, then D has role A.r(p) with weight v = v1 ⊗ v2.

• A.r(p) ← A1.r1(p1) ∩ A2.r2(p2). This statement defines that if D has both roles

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–65 59



A1.r1(p1) with weight v1 and A2.r2(p2) with weight v2, then D has role A.r(p)

with weight v = v1 � v2.

Note that weights must not explicitly appear in the simple, linking and intersec-

tion containment statements. Indeed, these statements combine basic credentials

(the simple member ones) and they determine how weights from the basic creden-

tials must be combined too.

3.1 An implementation of RTML with trust measures

We present an algorithm for calculating a set of simple member credentials with

trust measures on RTML. Figure 1 shows algorithm’s details. It takes as input the

available credentials, split in two sets, the set of basic credentials and the others. If

one does not consider trust measures, the algorithm basically builds the minimal set

of simple member credentials by iteratively applying the inference rules for each kind

of credential. If the inferred credential does not belong yet to the set of computed

basic credentials, then it is added to this set. The procedure is iterated until no new

credentials are found. When the algorithm is applied to a finite set of credentials,

it correctly terminates.

Adding weights is possible. Indeed, due to the specific nature of c-semirings

we are going to apply, it can be also seen as a variant of the Floyd algorithm

for calculating minimal/maximal weighted paths among all the nodes in a graph.

Indeed, a simple member credential, say A.r(v) ← C, states that between the node

A and the node C there is an arc labeled r and with measure v. If we assume the

order ≤w among weights defined as v1 ≤w v2 iff v1 � v2 = v2, then the algorithm

computes the greatest weighted path (w.r.t. ≤w) in the graph. We remind that in

c-semiring ⊗ is an inclusive operation.

4 Prototype Implementation on Mobile Devices

This section outlines the ongoing implementation of the RT with trust weights on

mobile devices supported J2ME platform and CLDC1.1/MIDP2.0 profiles. The

extended version of the prototype was initially implemented as a part of the au-

thorization framework for GRID services [4]. The prototype was modified due to

minimize of the size of the final application and taking into account J2ME limita-

tions. Java language was chosen for its suitability in developing and testing mobile

applications. Moreover, several simulation environments are freely available (e.g.

NetBeans), and a wide set of mobile devices like Smartphones and PDAs are able

to execute MIDlets.

RT framework consists of (i) XML-based user’s credentials expressed in RTML

policy language formats; (ii) local XML-based access rules or policy statements

saved on a mobile device and managing an access to some particular resource;

(iii) a deduction engine. The deduction engine discovers new user’s attributes or

roles inferred from access rules and credentials. Applying inference rules to every

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–6560



Trust Calculations (basic creds, rules)= {

Results:=basic creds; Changed := true;

While(Changed) {

Changed:=false;

For each credential A.r ←v2
A1.r1 in rules and for each credential

A.r1(v1) ← C in basic creds

if A.r ← C not in basic creds, or A.r(v) ← C in basic creds with

not v1 ⊗ v2 ≤w v

then {remove from basic creds all the creds like A.r ← C;

insert A.r(v1 ⊗ v2) ← C in basic creds; Changed:=true};

For each credential A.r ← A.r1.r2 in rules and for each credential

A.r1(v1) ← B, B.r2(v2) ← C in basic creds

if A.r ← C not in basic creds, or A.r(v) ← C in basic creds with

not v1 ⊗ v2 ≤w v

then {remove from basic creds all the creds like A.r ← C;

insert A.r(v1 ⊗ v2) ← C in basic creds; Changed:=true};

For each credential A.r ← A1.r1 ∩ A2.r2 in rules and for each credential

A1.r1(v1) ← C, A.r2(v2) ← C in basic creds

if A.r ← C not in basic creds, or A.r(v) ← C in basic creds with

not v1 � v2 ≤w v

then {remove from basic creds all the creds like A.r ← C;

insert A.r(v1 � v2) ← C in basic creds; Changed:=true};

}

Fig. 1. Algorithm for credential inference.

Fig. 2. RT framework with weights for mobile devices

credential and access rule the deduction engine returns the complete set of the user’s

attributes. We did assumption about centralized credential’s repository from which

credentials can be pushed or pulled to mobile device over Bluetooth connection link.

The complete software packages structure of the implemented prototype shown

in the figure 2. The packages supplied RT framework functionality by verifying,

validating, parsing signed XML-based user’s credentials and access rules and eval-

uating new credentials by the deduction engine.

Any user’s credential could be presented as a single XML file. To ensure in-

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–65 61



tegrity all credentials were digitally signed. The XML Digital Signature standard 4

with some extensions (RFC-4050) was used for credentials signing. Cryptographic

algorithms for J2ME were imported from bouncy castle project 5 . The signature

was kept into the Signature Value tag of XML encoded credential representation.

Public key of the credential holder was settled at KeyInfo tag. Xerces-jme 6 , xalan-

jme 7 , bc-jme and signit-mobile-xml packages prepared the input to rtml-parser by

verifying the credentials signature and expiration time, extracting the related XML

code, and saving credentials in a local KeyStore holding access rules and protected

by the password.

The rtml-parser is a DOM-based parser which converted received credentials

and access rules from XML-format into a complex data structure and passed it to

the deduction engine implemented by chain-discovery-weight package.

Chain-discovery-weight evaluated new credentials based on the initials creden-

tials and access rules. It also implemented the algorithm described in section 3.1

assigning properly a trust weight to every new credential. Chain-discovery-weight

maintained the final set of credentials wit trust measures. Initially, weights were

assigned to credentials and access rules by random values before sending to the

deduction engine. We did so in order to keep the original RTML format of the

credentials. The new user’s credentials denoted a complete set of roles a user held

on the mobile device. This information might be used to grant to the user some

access permissions.

5 Performance evaluation

We performed some experiments on Nokia E-61 Smartphone to measure the perfor-

mance of the prototype.

Working algorithms of the prototype, as mentioned before, included several steps

and was as follows: (i) to upload a set of user’s credentials to the mobile device

via Bluetooth; (ii) to validate and verify a signature and time expiration of each

credential on the mobile device; (iii) to parse credentials and corresponding access

rules from XML-based format to a logical structure understandable by the deduction

engine; (iv) to push credentials and access rules to the deduction engine to evaluate

a set of all user’s credentials and trust weights assigned to it.

We measured time consumptions for step (ii) till (iv) varying the number of

credentials and access rules. We used combinations of 4 user’s credentials and 3

policy rules to test the prototype. Due to space limitations we do not present here

XML version of credentials, its definition and assigned weights. We refer a reader

to [5], where the similar example was considered in details. The credentials and

access rules used in the prototype are enlisted below:

Credentials:

4 http://www.ietf.org/rfc/rfc3275.txt
5 http://www.bouncycastle.org/
6 http://xerces.apache.org/xerces-j/
7 http://xml.apache.org/xalan-j/

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–6562



Fig. 3. Credentials management performance

(0) KStateU .stagist(′BobSmith′,′ StateU ′) ← KBob

(1) KStateU .student(′StateU ′,′ InformaticScience′,′ 123456789′ ,′ BobSmith′) ←

KBob

(2) KAcm.acmmember(′BobSmith′,′ Professional′,′ UJ11111′) ← KBob

(3) KAbu.university(′StateU ′) ← KStateU

Access rules:

(4) KEPub.epubRole1() ← KAcm.acmmember(name,−,−) ∩

KEPub.student(−,′ InformaticScience′,−, name)

(5) KEPub.university(uniName) ⇐ KAbu

(6) KEPub.student(uniName,′ InformaticScience′,′ 123456789′ ,−) ⇐

KEPub.university(uniName)

For example, passing (3) and (5), the deduction engine generates the new

credential:

(7) KEPub.university(′StateU ′) ← KStateU

One set of experiments was done to evaluate time costs of credentials verification

and validation and parsing. Obtained results for 1 and 7 credentials is presented

in figure 3. As shown in the figure, time for validation-verification of 1 credential

was almost 11.0 seconds while parsing only 1.6 seconds. The time had a linear

dependence on the number of credentials to be processed.

Figure 4 presents performance of the deduction engine for the case of 2 (1

credential and 1 access rule) and for the case of 7 (4 credentials and 3 access rules)

policy statements. It shows that evaluation time almost remained on the same value

and formed 28 seconds delay for 7 policies statements.

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–65 63



Fig. 4. The deduction engine performance

Running several experiments on a real devices we inferred that the credential

verification and validation time expenses are very sensitive. The overall time ex-

penses are acceptable only for specific application but can not be used, for example,

to monitor run-time executions.

6 Conclusions and future work

In this paper, we have introduced implementation of RT framework on mobile

devices. Trust weights were embedded into the RT credentials to supply certain

reputation and recommendation models. We presented the algorithm to compute

weights and ran some experiments to test the prototype performance. Obtained

results showed that credentials verification and validation were the most time con-

suming comparing to credentials and access rules parsing and evaluation.

We plan to reduce time expenses by using light cryptographic signing algorithms

and developing an adoptive caching model for credentials verification and validation.

Finally, we concern about a complex case study expressing benefits of RT with

weights. We suspect a Grid scenario to examine interoperability of RT framework

deployed on various devices.

References

[1] Blaze, M., J. Feigenbaum and M. Strauss, Compliance checking in the policymaker trust management
system, in: Financial Cryptography, 1998, pp. 254–274.
URL citeseer.ist.psu.edu/blaze98compliance.html

[2] Blaze, M., J. Ioannidis and A. D. Keromytis, Experience with the keynote trust management system:
Applications and future directions.
URL citeseer.ist.psu.edu/641873.html

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–6564

citeseer.ist.psu.edu/blaze98compliance.html
citeseer.ist.psu.edu/641873.html


[3] Clarke, D. E., Spki/sdsi http server / certificate chain discovery in spki/sdsi (2001).
URL citeseer.ist.psu.edu/clarke01spkisdsi.html

[4] Colombo, M., F. Martinelli, P. Mori, M. Petrocchi and A. Vaccarelli, Fine grained access control with
trust and reputation management for globus, in: OTM Conferences (2), 2007, pp. 1505–1515.

[5] et al, N. L., Rtml: A role-based trust-management markup language, Technical report, Purdue
University, cERIAS TR 2004-03.

[6] Li, N. and J. Mitchell, Rt: A role-based trust-management framework (2003).
URL citeseer.ist.psu.edu/li03rt.html

[7] Li, N., J. C. Mitchell and W. H. Winsborough, Design of a role-based trust management framework,
in: Proc. IEEE Symposium on Security and Privacy, Oakland, 2002.
URL citeseer.ist.psu.edu/533810.html

[8] Li, N., W. H. Winsborough and J. C. Mitchell, Distributed credential chain discovery in trust
management: extended abstract, in: ACM Conference on Computer and Communications Security,
2001, pp. 156–165.
URL citeseer.ist.psu.edu/article/li01distributed.html

[9] Liu, J. and V. Issarny, Enhanced reputation mechanism for mobile ad hoc networks, in: iTrust, 2004,
pp. 48–62.

[10] Martinelli, F. and M. Petrocchi, On relating and integrating two trust management frameworks, Electr.
Notes Theor. Comput. Sci. 168 (2007), pp. 191–205.

[11] Winsborough, W. H. and N. Li, Safety in automated trust negotiation, in: S&P, IEEE, 2004 .

D. Fais et al. / Electronic Notes in Theoretical Computer Science 244 (2009) 53–65 65

citeseer.ist.psu.edu/clarke01spkisdsi.html
citeseer.ist.psu.edu/li03rt.html
citeseer.ist.psu.edu/533810.html
citeseer.ist.psu.edu/article/li01distributed.html

	Introduction
	Role-based Trust Management
	Parametric Roles
	RTML credentials
	XML syntax for credentials

	Extension with weights
	An implementation of RTML with trust measures

	Prototype Implementation on Mobile Devices
	Performance evaluation
	Conclusions and future work
	References

