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Abstract
The basic idea that stems out of this work is that large sets of data can be handled through an organized set of mathematical and

computational tools rooted in a global geometric vision of data space allowing to explore the structure and hidden information

patterns thereof. Based on this perspective, the objective is naturally that of discovering and letting emerge, directly from

probing the data space, the manifold hidden relations (patterns), e.g. correlations among facts, interactions among entities,

relations among concepts and formally describing, in a semantic mining context, the discovered information. In this note, we

propose an approach that exploits topological methods for classifying global information into equivalence classes and regular

languages for describing the corresponding automaton as element an of hidden complex system.
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1. Introduction

Probably the most important fact in modern science is the dramatic change in paradigms that

has seen reductionism challenged by holism. Complex systems can be defined as systems

composed of many non-identical elements, entangled in loops of non-linear interactions. The

challenge is to control the collective emergent properties of these systems, from knowledge of

components to global behavior. A typical feature of complex systems is in fact emergence of

non-trivial superstructures that cannot be reconstructed by applying a reductionist approach.

Not only do higher emergent features of complex systems arise out of the lower level inter-

actions, but the patterns that they create react back on those lower levels. We can consider a

complex system made by two levels of information, the local information - i.e. the network of
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interactive elements - and the global information - the emergence of global properties, possibly

unknown, from the observed phenomenon. To construct a theory that allows to define and man-

age complex systems we need to reach forward to a real theory of complex systems, bearing on

complex phenomena and data. We believe that one way to create such models is that of extract-

ing them from the data by which the complex system itself is characterized. Handling large sets

of data, understanding what kind of phenomena are hidden and trying to model the dynamics

of the corresponding complex system, is a very ambitious goal whose output will contribute for

reliable predictions. To this aim, in recent years, an integrated set of methods and concepts has

emerged among which those, topology based, that will be introduce in this note. The seminal

work of a number of authors, such as Carlsson [1], Edelsbrunner and Harer [2] and others in-

troduced the basic idea that large sets of data can be handled only through a global geometric

vision of data: the notion that it should be possible to incorporate data in a global topological

setting, the ‘space of data’ – defined as a suitable collection of finite samples taken from the

data set – and explore then the structure and hidden information patterns thereof [5]. Based

on this perspective, the ultimate objective is naturally that of discovering and letting emerge,

directly from probing the data space, the manifold hidden relations (patterns) that exist as corre-

lations among events/facts, interactions among actors/agents or even relations among concepts,

and semantically interpreting them as global properties associated to the mining context.

In this note, after reviewing the basic ingredients of topology at the basis of the proposed

approach and pointing out its strengths and weaknesses, we intend to show that the proposed

topological approach leads to the possibility of classifying data – even apparently disordered

and noisy data sets – into equivalence classes with respect to certain global transformations

of the data space, by the equivalent of what in topology is referred to as the mapping class
group. There emerges an unexpected structure of the data set, which has quite a far-reaching

interpretation in terms of formal language theory, and endows the semantics generated by the

mining process with a new, powerful, efficient tool. The latter promises to play a role in the

evolution/elaboration process leading from data to information, from information to knowledge

and eventually from knowledge to wisdom.

2. The Proposed Approach: three main steps

The approach proposed in this note consists of constructing a global object, analysing the be-

haviour of the object, and describing the global object in a semantic domain.

Construction a global object
Three basic ideas provide the pillars over which the global, topological approach to data space

is based: i) It is convenient to interpret the huge set of ‘points’ that constitute the space of data

resorting to a family of simplicial complexes, parametrized by some suitably chosen ‘proxim-

ity parameter’. It is this operation that converts the data set into a global topological object.

In order to fully exploit the advantages of topology, the choice of such parameter should be

metric independent, in general the expression of a “relation”. ii) One can fruitfully deal with

such topological complexes by the tools of algebraic and combinatorial topology. Specifically,

the most efficient tool is the theory of persistent homology, appropriately adapted to the pa-

rameterized families of simplicial complexes characterizing the space of data when explored at
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various proximity levels. This allows us to get rid in some way of the noise affecting the data

considered. In our context, the reduction of noise is the result of the parametrized persistent

homology. iii) It is possible and efficient to encode the data set persistent homology in the

form of a parameterized version of topological invariants, in particular Betti numbers, i.e., the

invariants representing the dimensions of the homology groups. These three steps provide an

exhaustive knowledge (possibly approximate, if the cluster of points considered does not coin-

cide with the entire space) of the global features of the space of data, even though such space

is neither a metric space nor a vector space [5].

Given a space of data S, unordered collection of data represented just as a set of points, this

first step consists in selecting, by the appropriate notion of proximity, a subgroup of data K ⊆
S. The topological information contained in K is global and is coded in a set of topological

invariants that summarizes the information over domains of parameter values, of the topological

objects constructed in a discrete space from data. What we call topological object is a piece of

information extracted from a set of data to which we aim to associate a meaning as much as

possible coherent, coded in the global features of the space of data considered as topological

space. As an example, suppose to have a space of data regarding some reality whatsoever

(unknown), and suppose having identified a subset of data whose global information tells you

that the topological object, call it CH4, can be parameterized by a set of parameter values that

range by [w = 0.2715,w = 0.2453,w = 0.2389,w = 0.1513] and that the object is of genus

g = 3 when w = 0.2453 and genus g = 9 when w = 0.2389.

Analysing the behaviour (properties) of the object
The second step consists of analysing the behavior of the topological object under all possible,

topology preserving, transformations. This leads to classifying the space of data into classes

of equivalence, each of which represents symmetries and regularities hidden within the space

of data itself. They are determined by the cosets of the mapping class group of the topological

space which is our object of analysis. The genus tells us by what kind of manifold such object

is represented. While the group is the mathematical tool for constructing languages. Any

group is presented by the set S of its generators and the set R of its relations. An example

is given by the group G168, which provides a basis for a surface of genus g = 3. This means

that G168 is the basic ingredient by which to generate the languages suitable to describe any

objects represented by a genus three 2-manifold. Even if elements in different classes may

represent the same concept, the configuration with which they are spatially connected must be

different; that means the order in the relations is changed. Going back to the above example of

CH4, if we take the topological object of genus g = 3 and we use G168 we can create by it the

classes of equivalence of all transformations of CH4, each class representing different spatial

configurations.

Describing the global object
Once we have extracted the global object and generated its classes of behavioral equivalences,

the third step consists of interpreting the object through the generation of formal languages and

mappings into semantic domains. We recall that within the theory of formal languages there

are two very meaningful results, the first asserts that for any regular language we can define

a non-deterministic finite state automaton and for any non-deterministic finite state automaton
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we can define a determinist finite state automaton. The second, by Myhill-Nerode1, states that

a language is regular if the strings of the language can be classified in a finite number of classes

of equivalences and the number of equivalence classes is equal to the number of states of the

minimal deterministic finite automaton accepting the language. Since both groups, the basis

and the mapping class group determine, both in the manifold and over the space of data, a finite

set of classes of equivalence, we can define two deterministic automata, one that recognizes

the language of the reference basis and the other that recognizes the language of the space of

data. In such a way we define two languages; a common language, in the above analogy the

relational algebra, and a specific language. The idea is to use relational algebra to describe

the relations hidden in the space of data. Referring to the CH4 example, we can say that the

common regular language is the language associated to G168 and the specific language is the

language that described the relations, e.g. the hidden global properties of CH4. What happens

if we try to associate to these two language a semantic domain? First we discover that the space

of data contains data possibly similar to those stored from the simulation of methane molecules
(Fig. 1 of the Pascucci ’s et. al. work illustrates methane electron iso-density surfaces [8]),

then we discover that all the CH4 molecules belongs to the structural isomer, because they

are arranged in a unique spatial configuration where each hydrogen bond bonds with a single

location on the carbon atom and there is no way to rearrange the hydrogen atoms.

2.1. Introduction to Topology of Space of Data
In order to better comprehending the scheme, it is necessary to recall that the homology is

a mathematical tool that “measure” the shape of an object. The result of this measure is an

algebraic object, a succession of groups. Informally, these groups encode the number and

the type of “holes" in the manifold. A basic set of invariants of a topological space X is just

its collection of homology groups, Hi(X). Computing such groups is certainly non-trivial,

even though efficient, algorithmic techniques are known to do it systematically. Important

ingredients of such techniques, but also output of the computation, are just Betti numbers; the

i-th Betti number, bi = bi(X), denoting the rank of Hi(X). It is worth remarking that Betti

numbers often have intuitive meaning: for example, b0 is simply the number of connected

components of the space considered, while oriented 2-dimensional manifolds are completely

classified by b1 = 2g, where g is the genus (i.e., number of “holes”) of the manifold, so as b2

classifies the 3-dimensional and bn the n-dimensional manifolds. What makes them convenient

is the fact that in several cases knowing the Betti numbers is the same as knowing the full space

homology. Sometimes to know the homology groups it is sufficient to know the corresponding

Betti numbers, typically much simpler to compute. In the absence of torsion, if one wants to

distinguish two topological objects via their homology, their Betti numbers may already do it.

We already mentioned that data can be represented as unordered sequence of points in a n-

dimensional space En, the ‘space of data’. Such space is typically not a vector space [indeed,

every point of it is represented as a vector, i.e., a string of numbers in some field, but the

‘components’ of such vector have no meaning], and – even more manifestly – there is no reason

to consider it Euclidean, as it is instead often done. All crucial information about the system

1Nerode, Anil (1958), “Linear Automaton Transformations”, Proceedings of the AMS 9
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Fig. 1. Betti numbers and generators of MCG

the data in En refer to cannot be encoded in the global ‘structure’ of the data space, through its

inherent, typically hidden, correlation patterns. The latter is what contains (and may provide)

the relevant knowledge about the underlying phenomena which data represents.

The obvious conventional way to convert a collection of points within a space such as En into

a global object is to use the point cloud as vertex set of a combinatorial graph, G, whose

edges are exclusively determined by a given notion of ‘proximity’, specified by some weight

parameter δ. This is a delicate point of the theory, because δ should not fix a ‘distance’, that

would imply fixing some sort of metric, but rather provide information about ‘dependence’,

i.e., correlation or, even better, relation. In case such dependence had to do with the distance,

it should be a non-metric notion (for example, chemical distance, ontological distance). A

graph of this sort, while capturing pretty well connectivity data, essentially ignores a wealth

of higher order features beyond clustering. Such features can instead be accurately discerned

by thinking of the graph as the ‘scaffold’ of a different, higher-dimensional, richer (more com-

plex) discrete object, generated by completing the graph G to a simplicial complex, K. The

latter is a piecewise-linear space built from simple linear constituents (simplices) identified

combinatorially along their faces. The decisions as how this is done, implies a choice of how

to fill in the higher dimensional simplices of the proximity graph. Such choice is not unique,

and different options lead to different global representations. Two among the most natural and

common ones, equally effective to our purpose, but with different characteristic features, are:

i) the Čech simplicial complex, where k-simplices are all unordered (k + 1)-tuples of points

of the space En, whose closed 1
2
δ-ball neighborhoods have a non-empty mutual intersection;

ii) the Rips complex, an abstract simplicial complex whose k-simplices are the collection of

unordered (k + 1)-tuples of points pairwise within distance δ. The Rips complex is maximal

among all simplicial complexes with the given 1-skeleton (the graph), and the combinatorics

of the 1-skeleton completely determines the complex. The Rips complex can thus be stored as

a graph and reconstructed out of it. For a Čech complex, on the contrary, one needs to store

the entire boundary operator, and the construction is more complex; however, this complex

contains a larger amount of information about the data space toplogical structure.

Algebraic topology provides a mature set of tools for counting and collating holes and other

topological pattern features, both spaces and maps between spaces, for simplicial complexes. It

is therefore able to reveal patterns and structures not easily identifiable otherwise. As persistent

homology is generated recursively, corresponding to an increasing sequence of values of δ.
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Complexes grow with δ. This leads us to naturally identifying the chain maps with a sequence

of successive inclusions. Persistent homology is nothing but the image of the homomorphism

thus induced. The available algorithms for computatiing persistent homology groups focus

typically on this notion of filtered simplicial complex. Most invariants in algebraic topology are

quite difficult to compute efficiently. Fortunately, homology is exceptional under this respect

because the invariants arise as quotients of finite-dimensional spaces.

3. Transformations of the Space of Data

Turning the space of data into a topological global object, as we do representing/approximating

it by a (parametrized family of) simplicial complexes, allows us to consider its behavior under

global topological transformations. Such transformations classify subspaces of (orbits in) En

into equivalence classes.

The mapping class group, GMC, is one of such sets (indeed a group) of transformations [3].

In order to discuss it, one has to consider two fundamental objects attached to (all) the 2-

dimensional submanifolds K of S: a group and a space. How these two objects relate to each

other is crucial to understand what happens.

In terms of our problem, the space S can represent the space of data, the topological global

object, while the group K is the tool that allows us to select the classes of equivalence by

classifying the transformations and discoverying relations possibly hidden in the space of data.

In order to make definitions and properties more clearly understandable, let’s first define things

as if S were continuous. The group GMC is then defined to be the group of isotopy classes of

orientation preserving diffeomorphisms of S (that restrict to the identity on the boundary ∂S,

if ∂S is not empty): GMC(S) ≡ Diff(S)/Diff0(S) , where Diff(S) is the group of diffeomor-

phisms of S, whereas Diff0(S) is the group of diffeomorphisms of S isotopic to the identity,

i.e., homotopic to the identity by a homotopy that takes the boundary into itself. GMC(S) is

generated by Dehn’s twists. In the case of a (closed, orientable) Riemann surface S of genus

g ≥ 2, for Γ a simple closed curve in S, and A be an annulus, i.e., a tubular neighborhood of

Γ, the Dehn twist τ is the map from S to itself which is the identity outside of A and inside

corresponds to a full (2π) rotation of the boundaries ofA – topologically equivalent to circles –

with respect one to the other. A set of theorems of Dehn, Lickorish and Humpries prove that the

minimal number of curves necessary to generate GMC(S) is 2g + 1 for g > 1. Typically curves

Γ j, j = 1, . . . , 2g + 1, are chosen to be elements of the homology basis, i.e., representative

cycles of the homology, of S.

In general the problem of finding the presentation of GMC(S) requires the introduction of the

appropriate combinatorial structure, which resides in the Hatcher-Thurston complex [4].

In group theory, one method of defining a group G is by its presentation G ∼ 〈S | R〉. In

short, the mapping class group of a topological (simplicial complex) space S is the group of

isotopy-classes of automorphisms of S; that is the group of all transformations of the space into

a topologically identical object. Performing these transformations implies imposing an order

on space S and determine a set of equivalence classes that represent a partition of S. The

mapping class group is presented by a set of generators and relations among generators that
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characterized the equivalence classes. Such presentation can be straigthforwardly expressed in

the langugae generated by the group that provides the basis to which S can be referred.

3.1. The GMCG based on modular group Mod

As an application, we illustrate here an example in which the ‘surface’ S is represented in a ba-

sis derived from the modular group – a feature that is ‘universal’ and can therefore be assumed

with no loss of generality as generic. The modular group Mod is isomorphic to a discrete

group, the projective special linear group PS L(2,Z). Mod is the group of 2×2 matrices with

integer entries and unit determinant, acting as a group of transformations.

Mod =

{
M =

(
a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ Z ; ad − bc = 1

}
.

Mod has presentation Mod ∼ 〈U,V |V2, (UV)3〉 where the generators are

V =
(

0 1

−1 0

)
, U =

(
1 1

0 1

)
.

The modular group Mod has a principal congruence of invariant subgroups Modp ∼ PS L(2,Zp),

p = odd prime, defined by Modp =

{
M0 ∈Mod

∣∣∣∣∣ M0 =

( ±1 0

0 ±1

)
(mod p)

}
.

The factor Gω � Mod/Modp, is a finite group of order ω, a Sylvester graph (Lattice)Σp,

embedded in a manifold S of genus g where ω = 1
2

p (p2 − 1) represents both the number of

elements of Gω and the number of points of lattice Σp, and g = 1
4!

(p + 2)(p − 3)(p − 5). In

other words, the Sylvester graph Σp is nothing but the orbit under Gω of an arbitrary point in

the canonical fundamental region of S.

As an example, take G168, a basis for surfaces of genus g=3, and its presentation G168 ∼
〈U,V |V2, (UV)3,U7, (VU4)4〉 (notice that the action of each generator is assumed to be in-

vertible, therefore – even though never explicitly done – together with U and V , the inverses

U−1 and V−1 should be in principle listed in the presentation). Euler’s theorem shows that

graph Σ7 has 24 heptagonal and 56 hexagonal plaquettes; each heptagon being surrounded by

7 hexagons. As the group manifold has genus > 0, the group is finite, a global relation appears,

(VU4)4 = I, which guarantees the closure of the homology of S in this g=3 case. Locally

the presence of heptagonal plaquettes implies that the surface exhibits negative curvature, the

manifold is hyperbolic. Lattice Σ7 is obtained from the hyperbolic disk shown in Fig.2 (B) by

selecting an arbitrary point P on any of its triangular domains and finding its orbit under the

whole G168 shown in Fig.2 (A), and then folding the resulting structure. Notice that the global

topology of the set of points of Σ7 provides the basis for any set of points with Betti number

b1=6. Fig.2 (C-F) shows how to obtain S by folding of the 14-sided polygon.

It may be useful to note that the canonical homology basis of S can be written in terms of

words in the group relators U and V of G168, that in turn can be used to express the mapping

class group generators in a manner evidencing the underlying (non abelian) lattice structure.

A choice for such a representation of the canonical homology basis is given by

a1 = (VU3)4 , b1 = U−1(VU3)4U ,
a2 = U−1(VU4)3VU(VU4)3VU , b2 = (VU3)3VU(VU3)3U3(VU3)2VU ,

a3 = (VU3)3U3(VU3)3U3 , b3 = U−1(VU3)3VU(VU3)3U3(VU3)2VU2 ,
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Fig. 2. A. Poincarè disk D3 of the hyperbolic space G. B. Lattice Σ7 as triangulation of G. F. Surface of genus g=3

which has been determined to respect the intersection form. This is done starting with the

choice of a point P on the Poincaré disk D3 (Fig. 2 (A)) and by drawing first a path a1, moving

through the lattice with the U and V generators. The given path a1 starts in P, crosses the 5-th

edge of the 14-th sided polygon and, due to the identification rule (2ν+1)→ (2ν+6)[mod 14],

reenters it through the 10-th side and closes in P. The cycle b1 then must have only one

intersection with a1 and can be taken to start in P, exit through side 7 and reenter through side

12 to close in P. The cycle a2 is then drawn in such a way as to have no intersection with either

a1 or b1, and from P exits through side 6, reappears in 1 to exit again trough 12, and reenters

in 7 to join P. Furthermore b2, which must intersect a2 only, is made of three branches: one

between sides 6 and 5 (which passes through P), the others between 10 and 9, and 14 and

1. Finally, a3 has a branch 2–5 and one 10–11 while b3 has branches 8–7, 12–11 and 2–8.

Clearly, (shorter) alternative words corresponding to equivalent paths can be written by making

use of group local relators U7 = V2 = (UV)3 = 1 of G168. Generators of mapping class group

GMC(S3) of Σ7 (or, better, of S3) are the set of Dehn’s twists around cycles ai,bi, i = 1, 2, 3.

4. Interpretations of the Space of Data

Considering all the transformations that a topological space undergoes and classifying them in

classes of equivalences – via the mapping class group – allows us to define a regular language L
that describes the data belonging to the partitions of space of maps between data – by applying

known properties of formal language. We recall that given a finite set S , the free group is

indicated by 〈S 〉 consists of all the words that can be constructed with S ; let R ⊆ 〈S 〉 be the

subset of the group consisting of words of S , 〈S |R〉 the biggest quotient group of 〈S 〉 such that

each element of R is identified by the identity, S the finite set of generators of the group 〈S 〉, R
the finite set of relators that is equivalence relations among elements of S and the presentation

of a group G, 〈S |R〉, it is the free group 〈S 〉 subject to the set of relations R.

Moreover recall that, if Σ is an alphabet, i.e., a finite non-empty set of symbols, a string over Σ

is a finite sequence of symbols obtained by juxtaposition, the length of a string is the number
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of its symbols, the concatenation of two strings is the juxtaposition of the two strings, Σ∗ is the

set of all possible strings obtained over Σ and L ⊆ Σ∗, then L is a language. Σ∗ can be defined

by Σ∗ = Σ0
⋃
Σ1

⋃
Σ2

⋃
... where Σi is the set of all strings whose length is i and Σ0 = {ε}, the

language containing only the empty word (or string) ε. Given an alphabet Σ = {a, b, c . . .} ∪ {ε}
the set of regular expressions is defined by E ::= a | E + E | E • E | E∗ |(E) with a ∈ Σ, the

set of regular languages are defined by L[ε] = {ε}; L[a] = {a}; L[E + F] = L[E] ∪ L[F];

L[E • F] = L[E] • L[F]; L[E∗] = (L[E])∗. As an example, given an alphabet Σ = {a, b} ∪ {ε}
and a regular expression E = ab∗ the language L[E] = L[a]• L[b∗] = {a} • {b}∗ = {a}({ε}∪ {b}∪
{bb} ∪ ...) = {a, ab, abb, abbb, ...} is the regular language that describes all the strings that start

with ‘a’ and end with a certain number of ‘b’, possibly zero.

Thus, if we consider 〈S 〉 be equivalent to Σ∗, R ⊆ Σ∗ is equivalent to a language L over Σ.

Furthermore, if the quotient group 〈S |R〉 is obtained grouping similar elements by equivalence

relations. Each generator belonging to the set R, gives rise to a class of equivalence whose

elements satisfy an equality relation. Since the number of relations is finite, the corresponding

classes of equivalence are also finite, then we can apply the two following well-known theorems

that ensure the existence of the automaton accepting the language L and guarantee that is the

smallest monoid that recognizes the language L.

Lemma 1. Let S be a nonempty set and let ∼ be an equivalence relation on S . Then, ∼, yields
a natural partition of S , where ā = {x ∈ S | x ∼ a}. ā represents the subset to which a belongs
to. Each cell ā is an equivalence class.

Theorem 1 (Myhill-Nerode). If L is any subset of Σ∗, one defines an equivalence relation ∼
(called the syntactic relation) on Σ∗ as follows: u ∼ v is defined to mean uw ∈ L if and only
if vw ∈ L for all w ∈ Σ∗. The language L is regular if and only if the number of equivalence
classes of ∼ is finite. If a language is regular, then the number of equivalence classes is equal
to the number of states of the minimal deterministic finite automaton A accepting L.

Given the finite presentation of the group G ∼ 〈S |R〉, with S = s1...sm and R = {r1, r2...rn} we

can associate to each relation ri ∈ R, for i = 1...n, a language Lri that recognizes all the elements

subject to ri. The language L associated to the presentation G is the union of all languages that

recognize all the relations in R whose symbols are in Σ = S . L =
⋃

ri, ri∈R Lri

Finally, we recall that the expressive power of all the following formalisms is equal:

regular grammars (RG)→ regular expressions (RE)→ non deterministic finite state automata
(NFA)→ deterministic finite state automata (DFA). This property allow us to define a NFA and

assert the existence of a FSA equivalent.

Following the example of G168 and its presentation G168 ∼ 〈U,V |V2, (UV)3,U7, (VU4)4〉, the

non deterministic finite state automaton shown in Fig 3 recognizes the language L of all the

strings generated by the generators of group G168. For the sake of readability, we label an edge

of an automaton with a word as a shorthand for a sequence of states and transitions such that

the concatenation of the labels on the transitions equals the word.

The language L168 defined over the alphabet Σ = {T,V} for the presentation of the group

G168 = 〈U,V |V2, (UV)3,U7, (VU4)4〉 is L168 = LV2

⋃
L(UV)3

⋃
LU7

⋃
L(VU4)4 .
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� �
Fig. 3. NFA, shortened representation and equivalent DFA accepting L ∼ G168 = 〈U,V |V2, (UV)3,U7, (VU4)4〉.

The language L168 allows to describe the global relations underlying the space of data whose

surface is of genus g=3. Any point of the space is equivalent to a path, to a word of the language

whose class of equivalence is an emergent pattern.

5. Conclusions

In this notes, we have introduced a new approach for analyzing a space of data that leads to

the definition of a formal language supporting the interpretation of the space of data. The

approach, topology-based, is able to process the data in a uniform way - through the filtration

by persistent homology - but also characterize the space of data by different invariants so to

emphasize different features (e.g., scales). We recall that topology has been widely use for

multiscale analysis in the context of quantum gravity and theory of turbulence. Moreover, the

use of topology for modeling multilevel complex systems is still a challenge that a specialized

community of researchers is tacking with different approaches, among which those proposed

in TOPDRIM project (www.topdrim.eu) [7].
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