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Abstract 

Capocelli, R.M., L. Gargano and U. Vaccaro, Decoders with initial state invariance formultivalued 

encodings (Note), Theoretical Computer Science 86 (1991) 365-375. 

Multivalued encodings constitute an interesting generalization of ordinary encodings in that they 
allow each source symbol to be encoded by more than one codeword. In this paper we characterize 

the class of multivalued encodings that admit invariant decoders and provide an algorithm for 

constructing such decoders. Invariant decoders have the useful property that their behavior does 

not depend on the state in which they are, thus exhibiting optimal tolerance to accidental state 

transitions and/or errors in the input sequence. 

1. Introduction 

An encoding system is called multivalued if there may be two or more codewords 

corresponding to the same source symbol. In this paper we characterize the class 

of multivalued encodings that admit of invariant decoders and provide an algorithm 

for constructing such decoders. 

* This work was supported in part by the Italian National Council for Research, under contract 

no. 90.01552.12. 
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Multivalued encodings arise in many practical situations. In particular, they 

appear very suitable for modeling the effect of noise during the transmission of 

data. As is well known, when a sequence of symbols is transmitted over a noisy 

channel, the corresponding channel output is not uniquely determined but depends 

both on the transmitted sequence and the error pattern that has occurred, Notice 

that if the channel allows insertions and deletions then the output sequences that 

correspond to an input sequence may have different lengths. The most general way 

to describe the behavior of a channel that suffers of insertions, deletions and 

substitutions errors is to specify, for each input symbol, all possible sequences that 

may occur at the output. This can be done by means of a multivalued encoding in 

which the set of codewords corresponding to a source symbol represents the noisy 

versions of the original encoding of that symbol. However, this approach can be 

practical only if the set of sequences associated with each source symbol does not 

become too large. Generally speaking, one can prevent this situation by ignoring 

all channel output sequences having small probability of occurrence. Another 

important situation that can be modeled successfully by means of a multivalued 

encoding is the homophonic channel. In the homophonic channel the set of different 

codewords that correspond to a source symbol represents the homophons into which 

that symbol is encoded. The technique of homophonic substitution is an old tech- 

nique used in cryptology for converting an actual plaintext sequence in a (more) 

random sequence in order to increase the message entropy. Amongst the randomiz- 

ation techniques it seems by far the most adequate. It has been very recently 

reconsidered and enriched. In particular a complete information-theoretic treatment 

[9] and a general universal algorithm for homophonic encoding [8] have been 

provided. The multivalued encoding formalism would permit to characterize the 

deciphering and synchronizing properties of the homophonic substitution. 

It should be recalled that multivalued encodings arise also in molecular biology. 

Indeed, in the biological code, several groups of bases may correspond to the same 

amino acid. This situation is described by saying that the biological code is degenerate 

(see [ 131 and [ 141 for a detailed discussion of this property of the biological code). 

Multivalued encodings have been introduced by Sato [12] and further analyzed 

in [2-4,6]. The construction of decoders was considered by Capocelli and Vaccaro 

[S] who gave three algorithms for constructing them. Next, Capocelli et al. [7] 

considered the problem of constructing self-synchronizing decoders for multivalued 

encodings, i.e., decoders able to recover synchronization, once it has been lost, in 

a bounded time interval. The decoders proposed in [7] have the interesting property 

of permitting to bound the incorrect decoding of the code message, in case a 

misfunctioning of the decoder itself or errors in the input sequence have moved the 

decoder into an incorrect state. 

In this paper we consider decoders which satisfy a stronger property: their behavior 

is independent from the state in which they are. Therefore, they completely eliminate 

decoding errors due to random transitions from a state to another and/or errors in 
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the input sequence. We characterize the class of multivalued encodings which admit 

decoders with such a property and give an algorithm for constructing them. We 

remark that in case of ordinary encodings, our algorithm reduces to that by Leven- 

sthein [ 1 I]. 

2. Notations and definitions 

Let X be a finite nonempty set and let X’ and X” be the free semigroup and 

the free monoid generated by X, respectively. We recall that the free semigroup X+ 

denotes the set of all finite sequences of elements of X and that Xt = X* -{A} = 

UT=:=, X”; where h and X” respectively denote the empty sequence and the nth 

concatenation of X with itself. We call the elements of X code symbols and the 

elements of Xt words. We denote by /(NJ) the length of words w, i.e., if w = X, . . x,, 

x, E X, then I(w) = m. 

Given w E X+ and p, q, s E X*, if pqs = w then p is a pr@ix of w, is a sufix of w 

and q is an in$x of w. If p is a prefix of w write w + p and if p # w we say that p 

is a proper prejix of w. 

Given a finite set A of source symbols, a multivalued encoding is a mapping 

F : A + 2x’ from the source alphabet A into the set of all subsets of X+, denoted 

by 2x+. We assume that for each a E A the set F(a) is finite. In order to define the 

encoding of sequences of source symbols, we expand the domain of F from A to 

A* in the following way: 

(i) F(A) = {A); 
(ii) for each x E A* and for each y E A 

F(xy) = F(x). F(y) = {a/3 ) a E F(x) and p E F(y)}. 

For each sequence of source symbols x E A *, F(x) denotes the set of all possible 

encodings of x. It is obvious that the above definition reduces to the definition of 

ordinary encoding when F(a) is a singleton, for each a E A. Finally, denote by C 

the set of all codewords and by C+ the set of all code messages, i.e., 

C = U F(a) and C+= U F(x). 
OFA TEA+ 

3. An algorithm for constructing invariant decoders 

In this section we will provide a necessary and sufficient condition for the existence 

of an invariant decoder for a multivalued encoding and give an algorithm for 

constructing it. Let us first state the formal definition of a decoder. 

Let D = (S, sO, X, A,J; g) be a (deterministic) finite sequential machine, where 

S is the state set; 

sO is the initial state; 

X is the input alphabet (= set of code letters); 
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A is the output alphabet (= set of source letters); 

f: S x X + S (= transition function); 

g : S x X + A* (= output function). 

Notice that this definition of a sequential machine is substantially equivalent to 

that of a finite transducer, as defined in [I]. 

Definition 3.1. The finite sequential machine D is a decoder for the multivalued 

encoding F: A + 2x+ if and only if there exists an integer t 2 0 such that for any 

Ui,Uiz.. . ai, E A+, for any Wi,W,, . . . Wi, E F(ailai2.. . a,,) and for all SE C’ 

g(sO, W,,W,,... WtAP)+ai,ai,...ar,. (1) 

The smallest number t such that (1) holds is called the (decoding) delay of the 

decoder D. 

In words, the meaning of Definition 3.1 is the following: The machine D is a 

decoder with delay t if and only if, having as input k+ t codewords, D is able to 

decode at least the first k codewords, leaving undeciphered at most t terminal 

codewords. Algorithms for constructing decoders for multivalued encodings have 

been given in [5]. 

Definition 3.2. Given a multivalued F : A + 2xi, the decoder D = (S, so, X, A, f, g) 

is called invariant with respect to the initial state (or simply an invariant decoder) if 

for each s, E S the generalized sequential machine D, = (S, s,, X, A,J; g) is a decoder 

for F. 

Example 3.3. Let A = (0, l} be the set of source symbols, X = {a, b, c} be the set of 

code symbols and consider the multivalued encoding F(0) = {cabb, UC, ab}, F( 1) = 

{ebb}. A decoder for F that does not exhibit the invariance property is shown in 

Fig. 1. Indeed, g(s,, ebb) =O, whereas ebb E F(1). An invariant decoder for F is 

shown in Fig. 2. 

Fig. 1. Decoder for the multivalued encoding of Example 3.3. 
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Fig. 2. Invariant decoder for the multivalued encoding of Example 3.3. 

Let F: A-+2X+ be a multivalued encoding. For each source symbol a E A and for 

each codeword w E F(a), denote by p,(w) the shortest prefix of w such that, for 

some integer k 3 0, it holds that 

w =p,(w)% . . . Yk, 

where each yi is a prefix, different from A, of some codeword w, E F(q), with ai # a 

for each i, 1 s i G k. Denote by P,(C) the set 

P,(C)={P,(w)lwEC1. 

Now, for each a E A, w E F(u) and for each integer i 2 2, define recursively pi(w) 

as the shortest proper prefix of p,_](w) when either there exist u, u E F(u) and 

&,, &E X* with 

PS(W)U =Pl-,(w)&P,?,(u)52, 

or there exist CGA, c#u, and u~F(c) with p,(w)v=pi_,(w)y, YEX*; p,(w) is 

defined to be pz_,(w) otherwise. Denote by P,(C), for each integer i* 2, the set 

fl(C)={p,(w)lwE C1. 

Finally, define 

p(C)=M4lw~C1=P,(C), 

where n is the smallest integer such that P,,(C) = P,,+,(C). It is easy to see that if 

C is finite then there exists an integer n such that P,,(C) = P,,+,(C). 

Definition 3.4. A multivalued encoding F: A+ 2x+ . IS fault-tolerant if and only if 

the following two conditions are satisfied: 

(a) for each source symbol a E A and for each codeword w E F(u) there do not 

exist b E A and u E F(b), with u # b, such that p(u) is an infix of w; 

(b) for each source symbol a E A there do not exist codewords, u, u, w E F(u) 

such that p(u)cp(v) is an infix of w, for some [E X*. 
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The following example clarifies this definition: 

Example 3.5. Let A = (0, 1) be the set of source symbols and X = {a, b, c} be the set 

of code symbols. The multivalued encoding defined by F(0) = {ac, ab} and F(1) = 

{ebb, cabb} is not fault-tolerant. Indeed 

P,(C)={a,ab,cbb,cabb}=P,(C)=P(C) 

and then p( ac) = a, cabb = cp( ac) bb, with UC E F(0) and cabb E F( 1). It follows that 

condition (a) of Definition 3.4 is not satisfied. 

The multivalued encoding defined by F(0) = {cabcb, ab, cat}, F( 1) = {bbc} is fault- 

tolerant. Indeed 

P,(C) = {cabc, a, cat, bb}, Pz( C) = {cab, a, ca, bb} = P3( C) = P(C) 

and it is easy to see that both conditions (a) and (b) of Definition 3.4 are satisfied. 

The following theorem states that a multivalued encoding admits an invariant 

decoder if and only if it is fault-tolerant. The sufficiency part of the theorem will 

also provide an algorithm for constructing such decoders. 

Theorem 3.6. Let F : A + 2x+ be a multivalued encoding. A necessary and sujjicient 

condition for an invariant decoder to exist is that F is fault-tolerant. 

Proof. (Necessity). Let D = (S, sO, X, A,f; g) be an invariant decoder for F. We first 

show that for each s E S, a E A and w E F(a) it holds 

g(s, w) = a. (2) 

Indeed, if t is the decoding delay of 0, one has that for each b E A, v E F(b) and 

YE C’ it holds that 

g( s, wvy) & ab. (3) 

On the other hand, since D is an invariant decoder, it also results 

g(s, WV) = g(s, w)g(f(s, w), VY) * g(s, w)b. (4) 

From (3) and (4) one gets (2). Strengthening the above proof, it is possible to show 

that for each s E S, a E A and w E F(a) it holds that 

g(s, P(W)) = a. (5) 

The proof is by inductive argument. We shall prove that for each s E S, a E A, 

w E F(a) and i 2 1 it holds that 

g(s, Pi(W)) = a. (6) 

Let i = 1. By definition of p,(w) one gets 

w =pl(w)%. . Yk 
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where each yi is a prefix, different from A, of some codeword wj E F( b,), with b, f a. 

Since g(s, w) = g(s, p,(w))75 . . . yk) = a, in order to prove (6) it suffices to show that 

g(f(s,p,(w)y, . . . y,_,), n)=h, for each l~j~k. (7) 

Suppose, by contradiction, that (7) is not true. From (2) one then has that 

g(f(% Pi(W)YI . . . Yj-11, Y,yJ) = 4 (8) 

for some 1 c j 5 k. From the definition of y,, one gets that there exist b, E A, b, f a, 

and wj E F(b,) such that wi = y,y, for some y E X *. Moreover, from (2), one gets that 

g(f(% P1(w)Y1 . . ' Yj-113 w;) = b,, 

whereas, from (8) one obtains 

g(f(% PItw)YI . . y,-*), wj)* g(f(% P,(W)Yl . . . Yjpl), ?j) = a 

that contradicts the assumption that a # b,. Thus (6) is true for i = 1. We now prove 

that if (6) is satisfied for i - 1 it is also satisfied for i. 

If p,(w) =p,_,(w) then (6) it is trivially true. Assume p$_,(w) =p;(w)y, for some 

y E X+. It is possible to distinguish the following two situations: 

Case (i): There exist codewords IA, VE F(a) such that 

Pi(w)v=Pi-,(w)51P,~l(u)52=Pi(w)r51Pl~,(u)52, for SOme 51, &EX*. 

We shall show that g(s, pi(w)) = a. Assume by contradiction that g(s, p,(w)) = A. 

From the inductive hypothesis we get that g(f(s, p,(w)), y) = g(s, pi_,(w)) = a. Thus 

we obtain 

g(f(s, p,(w)), v) = g(f(s, p,(w)), Y~~P~-~(u~) * aca, for SOme c E A*. 

On the other hand, from (2) one has g(f(s, p,(w)), U) = a which contradicts the 

above relation. 

Case (ii): Thereexist bE A, b# a, anduE F(b) such thatpj(w)u=p,-,cr,forsome 

(~EX*.Letp,(w)y=p,_,(w),forsome yEX+. Because of the inductive hypothesis, 

one has that g(s, p,-,(w)) = a, so that in order to prove (6) it suffices to show that 

g(f(s, pi(w)), y) = A. Suppose, by contradiction, that g(f(s, p,(w)), y) = a; one gets 

that 

g(f(s, Pi), 0) * g(f(s, P,(W)), Y) = a. 

On the other hand, by definition of invariant decoder one has that g( f (s, p,(w)), U) = 

b # a, this contradicts the assumption. 

Therefore, we have proved (6) in all cases. Since for each a E A and w E F(a) 

there exists an integer n such that p(w) =p,,(w), it follows that also (5) is true. 

Using (5) we can prove that a necessary condition for a multivalued encoding to 

admit an invariant decoder is that the encoding is fault-tolerant. Suppose, by 

contradiction, that the encoding is not fault-tolerant. It is possible to distinguish 

the following two situations: 
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Case (1): Condition (a) of Definition 3.4 is not satisjied. This means that there 

exist source symbols a, b E A, a # b, and codewords w E F(a) and v E F(b) such that 

w = P,P(V)P*, for some /3,, pZ E X”. 

Let s E S. Using (5) one gets 

g(s, w) = g(s, PIP(O)P2) = As, Pr)g(f(s, PI), p(v))g(f(s, PIP(V)), 6) 

= g(s, P,)bg(f(s, PG(v)). 6). (9) 

On the other hand, from (2) one has that g(s, w) = a, which contradicts (9). 

Case (2): Condition(b) of Dejnition 3.4 is not satisjied. This means that there 

exists a source symbol a E A and codewords u, v, w E F(a) such that 

w = 5,P(U)&P(U)&, 

for some [,, &, &E X*. Let s E S. Using (5) one gets 

g(s, w) = As, &P(~)&P(~ks) 

* g(s, 51p(uk~(u)) = ds, Slbdf(4 ~,P(u)), &)a. (10) 

On the other hand, from (2) it results g(s, w) = a which contradicts (10). 

Therefore, the property of fault-tolerance is a necessary condition for a multivalued 

encoding to admit of an invariant decoder. 

(Suficiency). Let F : A + 2 Xt be a fault-tolerant multivalued encoding. We shall 

give an algorithm for constructing an invariant decoder for E 

Let M be the set defined in the following way 

M={xEX*I~~EP(C),~ZEX+ such that y=xz 

and Vpl, p2 E X”, Va E P(C) it holds that x # P,(Y&}, 

i.e., M is the set of all proper prefixes of elements in P(C) that have no elements 

of P(C) as infix. 

For each ,9 E X+ let sufs(p) denote the longest sufiix of ,B that belongs to M. 

Define the sequential machine D = (S, s,,, X, A,f, g) in the following way: 

(a) S={s,,ly~ M},s,=s,; 

(b) for each (s,., b) E S x X, the transition function f and the output function g 

are determined as follows: 

f(s,, 6) = { ;.,,>bi 
if yb has a suffix belonging to P(C); 

’ otherwise; 

g(s,> b) = 
1 

UEA if yb=pp(w), for some UEA, WE F(u), PEX”; 
A 

otherwise. 

This definition implies that the sequential machine D performs as follows: When 

it receives a string p of code symbols which has no infixes belonging to P(C) then 

f(Sh, P) = s,ZAfl(p)> (11) 

g(Sh,P)=A. (12) 
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Moreover, if b E X is such that /3b has a suffix p(w) E P(C), for some w E F(a) and 

a E A, then 

f(s,, Pb) =f(~\,m, b) = sh, (13) 

g(sA, P) = g(s.5UR(pj, 6) = a. (14) 

Finally, if p E M, then (11) becomes f(sA, p) = s,,~(~) = so. 

In order to show that D is an invariant decoder for the multivalued encoding F, 

we shall prove that for any state sL E S, source symbol a E A and codeword w E F(a) 

it holds that 

g(s,, w) = a. 

Let (Y be the shortest prefix of Yw such that there exist b E A and u E F(b) for which 

p(v) is a suffix of ff. One can write 

Yw = ~$3~ = p,p(~)/3~, for some PI, pz E X*. 

In order to show that g(.s,, w) = a, it is convenient to distinguish the following two 

situations: 

Case (i): p(v) is an injix of w. From the definition of fault-tolerant multivalued 

encoding, it results that also o belongs to F(a). Let w = j?p( u)&, for some /3 E X”. 

Since no infix of yp belongs to P(C), from (11) and (12) one gets 

f(%,YP)=Swfltl@)Ex g(%,yP)=h; 

whereas, from (13) and (14) one gets 

g(sA, Y/@(n)) = a = AsA, Y)g(f(sA, Y>, PP(~)) = g(s,., Mu>). 

TO prove that g(s,,., w) = a, it suffices to show that g(s,, pz) = A. From the definition 

of fault-tolerance it follows that no word u E C exists for which w = [,p( v)&(u)&, 

for any 5,, &, &E X*. This implies that no element of P(C) is infix of PI. From 

(11) and (12) it results 

f(s* 9 P2) = sSlmff(p2) E & g(s* > PI) = A. 

Case (ii): Prp( v) = yq for some 7 # A proper prefix of w. From (11) and (12) one 
obtains 

f(s,, Y) = s,., g(s*, Y) = A. 

Moreover, it is possible to show that v E F(a). Indeed, assuming on the contrary 

that u E F(b) for some b # a, one has that p(u)& = SW, for some S proper prefix of 

p(u), which contradicts the definition of p(u). From (13) and (14) one gets 

f(s*, PIP(U)) = s,, ids,, &p(u)) = a. 
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b 

Fig. 3. Invariant decoder for the multivalued encoding of Example 3.7 obtained applying the algorithm 

of Theorem 3.6. 

Moreover, 

g(sA, P,P(u)Pz) = g(%, W) = g(f(s*, Y)> w) = g(q, w), 

g(s*, P,P(U)P2) = g(s*, PIP(U))g(f(%, /Q(n)), P*) = Q(&, PA 

that is g(s),, w) = ag(s,, pz). 

Finally, to show that g(s,, w) = a, it suffices to prove that g(s,, /?J = A. Since the 

multivalued encoding is fault-tolerant, it is possible to see that, for any b E A, b # a, 
no u E F(b) exists such that p(u) is an infix of &. Otherwise, one would get that 

p(u) is infix of w E F(a), which contradicts the fault-tolerance assumption. Suppose 

now that there exists u E F(a) such that p(u) is an infix of &. It follows that 

P(U)Pz = SW =P(~kPCu)5* 

with 6 proper prefix of p(v), which contradicts the definition of p(u). Since p2 has 

no infix belonging to P(C), from (11) and (12) one gets 

f(5) P2) = s w/y(Pz) E s, dSA\, P2) = A. 

This completes the proof of the theorem. q 

Example 3.7. Given A = (0, l}, X = {a, b, c}, consider the multivalued encoding 

given by 

F(0) = {cabcb, ub, cab}, F(1) ={bbc}. 

One has that C = {cub&, ub, cub, bbc} and P(C) = {cu, a, cu, bb} and M = {A, c, b}. 
The invariant decoder for F obtained applying the algorithm presented in Theorem 

3.6 is shown in Fig. 3. 
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