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Abstract

Pseudoscalar meson decay leads to an entangled state of charged leptons (i, €) and massive neutrinos.
Tracing out the neutrino degrees of freedom leads to a reduced density matrix for the charged leptons whose
off-diagonal elements reveal charged lepton oscillations. Although these decohere on unobservably small
time scales < 10723 they indicate charged lepton mixing as a result of common intermediate states. The
charged lepton self-energy up to one loop features flavor off-diagonal terms responsible for charged lepton
mixing: a dominant “short distance” contribution with W bosons and massive neutrinos in the intermediate
state, and a subdominant “large distance” contribution with pseudoscalar mesons and massive neutrinos in
the intermediate state. Mixing angle(s) are GIM suppressed, and are momentum and chirality dependent.
The difference of negative chirality mixing angles near the muon and electron mass shells is GL(M;%) -

or, (Mez) xGgY.U L jm?Uj.‘e with m ; the mass of the neutrino in the intermediate state. Recent results
from TRIUME, suggest an upper bound 6, (p2 ~ Mi) —6r (p2 ~ Mez) < 10_14(M5/100 MeV)2 for one
generation of a heavy sterile neutrino with mass Mg. We obtain the wavefunctions for the propagating
modes, and discuss the relation between the lepton flavor violating process u — ey and charged lepton
mixing, highlighting that a measurement of such process implies a mixed propagator p, e. Furthermore
writing flavor diagonal vertices in terms of mass eigenstates yields novel interactions suggesting further
contributions to lepton flavor violating process as a consequence of momentum and chirality dependent
mixing angles.
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1. Introduction

Neutrino masses, mixing and oscillations are the clearest evidence yet of physics beyond the
standard model [1-4]. Oscillations among three “active” neutrinos with Sm? =10"4-10"3 eV?
for atmospheric and solar oscillations respectively have been firmly confirmed experimentally
(see the reviews [5—11]).

However, several experimental hints have been accumulating that cannot be interpreted as
mixing and oscillations among three “active” neutrinos with m? ~ 10~4~1073. Early results
from the LSND experiment [12] have recently been confirmed by MiniBooNE running in anti-
neutrino mode [13] both suggesting the possibility of new “sterile” neutrinos with m? ~ eV?.
The latest report from the MiniBooNE Collaboration [14] on the combined v, — v, and
vy, — V. appearance data is consistent with neutrino oscillations with 0.01 < Am? < 1.0eV2.
This is consistent with the evidence from LSND antineutrino oscillations [12], which bolsters
the case for the existence of sterile neutrinos; however, combined MiniBooNE/SciBooNE anal-
ysis [15] of the v, disappearance data are consistent with no short baseline disappearance
of v,. Recently, a re-examination of the antineutrino flux [16] in anticipation of the Double
Chooz reactor experiment resulted in a small increase in the flux of about 3.5% for reac-
tor experiments leading to a larger deficit of 5.7% suggesting a reactor anomaly [17]. If this
deficit is the result of neutrino mixing and oscillation with baselines L < 10-100 m, it re-
quires the existence of at least one sterile neutrino with 8m? > 1.5 eV? and mixing amplitude
sin?(20) ~ 0.115 [17]. Taken together these results may be explained by models that incor-
porate one or more sterile neutrinos that mix with the active ones [18-25] including perhaps
non-standard interactions [26]; although, there is some tension in the sterile neutrino interpre-
tation of short-baseline anomalies [27]. A comprehensive review of short baseline oscillation
experiments summarizes their interpretation in terms of one or more generations of sterile neu-
trinos [28].

Recently it has been pointed out that the presence of sterile neutrinos may induce a modifica-
tion of the recently measured angle 013 [29,30].

Hints for the existence of sterile neutrinos also emerge from cosmology. The analysis of the
cosmic microwave background anisotropies by WMAP [31] suggests that the effective number
of neutrino species is Ny = 3.84 = 0.40 and > (my) < 0.44 eV, suggesting the case for sterile
neutrino(s) with m < eV, however the recent results from (SPT), (ACT) [32] and PLANCK [33]
weaken the bounds considerably. Complementary cosmological data suggests that Ny > 3 at the
95% confidence level [34], although accommodating an eV sterile neutrino requires a reassess-
ment of other cosmological parameters [35]. For recent reviews on “light” sterile neutrinos see
Ref. [36]. Sterile neutrinos with masses in the ~ keV range may also be suitable warm dark mat-
ter candidates [37-42] and appealing models of sterile neutrinos provide tantalizing mechanisms
for baryogenesis [43].

These hints motivate several experimental proposals to search for sterile neutrinos (see the
reviews in Ref. [36]). Various experimental searches have been proposed, such as Higgs decay
and matter interactions of relic sterile neutrinos [44], the end point of B-decay in '8’Re with
a value of Q = 2.5keV [45.46], electron capture decays of '©3Ho — 93Dy [47] and ®Li pro-
duction and decay [48]. More recently, the focus has turned on the possible new facilities at the
“intensity frontier” such as project X at Fermilab [49], alternative high intensity sources [36,
50] and recent proposals to study sterile-active oscillations with pion and kaon decay at rest
(DAR) [51,52] or muons from a storage ring [53] as well as the possibility of discrimination
between heavy Dirac and Majorana sterile neutrinos via |AL| = 2 processes in high luminosity
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experiments [54], which is summarized in a recent review [28]. Although the recently reported
analysis of the phase II data of the Mainz Neutrino Mass Experiment [55] found no evidence for
a fourth neutrino state tightening the limits on the mass and mixing of a fourth sterile species, the
possibility of a heavy sterile species is still actively explored [56,57]. More recently the PIENU
Collaboration at TRIUMF [58] has reported an upper limit on the neutrino mixing matrix element
|U,i|*> <1078 (90% C.L.) in the neutrino mass region 60—129 MeV /c?.

In this article we focus on complementary consequences of sterile neutrinos in the form of
charged lepton mixing phenomena. The discussion of whether or not charged leptons oscil-
late has been controversial [59-65], and more recently this question was addressed from the
point of view of coherence [66] highlighting that while oscillations are possible, they lead to
rapid decoherence and no observable effects. Muon—antimuon oscillations via massive Majo-
rana neutrinos have been studied in Ref. [67], however, to the best or our knowledge the issue
of charged lepton (u—e) mixing (we emphasize mixing over oscillations), has not yet received
the same level of attention. Although in Ref. [68] charged lepton mixing and oscillations as
a consequence of neutrino mixing was studied in early Universe cosmology at temperatures
my < T < My where it was argued that medium effects enhance charged lepton mixing, the
question of charged lepton mixing in vacuum and as a consequence of possible new generations
of sterile neutrinos has not yet been discussed in the literature and is the main motivation of this
article.

Furthermore we discuss the relationship between the lepton flavor violating decay u — ey,
and charged lepton mixing in terms of self-energies and propagators that mix @ and e. Charged
lepton violation is the focus of current experimental searches [69,70], and a recent experimental
proposal [71] to search for charged lepton flavor violation via the coherent conversion process
u — N — e — N at Fermilab.

1.1. Goals

In this article we study both charged lepton oscillations and mixing as a consequence of inter-
mediate states of mixed massive neutrinos, and discuss the relationship between charged lepton
mixing and charged lepton flavor violating processes.

(a) Oscillations. In a recent article [72] (see also [73,74]) we have provided a non-perturbative
quantum field theoretical generalization of the Weisskopf—Wigner method to understand
the correlated quantum state of charged leptons and neutrinos that consistently describes
pion/kaon decay in real time. Knowledge of this state allows us to obtain the reduced density
matrix for charged leptons by tracing out the neutrino degrees of freedom. The off diagonal
density matrix elements in the flavor basis contains all the information on charged lepton
(., e) coherence and oscillations.

(b) Mixing. Charged lepton oscillations evidenced in the reduced density matrix are a con-
sequence of a common set of intermediate states that couple to the charged leptons.
We then study the charged current contribution to the one-loop self-energy which cou-
ples charged leptons to an intermediate state of mixed massive neutrinos. The self-energy
unambiguously determines the propagating states and explicitly describe charged lepton
mixing. We obtain the mixed propagator, extracting the mixing angles and analyze the
propagating modes and their wavefunctions. These results motivate us to address the re-
lation between lepton flavor violating transitions such as 4 — ey and charged lepton mix-

ing.
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1.2. Brief summary of results

e The quantum state of charged leptons and neutrinos from (light) pseudoscalar decay is a
correlated entangled state from which we construct the corresponding (pure state) density
matrix. Under the condition that neutrinos are not observed, we trace over their degrees
of freedom leading to a reduced density matrix for the charged leptons. Because we fo-
cus solely on decay of 7, K these are i, e. Integrating out the unobserved neutrinos leads
to a reduced density matrix that is off-diagonal in the flavor basis. The off-diagonal ma-
trix elements describe charged lepton mixing and exhibit oscillations with typical frequency
E, (k) —E.(k) 2 O(m;, —me) ~my ~ 1.6 x 102 s~! which are unobservable over any ex-
perimentally relevant time scale and lead to rapid decoherence. This conclusion agrees with
a similar observation in Ref. [66]. While these fast oscillations lead to decoherence over mi-
croscopic time scales, we recognize that the origin of these oscillations are a common set of
intermediate states akin to neutral meson oscillations.

e Recognizing that the origin of oscillations are intermediate states that are common to both
charged leptons we obtain the self-energy contributions and the full mixed propagator for
the u, e system. Mixing is a direct result of charged current interactions with intermediate
neutrino mass eigenstates. As in the case of neutral meson mixing we identify “short” and
“long” distance contributions to the flavor off-diagonal self-energies. The “short” distance
contribution corresponds to the intermediate state of a W and neutrino mass eigenstates
and is dominant, whereas the “long” distance contribution is described by an intermediate
state of 7w, K and a neutrino mass eigenstate. We calculate explicitly the short distance and
estimate the long distance contributions. Unitarity of the neutrino mixing matrix entails a
Glashow-Ilioupoulos—Maiani (GIM) type mechanism that suppresses charged lepton mixing
for light or nearly degenerate neutrinos, thus favoring heavy sterile neutrinos as intermediate
states.

e We obtain the flavor off-diagonal charged lepton propagator and analyze in detail the propa-
gating modes. (—e mixing cannot be described solely in terms of a local off-diagonal mass
matrix but also off-diagonal kinetic terms which are four-momentum dependent and con-
tribute to off-shell processes. Mixing angles are GIM suppressed and both chirality and four-
momentum dependent. The largest angle corresponds to the negative chirality component, the
difference in mixing angles near the muon and electron mass shells is independent of the lo-
cal renormalization counterterms and is given by 61 (Mﬁ) —0r (Mez) xGrY, i Ui U;‘emﬁ
where m ; is the mass of the intermediate neutrino. Therefore charged lepton mixing is dom-
inated by intermediate states with mixed heavy neutrinos. Assuming one generation of a
heavy sterile neutrino with mass Mg and extrapolating recent results from TRIUMF [58] we
obtain an upper bound 6y, (Mi) -0 (Mez) <107 %(M5/100 MeV)?. We obtain the propagat-
ing eigenstates of charged leptons via two complementary methods: by direct diagonalization
of the propagator and by field redefinitions followed by bi-unitary transformations, both re-
sults agree and yield momentum and chirality dependent mixing angles which are widely
different on the respective mass shells.

e The relationship between charged lepton mixing and the lepton flavor violating decay
u — ey is discussed in terms of the mixed charged lepton self-energies and possible obser-
vational effects in the form of further contributions to 4 — ey are discussed. In particular
we argue that writing the flavor lepton fields in terms of the propagating modes in flavor
diagonal interaction vertices leads to novel interactions that depend on the difference of the
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mixing angles on the mass shells, this difference being independent of the choice of local
renormalization counterterms.

2. Reduced density matrix: charged lepton oscillations

In Ref. [72] the quantum field theoretical Weisskopf—Wigner (non-perturbative) method has
been implemented to obtain the quantum state resulting from the decay of a pseudoscalar me-
son M (pion or kaon). It is found that such state is given by (see [72] for details and conventions),

|M1; (t)> _ e—iEM(p)te—FM(p)% |M1; (0)) _ i‘l’l,u(f)> 2.1)
where |¥; ,,(¢)) is the entangled state of charged leptons and neutrinos given by
Vo)=Y {UsjCoj(k.G.h. W01y BN (0. =3))}: k=F+G.  (22)
J.a,q.hn

where
Coj (K, G, 1 '3 1) = oy M (k, G, b, 1) FojlK, G 1l Ee®OHE @) (2.3)
with

1 — efi(E;,,(p)*Ea(k)*Ej(fI)*iFTM)’
] (2.4)

Eh(p) — Eq(k) — Ej(q) — i 13t

and My, j(/Q, g,h,h"), My j(q, k) are the production matrix elements and phase space factors
respectively,

Fajld. pohoh'st] = [

M, (k, G, h, b)) = Faglle iy (R)y* LYV 10 (@) s (2.5)
1
I, (g, k)= . (2.6)
! SSVE(PE.ME;(q)

In these expressions F is the pion or kaon decay constant, If; V i.i(q) are the spinors cor-
responding to the charged lepton « and the neutrino mass eigenstate j (for notation and details
see Ref. [72]). The leptonic density matrix that describes the pure quantum entangled state of
neutrinos and charged leptons is given by

1o (1) = [¥1,0()) ¥, (1)) 2.7)

If the neutrinos are not observed their degrees of freedom must be traced out in the density
matrix, the resulting density matrix is no longer a pure state,

PR =T, o) =Y Y UajUlgCa jCj ;|1 )5 | (55190, (2.8)
Jstyeee j By
where (ljj|17j/) = 5]']'/.
Considering only light pseudoscalar decay 7, K, the only charged leptons available are u, e.

For a fixed helicity # and momentum k of the charged leptons the reduced density matrix is given
by

P (1) = peeh k. D)e, ey o + P ko) |y sy 7]
+ pen(h. k. 0le Ny o1+ ok )iy Ve, 2. 29)
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The diagonal density matrix elements in the i, e basis describe the population of the produced
charged leptons whereas the off-diagonal elements describe the coherences. The diagonal matrix
elements pyq, @ = [, €, are given by

PR, (1) = " |UajI*BRy s [1 — ™M) a=p.e, (2.10)
J

where BR are the branching ratios I'y—,» : /Ty and we have used some results obtained in
Ref. [72]. The off diagonal elements do not have a simple expression, however the most important
aspect for the discussion is that these density matrix elements are of the form

R ) R R \*
Pue = Z UMjU;eCM,jC:,j’ Pey = (/O,w) ) 2.11)
J

where the coefficients Cy, ; are given by (2.3)—(2.6). These matrix elements describe the process
M — av; followed by a “recombination”-type process Mv; — B thereby suggesting the inter-
mediate state Mv; common to both matrix elements. For Iy > 1 the reduced density matrix
(for fixed A, k) in the charged lepton basis is of the form

R _ Age Auee_i(E;t(k)—Ee(k))t o
Pe= Agye! En)—Ee()1 A . '

This tells us that there will be u < e oscillations. However, these oscillations occur with
large frequencies E, (k) — E (k) 2 O(m, —me) ~m, ~ 1.6 x 1023 s—! and are unobservable
over any experimentally relevant time scale. This conclusion agrees with a similar observation in
Ref. [66].

Although these oscillations average out over relevant time scales and are experimentally un-
observable, an important issue is their origin. The mixing between charged leptons arises from
the fact that they share common intermediate states, in the case studied above the common inter-
mediate state corresponds to a pseudoscalar meson and a neutrino mass eigenstate.

Two aspects are important in the off diagonal terms in (2.11) whose long time limit defines
Aye: (a) from the expression (2.11) it follows that A, FI%/I and (b) if all the neutrino states
are degenerate the off diagonal terms vanish because the Cy, ; would be the same for all j and
> iU U]’fe = 0 by unitarity of the mixing matrix. This cancellation for massless or degenerate
neutrinos 1s akin to the GIM mechanism.

From this point of view the physical origin of the oscillations is found in mixing of the charged
leptons from the fact that they share common intermediate states. This is in fact similar to the os-
cillations and mixing through radiative corrections with common intermediate states in the KoK
system. The obvious difference with this system is that, in absence of weak interactions, Ky and
K are degenerate and this degeneracy is lifted by the coupling to the (common) intermediate
states, leading to oscillations on long time scales.

The conclusion of this discussion is that charged lepton oscillations are a result of their mixing
via a set of common intermediate states. The off-diagonal density matrix elements are of O(Ff,,),
these are the lowest order corrections in a perturbative expansion, therefore they do not reveal
the full structure of the mixing phenomenon.

If charged leptons mix via a common set of intermediate states, the correct propagating de-
grees of freedom are described by poles in the full charged lepton propagator which requires the
self-energy correction. Such self-energy will reflect the mixing through the intermediate states.
Whereas oscillations average out the off-diagonal density matrix on short time scales, the main
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M~

Fig. 1. Long distance contribution: intermediate state with v; and M =, K.

Fig. 2. Short distance contribution: intermediate state with v; and W™.

physical phenomenon of mixing is manifest in the true propagating modes, namely the poles in
the propagator which now becomes an off diagonal matrix in flavor space.

3. Charged lepton mixing

We argued above that lepton mixing is a consequence of an intermediate meson/neutrino state
which couples to both charged leptons. The intermediate meson state is a low energy or “long
distance” representation of the coupling of charged leptons to quarks via charged current interac-
tions and is akin to the mixing between KoK via intermediate states with two and three pions.
This “long distance” (low energy) contribution to the charged lepton self-energy is depicted in
Fig. 1.

This is a low energy representation of physical process in which a lepton couples to an inter-
mediate W vector boson and a neutrino mass eigenstate, followed by the decay of the (off-shell)
W into quark—antiquark pairs with the quantum numbers of the pseudoscalar mesons. Therefore
we also expect a short distance contribution in which the intermediate state corresponds simply
to the exchange of a W boson and a neutrino mass eigenstate. This contribution to the charged
lepton self-energy is depicted in Fig. 2.

We shall calculate both self-energy diagrams to properly ascertain each contribution to the
full charged lepton propagator.

However, before carrying out the detailed calculations we point out that there are also elec-
tromagnetic and neutral current contributions to the self-energies. However these are flavor
diagonal, thus while they will both contribute to the self-energies, only the charged current con-
tributions (long and short distance) lead to off diagonal self-energies which lead to charged lepton
mixing. Furthermore, both long and short distance self-energies are of the general form

Sap Y _UajS;jUly 3.1)

J
where §; is the propagator of neutrino mass eigenstates, therefore unitarity of the mixing ma-
trix > jUajU ]* b= 34p leads to a GIM (Glashow-Ilioupoulos—Maiani) type-suppression of the
off-diagonal matrix elements: if all the neutrinos in the loop are degenerate, unitarity entails that
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there is no off-diagonal contribution to the self-energy, furthermore, this argument also suggests
that the off-diagonal terms will be dominated by the most massive neutrino state.

Therefore charged lepton mixing is a consequence of off-diagonal components of the self-
energy matrix, which results in an off-diagonal propagator for e—u leptons as a consequence of
common neutrino mass eigenstates in intermediate states. If the neutrinos are either massless or
degenerate the unitarity of the mixing matrix leads to vanishing off-diagonal matrix elements and
no mixing.

3.1. Short distance contribution

We begin by computing the self-energy contribution from W exchange depicted in Fig. 2.
Throughout this calculation, we shall be working in the physical unitary gauge and in dimen-
sional regularization. Upon passing to the basis of mass eigenstates that define the neutrino
propagators, Y, = i Uqj ¥ ; the charged current contribution to the self-energy matrix is given
by

—ig d*k i(k+mj) —i(g’w ~ %)
_12""_< ) Z/(2 yi et (W)Uﬁjm[m]

(3.2)

where L, R = (1 F y°)/2 respectively.
This integral is calculated in dimensional regularization. We introduce a renormalization
scale k which we choose x = My thus renormalizing at the W-pole, and define

Aj=—p*x(1—x) +mix + My (1 - x), (3.3)

separating explicitly the divergent and finite parts in the MS scheme we find

Sup(P) =pL[Z UajU% /l[ljf(p%x) + ij(pz;x)]dx:| (3.4)
where j 0

1f(p*x) =— iii”;( _")[“%“1 - )21";—;}@ —y+1n4n>, (3.5)

1 (p%x) = iif—nV)V;(l —x)[<2+ % T+ —x MW> 111]3—2 + 2:;;%]. (3.6)

Unitarity of the neutrino mixing matrix in the form ) ;i Uqj U]’.*ﬂ = dup leads to GIM-like cancel-
lations in both the divergent and the finite parts for the off-diagonal components of the self-energy
matrix. Therefore for o # 8 we find

Zup(p) = PL[2g + 15 (P7)], (3.7)
where
2a0—€ 2
d gM mi (2 .
zaﬁz_TanV iy év<g—y+ln47r D oa#p (3.8)
J
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and

f 2 gM
Zﬂlﬁ( - 3271-‘;/ ZU"‘/ JB

1
3A p? A 2m

x 2+—j+(1—x)2—}ln<—])+—x}(l—x)dx o F#p.
O/{[ M3, My 1 \MG ) My,

(3.9)

3.2. Long distance contribution

We now turn our attention to the intermediate state described by the exchange of a 7/ K meson
and a neutrino mass eigenstate. This is the state that suggested charged lepton mixing from the
density matrix treatment in the previous section. A difficulty arises in the calculation of the meson
exchange because in order to properly describe the coupling between the meson and the charged
lepton and neutrinos we would need the full off-shell form factor Fj;(g%) which is a function of
the loop momentum since the meson is propagating off its mass shell in the intermediate state.
Clearly this is very difficult to include in a reliable calculation, therefore we restrict our study to
an estimate of this contribution obtained by simply using the on-shell value of the form factor,
namely the meson decay constant Fj; in order to obtain an admittedly rough assessment of its
order of magnitude.

Under this approximation the contribution to the self-energy matrix from this intermediate
state is given by

_l’_
—zZ‘ﬂ_FMZ uﬁ/f(z (b~ P (M)@ b
I

X IL( )
(p— k)2 — M3, +ie
where M)y is the meson mass. The width of the meson may be incorporated via a Breit—Wigner
approximation My — My; — iy /2, however this will only yield a contribution which is higher
orderin G .
The calculation is performed in dimensional regularization, choosing the renormalization
scale k = My as for the short distance contribution, introducing

(3.10)

8j=—p°x(1 —x)+mix + My (1 —x), (3.11)
and separating the divergent and finite parts in the MS scheme we find
1
Zup(p) =;61L|:Z UajUsy /[J;l(p2;x) - ij(pz;x)]dx:|, (3.12)
i 0
where
(2 My “Fy N
Ji(p ;x):—W(S (143x) — (1 —x)x°p )(g —y+ln4n>, (3.13)
M2 €F2 8 p? 8;
Jf(pz;x):LZM[ xz— ((l—x)x — (143x)—%- ) n—'/z]. (3.14)
i (47) M2, M2, Mz ) Mm%
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For the off-diagonal matrix elements, unitarity of the neutrino mixing matrix leads to GIM type
cancellations as in the short distance case, therefore for o £ 8 we find

Tap(p) = PL{% + 515 (7)) (3.15)
where
M2 6 2 2
d M .
Sup =35 Z wj fﬂMZ <——y+ln4rr), o #p, (3.16)
2—€ 12
f My °F

Sap (1) = — 7 Z Uaj U

1

2 5
X LR ((l—x)x —(143x)—% )m—’]dx; o # B.
0/[ sy M3, i) ",

(3.17)
However, with Fiyy < G fr x and fr x ~ 100 MeV it follows that
) o 8fri\’ 2
Fi M}, oc g (—> ~1078¢ (3.18)
Mwy

therefore the long distance contribution is negligible as compared to the short distance contri-
bution and to leading order the off-diagonal components of the self-energy are given by Egs.
(3.7-(3.9).

As noted previously unitarity of the neutrino mixing matrix entails that the flavor off diagonal
matrix elements of the self-energy vanish either for vanishing or degenerate neutrino masses.
ObViously the contribution from light active-like neutrinos is strongly suppressed by the ratios

m? / M , hence these off-diagonal matrix elements are dominated by the heaviest species of
sterlle neutrlnos

Thus charged lepton mixing is enhanced by intermediate states with heavy sterile neutrinos.
This is one of the main results of this article.

If even the heaviest generation of sterile neutrinos feature masses m ; < My and for P«
M ‘%V the following order of magnitude for the off-diagonal component z,, is obtained

Zpe = % Z UajUlgm?, (3.19)
J
as it will be seen below this estimate determines the mixing angles up to kinematic factors.
4. Full propagator: mixing angles and propagating modes
4.1. Full propagator and mixing angles
To treat p, e mixing it is convenient to introduce a flavor doublet

_(Vu
w_<%>. 4.1)

The general structure of the self-energy is of the form

2(p) = [z (p?)p + SML(p?) L + [zr (p?)p + Mg (p?) |R. (4.2)
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The neutral current interactions contributes generally to the right and left components of the self-
energy but are diagonal in flavor and so are the electromagnetic contributions. The V-A nature
of the charged current interactions is such that their contribution is only of the form z; (p?)pL
and is the only contribution that yields flavor off-diagonal terms and are ultimately responsible
for p—e mixing. To cancel the poles in € in the self-energy we allow counterterms in the bare
Lagrangian

Lot =W (8Zer — 1)p¥ + T SMY +h.c. (4.3)

The full propagator S now becomes a 2 x 2 matrix which is the solution of

[pl +p0BZy —1) — Z(p)—M]S:l 4.4)
where the boldfaced quantities are 2 x 2 matrices and
(M, O
M= < 0 M, ) . 4.5)

In what follows we will assume that M contains the renormalized masses and we will neglect
finite momentum dependent contributions to M since these will only generate higher order cor-
rections to the mixing matrix as will become clear below.

We will choose the counterterm (8Z.; — 1) in the MS scheme to cancel the term zgﬂ in
Eq. (3.7). Therefore Eq. (4.4) becomes

[pZ,'L+pZ'R-M]S=1 (4.6)
where
2,y =11 4 () @)

The leading contribution to the off-diagonal matrix elements is given by the ‘“short-distance”
term (3.9).

Multiplying on the left both sides of (4.6) by p + MZgLL + MZ R and writing the full prop-
agator as

S=RSg +LS, (4.8)
where

Sk =Ar(P?)[p +Br(r)]. (4.9)

S.=AL(P’)[p+BL(p?)]. (4.10)
we find

(P*Zg' —MZ M)Ag(p?) =1, (@.11)

(P*Z;' —MZyM)A, (p?) =1, 4.12)

and the conditions

Br(p?) =MZ.(p?),  Br(p?)=MZg(p?). (4.13)

In what follows we will neglect CP violating phases in Uy; with the purpose of studying u—e
mixing in the simplest case. Under these approximations we find
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(I) The solution for A g ( pz) in Eq. (4.11) is obtained as follows. Consider the diagonalization
of the inverse propagator

1
P'Zg —=MZ M= [0 (p?) + 0 (p*)]1

_ R(P?) (cos20r(p?)  sin260r(p?) @14
2 sin20g(p?) —cos20r(p?) :
where
0% (p?) = p2x" ), — M2ZLl0w: o =pie, 4.15)
and
2 294
re(p?) =[(Qf(P?) = 0 (7)) +4(MuMez . (7)) ] (4.16)
To leading order we find the mixing angle to be given by
f 2
ZM;LMeZL E(P )
tan 20z (p?) = oK . 4.17)
)=
The matrix above can be diagonalized by a unitary transformation
cosf  sinf
uiol= <—sin9 cos@) (4.13)
in terms of the mixing angle 6 (p?), namely
Ulor(p")][P*2" — MZ MU [0 (p?)]
OR(p») — or(p? 0 >
= 4.19
( 0 0X(p?) + ar(p?) 19
where to leading order
1
or(p?) = E(Mi — M?) tan® 20x (p?), (4.20)
leading to the result
1
2 —1 2 OR (PP —or(pH)+ie 0 2
Ar(p?) =u or(p)] ( FO0 LUl @2
OR(pH)+or(p)+ie
which (to leading order) simplifies to
ZR, (p?
2 —1 2 p?—MZ (p?)—or(p?)+ie 0 2
Ar(p) =~ [ox ()] | o |ules()]
0 PP—MZ(pH+or(pP)+ie
(4.22)

In the above expressions Mﬁ (P, M 62 (p?) include the finite renormalization from the diagonal
contributions of the self-energy matrix which have not been calculated here, furthermore the
residues at the poles (wave-function renormalization) are also finite since the (local) divergent
contributions are canceled by the counterterm.
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Therefore Sk can be written in the basis that diagonalizes the kinetic term

ZR (pD)Ip+bR, (p?)] ZR (P bR, (p?)
- 2—MZ(pP)—or(pP)+ie  p?—MZ(pP)—or(p?)+ie
Ulor(PH1SrU[or (D)= | 711 z , (423
[or(p7)ISett™"[0r (p)] 25, (r7)bg, (1) ZR (p?)p+bE (p?)] (423)
p2P=MZ2(p>)+eor(pP)+ie  p?—MZ(p>)+or(p>)+ie
where
0¥ () = () IMZL ()~ [0 ()] @24)

(IT) We proceed in the same manner for Az (p?), namely consider diagonalizing the inverse
propagator

1
P2 =MZM=S[0;(p?) + 0: (p*)]1

AL(P?) (cos20,(p?)  sin20.(p?)
- : 2 2 (4.25)
2 sin20p (p°) —cos20r(p?)
where
0:(p?) =P’[2;' ],y = MilZRlaw: @ =pse, (4.26)
and
241
1 (p?) =[(Q(P7) = QE(P7)) +4(07 21 (1) ] (427)
Again, to leading order we find the mixing angle to be given by
2p%2] . (P?)
tan 20y, (p?) = 2t~ (4.28)

Mﬁ M?
The matrix above can be diagonalized by the unitary transformation (4.18) now in terms of the
mixing angle 67 (p?), namely

uloL(p?)][p*2," — MZeMJu~" [0, (p?)]

L 2 2
B ( ot 0 o oL (p?) E)F oL(p?) > (429
where to leading
oL(p?) = %(MZ — M) tan” 20, (p?) (430)
leading to the result
S S 0
AL(pz) =U_1[9L(p2)] ( Q,ﬁ(Pz)—SL(PzHlé 1 )L{[QL (pz)]. 431)
OL(pH+orL(p?)+ie

Neglecting the diagonal contributions to mass renormalization, but keeping the (finite) wave
function renormalizations, the result (4.31) simplifies to

zL,(p?) 0
2_M2(p2)— 2 ;
AL (Pz) :L{_I[GL (Pz)] p =M (p )OQL(P )tie ZL () L{[OL (P2)]

p2—MZ(p>)+oL(p?)+ie
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Just as in the previous case, Mﬁ ( pz), Mez( pz) include the finite contribution from mass terms
in the self-energy and the residues at the poles are also finite, the local, divergent contribution
being canceled by the counterterm.

The component S;, can now be written as

ZL, (p)Ip+bL, (pP)] zL, (pHbL, (p?)
- 2-M2(p?)—or(pP)+ie  p2—M2(p?)—oL(p?)+ie
ulor (pH1Sct=for (pH1=1 7 # it . (433
[0 (P7) 12247100 ()] ZL, (phbE, () zL (p)Ip+bL, (pD)] (433)
pE—MZ(p®)+oL(p?)+ie  p*—MZ(p?)+oL(p?)+ie
where
b (p?) =u[0L(p?) IMZr ()~ [0 (P%)]- (434)

An important aspect is that the mixing angles 6 ( pz), 0r.( p2) not only are different for the R,
L components a consequence of the V—A nature of charged currents, but also that they feature
very different momentum dependence,

M. g

2

p

QR (P2) - MMZL,/w(pZ)’ 9L (pZ) = M2 ZJLC‘/M (p2)_ (4'35)
m

Near the muon mass shell p2 ~ Mﬁ it follows that 6;, > Og, for near the electron mass shell

p* = M it follows that 6 > 61.. Off-shell, for virtuality p* > M, mixing of the L component
becomes dominant.

In general the transformations that diagonalize the kinetic terms p for both the positive and
negative chirality components do not diagonalize the mass terms. In the basis in which the kinetic
terms are diagonal the pole-structure of the propagator is revealed and the propagating modes
can be read-off. This basis, however, does not diagonalize the mass term of the propagator and
attempting to diagonalize the latter either via a unitary or a bi-unitary transformation will lead
to an off diagonal matrix multiplying the kinetic term. A similar situation has been found in
different contexts [75-77].

4.2. Propagating modes: the effective Dirac equation

The nature of the propagating modes is best illuminated by solving the effective Dirac equa-
tion for the flavor doublet, which corresponds to the zeroes of the inverse propagator, namely

[PZ, 'L+ pZy' R —M]¥ (p) =0, (4.36)
with ¥ a spinor doublet,
R R.L

It is convenient to work in the chiral representation and expand the positive and negative
chirality components in the helicity basis

-

3-ﬁvh<ﬁ>=hvh(ﬁ); h=+l, (4.38)
P

in terms of which the spinor flavor doublet

R
Y(p)=) u® (?2) (4.39)
h h
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where Ef ‘L are flavor doublets that obey the following equations

Z; ' (po+ ph)E; + Mg =0, (4.40)
Z. (po— phER + MEEF =0. (4.41)
The positive and negative energy and helicity components are given by (p = |p|)
ER _ ZRM SL
( M R); po>0, h=1, < PO‘;P >; po >0, h=—1, 4.42)
N [70+,'7“S §
ZrM S-L sR
("’°'+f ); po<0, h=1, ( - sR); po<0, h=—1. (4.43)
§ [pol+p
The flavor doublets obey
(P°Zy' —MZM)ER (p) =0, (4.44)
(r'z;' - MZzM)&"(p) =0, (4.45)

using (4.19), (4.29) we find that the rotated doublets

ER(p) oR(p) gL(p) ok (p)
Ulog(p? K =" , ulo.(p? " =" 4.46
(98 (P )](sf(p)) (<p§<p>> [0 )](seL(p) o) ¢

obey the following equation

OR(p®) — or(p?) 0 ) et _, 447
( 0 0¥ (P +or) )\ R | 4D
0L (P — oL (p?) 0 ) or(p)\ _ 44
( 0 0L (P +or(p) ) \ ok (p) =0 (49

Neglecting perturbative renormalization of the 1, e masses, for p? ~ Mﬁ the propagating modes

correspond to gof’L #0; gof’L =0 and the mixing angles for R, L components are 0g. L(Mﬁ)
respectively, with

Or(M2) ~ o (M2), (M) =~z] (M) (4.49)

defining the p-like propagating modes

£ (p) cos O (M) £ (p) cos Or (M)
L =t | 1. o =ef | Y0, 450
L) sinf (M2) R (p) sinfp(M2)
Similarly for p? ~ Me2 the propagating modes near the electron mass shell correspond to
gof’L #0, <le’1‘ =0 and the mixing angles for R, L components are 6, L(Mﬁ) respectively,
with
M, I
M/L L,ue

2
(M2), eL(M2):M€zf, (M2) 4.51)

e

Or(M7) =

defining the relation between the flavor doublets and the propagating modes on the respective
mass shells, namely
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L)\ e sin6r(M2)
gkp )7 cosO,(M2) |’
EX(p) —sinfg (M)
o =0 N R (4.52)
& (p) costr(M;)
The expressions (4.50), (4.52) combined with (4.42), (4.43) give a complete description of the
propagating modes.

4.3. Alternative diagonalization procedure

The quadratic part of the effective action in terms of the flavor doublet (4.1) and after renor-
malization is

ﬁeﬁf = aRlﬁZ;IWR + aLlﬁZZIlI/L - JRM'J/L - JLMII/R. (4.53)

In this expression Zg ; are finite because the renormalization counterterms canceled the di-
vergent parts. These finite wavefunction renormalization matrices can be absorbed into a finite
but four-momentum dependent renormalization of the Dirac fields, so that the kinetic terms are
canonical, namely

YR L(p) =1r.L(P)VLR,L(D), YR,L(P) =VZR,L(P)NR,L(D), (4.54)
leading to
Lo =7rp1r +ALp1L — TRM(P)nL — LM (p)nr. (4.55)

we emphasize that because Zj features off-diagonal terms, the above transformation is not only
a simple rescaling but also a mixing between the u, e fields.
The mass matrices

M(p) =V Zr(P)MVZL(p), MY (p)=VZL(p)MYZr(p) (4.56)

feature off diagonal terms from Z; and are momentum dependent. They can be diagonalized by
biunitary transformations, namely introducing the unitary matrices Vg 1 as

NR,L = VR,LPR,L, NR,L =5R,LV;’L 4.57)
these matrices are momentum dependent and diagonalize the mass matrices,
VEMVL =My, ViMVr =M, (4.58)

where M, is a diagonal but momentum dependent “mass” matrix. It is straightforward to prove
that

VEMMI Vg = M3 =V MT MY, (4.59)

Projecting the Dirac equation obtained from the effective action (4.53) onto left and right handed
components we find

[P? =M M) =0,  [p* - MM ]ng=0 (4.60)

which are diagonalized by the unitary transformation (4.57) with the property (4.59). Obviously
the position of the mass shells which are determined by the zeroes of the determinant of the
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operators in the brackets are the same as those obtained from the un-scaled Dirac equations
(4.44), (4.45) a result that is straightforwardly confirmed.
The p-like and e-like eigenvectors are

1
d)R(P):(ﬂ{e(P)(O) for p> =M} + -+,

¢R(p)=¢§(p)((1)> for p>=M> + -, (4.61)

where the dots stand for the radiative corrections to the masses. After straightforward algebra we
find to leading order

[ cosdg  —sindg
VR[(SR]_(siHSR COS SR >
f 2
MMMeZL E(P) M, f
SR(p) ~ ———~~ 227 (PP, (4.62)
M2 — M? M, ~Lme

which is exactly the same as the rotation angle for the right handed component 6z (p) given by
Eq. (4.17) when evaluated on the mass shells p? >~ M7; p* ~ M7 respectively.
For the left handed component the u-like and e-like eigenvectors are

1
@L(P)prf‘([?)(o) forpzzMIZL_{_...’
0
¢R(p>=w§<p>(1) for p2= M2+ .-, e

and again to leading order we find

. 2 2
_ (cosd; —sindy . LM+ M g 2
Veldrl= ( sind,  coséy ) ;0 OL(p) =~ E(m ZL,M(P ) (4.64)

We are now in position to reverse the re-scaling and unitary transformation to obtain the rela-
tion between the original u, e fields and the fields that diagonalize the effective action, namely
from (4.54), and (4.57) it follows that

%-R L
YRL = (5 ) VZR LVR,LPR,L. (4.65)

Since Zg is diagonal, we find to leading order

EX(p) ok ( 1 )
(seR(p)>p2:M2 =@ (P) eR(MZL) 5

R _ 2
(50),., ot ().
e pZZMZ

The matrix Zy, is off-diagonal so that to leading order it follows that

14-.. 2
VZi(p) = (1 / FoLlr )> (4.67)
2401

3P T
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Fig. 3. Lepton flavor violation: (a) three loop contribution to X, the Cutkosky cut through the photon and electron
intermediate state yields the imaginary part describing the flavor violating decay u — ey of (b).

combining this result with (4.64) we find to leading order

& (p) R ( 1 )

(éé(p))pzzMﬁ_‘pl D)\ o m2) )
L _ 2

(ZEP)) :sz(p)< eLiMe)), (4.68)
€ p) pz:Me2

where 6, (p?) is given by Eq. (4.35) with p? ~ M7, M respectively.

Thus we have confirmed that the alternative diagonalization procedure with rescaling the fields
and diagonalizing the resulting mass matrices with bi-unitary transformations yield the same
result as the direct procedure described in the previous sections, thereby establishing that the
results obtained above are robust.

5. Relation to lepton flavor violating processes

Charged lepton mixing via intermediate states of charged vector bosons and neutrino mass
eigenstates are directly related to lepton flavor violating processes. An important process that is
currently the focus of experimental searches [69,70] and a recent proposal [71] is the decay u —
ey which is mediated by neutrino mass eigenstates [78—81] and the importance of heavy sterile
neutrinos in this process has been highlighted in Ref. [82]. However, to the best of our knowledge
the relationship between this process and a mixed pt—e propagator has not yet been explored. Such
relationship is best understood in terms of the three-loop muon self-energy diagram in Fig. 3(a),
the Cutkosky cut along the intermediate state of the electron and photon yields the imaginary part
of the muon propagator on its mass shell, and determines the decay rate ;© — ey, this is depicted
in Fig. 3(b).

However, the self-energy diagram 3(a) is only one diagonal component of the full u—e self-
energy, the corresponding three loop diagram for the off-diagonal component is shown in Fig. 4.

Because of the different external particles, a Cutkosky cut of this diagram through the photon
and electron internal lines cannot be interpreted as a decay rate. However, this analysis clearly
indicates the relationship between yu — ey, a distinct indicator of lepton flavor violation, and
charged lepton mixing in self-energy diagrams, both a direct consequence of neutrino mixing.

We note that whereas the branching ratio for u — ey is x Gro| Z/ Uyj Uje|2m§ we find
that the one-loop mixing angles are momentum dependent, different for different chiralities and
the largest angle for on-shell states corresponds to the negative chirality muon-like combination,
in which case the angle is of order G Y_; Uy, U;‘emi.
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Fig. 5. Further contribution to X, from p—e mixing.

5.1. Possible other contributions

The diagram in Fig. 3(b) suggests that u—e mixing may lead to further contributions. Consider
the flavor blind electromagnetic vertices of u and e, if the mixing angles were momentum inde-
pendent, unitarity of the transformation would entail a GIM cancellation between off-diagonal
terms in the electromagnetic vertices, just as for neutral currents. However, muon-like and
electron-like mass shells feature very different mixing angles which suggests that off diago-
nal contributions arising from replacing the u and e fields in the electromagnetic vertices by the
correct propagating states would not cancel out because of different mixing angles. This can be
seen from the relation between the propagating states and the u, e states given by Eqgs. (4.50),
(4.52), writing

Yy = costip) —sinthey, Yo = cosOr + sin 01 ¢y (5.1

respectively for positive and negative chirality components with the respective angles 617 =
HL(Mi), = QL(Mez), etc., it follows that the electromagnetic vertices feature a mixed term of
the form

xParyH A1 (61 —61) + L — R, (5.2)

where the right handed angles are very different from the left handed counterparts. If the mixing
angle(s) were momentum independent #; = 6, and this term would vanish in a manner similar
to the GIM mechanism. Furthermore the difference 61;—65; is insensitive to the choice of the
local renormalization counterterms. Therefore mixing with momentum and chirality dependent
mixing angles suggests that the contribution to © — ey from the vertex (5.2) depicted in Fig. 5
becomes possible.

This contribution differs from that of Fig. 3(b) in two major aspects: (i) rather than an extra
W propagator, it features an electron propagator in the intermediate state, which would suggest
a large enhancement with respect to the usual contribution, (ii) a very small mixing angle which
suppresses the enhancement from the electron propagator in the intermediate state. Thus a detail
study of both effects and their impact is required for a firmer assessment.

This argument, however, needs to be scrutinized further by analyzing the imaginary part of the
propagators keeping both the diagonal electromagnetic contribution as well as the off diagonal
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charged current contribution. Upon the diagonalization of the propagator there is an interference
between the diagonal and the off-diagonal terms, this can be gleaned from (4.14), (4.25). The
imaginary part of the propagator evaluated at the mass shell of the muon-like propagating mode,
namely p? ~ M?L would yield the contribution to the diagram of Fig. 5 from the interference
between the diagonal electromagnetic contribution which features an imaginary part for p> > Mg
and the off-diagonal charged current contribution. Since this is a contribution to the self-energy
of higher order than the ones considered here, a firmer assessment of this new contribution merits
further study and will be reported elsewhere.

6. Summary and discussion
We summarize and clarify some of the main results obtained above.

e Mixing. In this study mixing refers to the fact that the flavor eigenstates of charged leptons,

W; e are not the propagating states. This is a consequence of self-energy corrections that
are off-diagonal in the flavor basis as a consequence of intermediate states with neutrino
mass eigenstates that connect the flavor states. As is standard in quantum field theory, the
propagating modes correspond to the poles of the full propagator, because of the off-diagonal
self-energy contributions these propagators become an off diagonal matrix in flavor space,
whose diagonalization yields the correct propagating modes. We offered two complementary
methods to understand the mixing and diagonalization: (i) a direct diagonalization of the
propagator matrix including the one-loop self-energy which features the off-diagonal terms,
(i1) a diagonalization of the effective action by first rescaling the fields to a canonical form
followed by a bi-unitary transformation to diagonalize the mass terms. Both approaches yield
the same result: mixing angles that depend on the corresponding mass shells and different for
right and left-handed components, these are given by (4.49), (4.51) which are also obtained
via the procedure of rescaling the fields to a canonical form, diagonalizing the mass matrices
by a bi-unitary transformation and re-scaling back to find the relation between the original
flavor eigenstates and the propagating eigenstates yielding the same mixing angles (see the
discussion below Eqgs. (4.62), (4.68)). As described with both methods, the transformations
necessary to relate the flavor and propagating eigenstates are manifestly non-local which is
reflected on the different mixing angles on the different mass shells.
The mixing angles are GIM suppressed favoring heavier neutrinos in the intermediate state
and momentum and chirality dependent. This means that off-shell processes necessarily mix
charged leptons with virtuality and chirality dependent mixing angles. For p*> <« M%V and
assuming that the heaviest sterile neutrinos feature masses << M %V, from Eq. (3.19) we find
the positive and negative chirality mixing angles for ;t—e mixing

Gr M, 2 Gr P
Or ~ 2 M, ZUW 0L(p?)~ MZZUM (6.1)

thus the mixing angles are dominated by the heaviest generation of neutrinos, and the dif-
ference of mixing angles at the different mass shells is insensitive to the choice of local
renormalization counterterms. In particular if heavy sterile neutrinos do exist, these new
degrees of freedom will yield the largest contribution to charged lepton mixing. Consid-
ering for example that there is only one generation of heavy sterile neutrinos with mass
Mg, and assuming that U,; ~ U,;, the recent results from the PIENU Collaboration at
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TRIUMF [58] reporting an upper limit |U,;|*> < 1078 (90% C.L.) in the neutrino mass re-
gion 60-129 MeV /c? allows us to estimate an upper bound for the negative chirality mixing
angle near the y mass shell,

2

OL(p* ~ M) — 0, (p> = M) < 10_14(10(?471\51@:\/) . (6.2)
Oscillations are manifest in the off diagonal density matrix elements in the flavor basis.
These, however, average out on unobservable small time scales thus coherence (off-diagonal
density matrix elements in the flavor basis) is suppressed by these rapid oscillations and is
not experimentally relevant.
Renormalization. The off-diagonal component of the self-energy (in the u—e basis), fea-
tures ultraviolet divergences, which are regularized in dimensional regularization consis-
tently with the underlying gauge symmetry. The renormalization counterterm has been
chosen in the MS scheme as is commonly done. The fact that the renormalized Lagrangian
requires an off-diagonal counterterm is again a consequence of the fact that intermediate
states with neutrino mass eigenstates mix the flavor fields yu—e. However, the counterterm in
the renormalized Lagrangian is local and cannot completely remove the mixing between the
flavor fields, this is manifest in the non-local and finite contribution to the off-diagonal self-
energy given by Eq. (3.9) for the short distance contribution and (3.14) for the long-distance
contribution. These finite contributions are momentum dependent and feature absorptive cuts
above the two particle threshold corresponding to the intermediate state of a charged vector
boson and a neutrino mass eigenstate.
The momentum dependence leads to the different mixing angles on the mass shells as
discussed in detail in the previous section, and the absorptive part gives rise to off-shell
processes that involve the mixing of the flavor fields. In particular the difference between the
mixing angles at the two mass shells is independent of the local counterterm which is also
obviously irrelevant for the absorptive part.
Lepton flavor violation. The relationship between the off-diagonal self-energy and lepton
flavor violating processes becomes manifest by explicitly comparing the Feynman diagram
in Fig. 2 for the self-energy with [ = u; l/; = e with that of the lowest order lepton fla-
vor violating process © — ey in Fig. 3(b): neglecting the photon line, the intermediate state
of W—v; is the same as for the self-energy (2), namely: the mixing of flavors as a conse-
quence of an off-diagonal self-energy in the p—e basis has the same physical origin as the
lepton-flavor violating process u — ey. The direct relationship between the off-diagonal
self-energy and . — ey is shown explicitly in Figs. 3, 4. Diagram 3(a) is the pu—u (diagonal)
part of the self-energy, its Cutkosky cut across the W-line yields the imaginary part describ-
ing the process i — ey in 3(b). The same types of intermediate states yield the off-diagonal
—e contribution to the self-energy, displayed in Fig. 4 clearly indicating that the physical
origin of the mixing of u—e flavor fields is the same as the lepton flavor violating transi-
tions u — ey. Upon writing the charged lepton fields in terms of the propagating modes in
flavor diagonal vertices in the interaction Lagrangian, the momentum dependent field redefi-
nition associated with the rescaling and bi-unitary transformation, namely the mixing, yields
novel interaction vertices in terms of the propagating modes that depend on the difference
of the mixing angles at the different mass shells, this difference is independent of the local
renormalization counterterm. A simple example is the electromagnetic vertex which is flavor
diagonal, upon writing it in terms of the propagating modes ¢ > it describes an interaction
between these in terms of the difference between the mixing angles at the mass shells, see
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Eq. (5.2) that leads to potentially new observable contributions such as that displayed in
Fig. 5 that merit further study.

7. Conclusions and further questions

In this article we studied charged lepton oscillations and mixing. The decay of pseudoscalar
mesons leads to an entangled quantum state of neutrinos and charged leptons (we focused on
m, K decay leading to w, e). If the neutrinos are not observed, tracing over their degrees of
freedom leads to a density matrix for the charged leptons whose off-diagonal elements in the fla-
vor basis reveals charged lepton oscillations. While these oscillations decohere on unobservably
small time scales < 10723 s, we recognize that they originate in a common set of intermediate
states for the charged leptons. This realization motivated us to study the mixed p—e self-energies
and we recognized that charged-current interactions lead to a dominant “short distance” con-
tribution to pu—e mixing via W-exchange and an intermediate neutrino mass eigenstate, and a
subdominant (by a large factor) “long distance” contribution to mixing via an intermediate state
with a pseudoscalar meson and neutrino mass eigenstate. We include the leading contribution
in the propagator matrix for the u—e system focusing on the off-diagonal terms which imply
u—e mixing. We find that the mixing angles are chirality and momentum dependent, the chiral-
ity dependence is a consequence of V—A charge current interactions. Diagonalizing the kinetic
term and the mass matrix by bi-unitary transformations or alternatively diagonalizing the propa-
gator, displays the poles which describe muon-like and electron-like propagating modes (“‘mass
eigenstates”) for which we find explicitly the wave functions, but the mixing angles evaluated on
the respective mass shells (and chiralities) are very different. We find the positive and negative
chirality momentum dependent mixing angles for p? <« My, Z to be approximately given by

GFM 2 GFP
o S St ) 2 Y o

therefore dominated by the heaviest generation of sterile neutrinos. The difference of mixing
angles at the different mass shells is independent of local renormalization counterterms. For one
(dominant) generation of massive sterile neutrinos with mass Mg, the recent results from the
PIENU Collaboration at TRIUMF [58], suggests

2
OL(p* = M) — 0, (p> = M) < 1014(1()(?/[715&;\/) : (7.2)

Flavor diagonal interaction vertices feature novel interactions once written in terms of the
fields associated with the propagating modes or mass eigenstates. In particular the electromag-
netic vertex, yields an interaction between the muon-like and electron-like propagating modes
which is another manifestation of lepton flavor violation. The (four-) momentum dependence
of the u—e mixing angle may be the source of novel off-shell effects whose potential observa-
tional manifestation merits further study. We expect to report on ongoing study on these issues
elsewhere.

We discussed the relationship between the lepton flavor violating decay p — ey, the focus
of current searches [69,70] and proposals [71], and charged lepton mixing, pointing out that a
positive measurement of the former confirms the latter. Furthermore, we advance the possibility
of further contributions to i — ey arising from the fact that the u—e mixing angle is momentum
dependent and differs substantially on the mass shells of the propagating modes voiding a GIM
mechanism for the electromagnetic vertices.
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Furthermore, in order to present the main arguments in the simplest case, in this article we
have not considered CP-violating phases in the mixing matrix elements Uy, including these
phases merit further study since this aspect could indicate potentially rich CP-violating phe-
nomena from the charged lepton sector induced by CP-violation from the neutrino sector which
merits further and deeper study.
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