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Abstract This paper presents a methodological approach to compute the stochastic eigenmodes of

large FE models with parameter uncertainties based on coupling of second order perturbation

method and component mode synthesis methods. Various component mode synthesis methods

are used to optimally reduce the size of the model. The statistical first two moments of dynamic

response of the reduced system are obtained by the second order perturbation method.

Numerical results illustrating the accuracy and efficiency of the proposed coupled methodological

procedures for large FE models with uncertain parameters are presented.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dynamic analyses of complex industrial structures by finite
element method lead to large finite element models. As the
reduction of the order of the model, the system can be con-
densed by component mode synthesis. Component mode syn-
thesis (CMS) consists in performing the dynamics analysis of

structures by a decomposition of the structure into substruc-
tures, and these substructures are separately condensed and
then coupled. Substructuring techniques differ from the chosen

Ritz representation basis for substructure motion; the latter
include the vibration normal modes, the rigid body modes,
the static modes, the attachment modes, etc. They also differ
in terms of the assembling procedures, by elimination or by

transformation. Craig and Bampton method [1] uses a basic
of fixed-interface eigenmodes and constrained modes; assem-
bly is performed on the junction degree of freedom. The free

interface method uses a basic of free-interface eigenmodes
and attachment modes. MacNeal [2] includes the static effects
of higher normal modes not retained in the component
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representation. Rubin [3] extended MacNeal’s method to
include the inertial effects of higher normal modes by using
a second-order Maclaurin-series, both methods are based on

junction force assembling. The junction dofs (jdofs) are there-
fore missing in the final condensed problem. A method pro-
posed by Bouhaddi and Lambard [4] allows assembling the

substructures with the junction degree of freedom.
In most of the CMS method, the resulting condensed prob-

lem is conditioned by the number of junction dof. In some

cases, the size of coupled system is still large due to the great
number of the degree of freedom at the interface. Further
reduction of these dofs must often be considered. Bourquin
[5] has proposed a method based on the use of the interface

modes for Craig–Bampton method and Tran [6] extended this
method to various free and hybrid method.

Recently Weng et al. [7] have proposed a substructuring

method to calculate the eigensolutions and eigensensitivities
for the model updating purposes.

CMS methods are commonly accomplished assuming

deterministic behavior of loads and model parameters.
However, in many cases the uncertainties associated with
model parameters such as geometry, material properties, con-

stitutive law, boundary conditions, and excitation, have to be
considered giving arise to stochastic structures.

The analysis of dynamic response of stochastic FE system
can be done in the frequency domain using the eigenmodes

and frequency transfer functions or in the time domain by a
direct integration of the equations of motion, using numerical
procedures [8]. The analysis of these stochastic structures com-

monly seeks the first two moments of the response once the
first two moments of the random fields modeling the structural
uncertainties are known.

A direct simulation of Monte Carlo [9] is often used and
considered as a reference for calculations. Nevertheless, it is
in general quite inefficient due to much large number of sam-

ples required to guarantee accurate statistical results.
An alternative approach is based on the expansion of the

response in terms of a series of polynomials that are orthogo-
nal with respect to mean value operations [10,11]. More pre-

cisely, the Karhunen–Loeve expansion is used to discretize
the stochastic variables into a denumerable set of random vari-
ables, thus providing a denumerable function space in which

the problem is cast. The polynomial chaos expansion is then
used to represent the solution in this space and the expansion
coefficients are evaluated via a Galerkin procedure in the

Hilbert space of random variables.
Recent review papers by Stefanou [12] and by Schueller and

Pradlwarter [13] summarized the assessment of the past and
current status of the procedure for stochastic structural

analysis.
The perturbation method based on the Taylor series devel-

opments of the response around the average values of the ran-

dom variables was initiated by Hien and Kleiber [8] to
calculate the first two moments of eigenmodes. An improved
perturbation method, proposed by Muscolino et al. [14], takes

into account the mean and correlation information on uncer-
tain parameters to analyze the dynamic response of structures
with mechanical uncertainties under deterministic input.

Although, in perturbation method, the variables must have a
weak dispersion.

CMS methods are commonly accomplished assuming
deterministic behavior of loads and model parameters.
Perturbation methods and CMS are used by Hinke et al. [15]
to replace numerically expensive operations, such as solving
an eigenvalue problem. Sarsri et al. [16] used the CMS coupled

with polynomial chaos expansions at first and second orders to
compute the frequency transfer functions of stochastic
structures.

In this paper various methods of component mode synthe-
sis to reduce the dimensions of the model are used. The first
two moments of eigenmodes of structure using a perturbation

method are computed. For the needed derivative of various
condensed matrices, assembly by transformation is used.

This paper is organized as follows: in Section 2, used CMS
methods with fixed and free interfaces method are presented. A

procedure of reduction of degree of freedom at the interface in
fixed interface and free interface methods is described in
Section 3. Various methods of component mode synthesis

are used to calculate the first two moments of stochastic eigen-
values and eigenvectors using second order perturbation
method in Section 4. Numerical examples are presented to

illustrate the efficiency for the proposed technique as well as
its accuracy over the whole structure.

2. Component mode synthesis

2.1. Reduced equation of motion

Component mode synthesis (CMS) techniques are well used
for static and dynamic in the analysis of large and complex

structures. CMS techniques have an advantage of enhancing
computational efficiency by reducing the number of degrees
of freedom of a structure. An overview of the used CMS is
given bellow.

Let us consider a structure, which is decomposed into ns

substructures SSðkÞ ðk ¼ 1; . . . ; nsÞ which do not overlap. For

each substructure k the displacement vector yðkÞ is partitioned

into a vector y
ðkÞ
j , called interface dof and y

ðkÞ
i which is the vec-

tor of internal dof. The force vector fðkÞ is composed into vec-

tors f
ðkÞ
j and fðkÞe , called interface force and external applied

force.

In the component mode synthesis methods, the physical dis-

placements of the substructure SSðkÞ are expressed as a linear
combination of the substructure modes. After some algebraic
transformations, a set of Ritz vectors Q is obtained and the

displacements of SSðkÞ are expressed as [6]:

yðkÞ ¼ QðkÞ
y
ðkÞ
j

lðkÞ

( )
¼ QðkÞgðkÞ ð1Þ

where lðkÞ are the generalized coordinates. Details about the
used component mode synthesis methods and related matrices

Q are given in [10] and summarized in Appendix A.
Using Eq. (1) the kinetic energy and the strain energy of

each substructure become

TðkÞ ¼ 1

2
T _gðkÞMðkÞ

c _gðkÞ

UðkÞ ¼ 1

2
TgðkÞKðkÞc gðkÞ

ð2Þ

where MðkÞ
c and KðkÞc are the condensed matrices of the sub-

structure (k) given by
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MðkÞ
c ¼ TQðkÞMðkÞQðkÞ

KðkÞc ¼ TQðkÞKðkÞQðkÞ
ð3Þ

The work of the applied external forces is

sðkÞ ¼ TgðkÞ fðkÞc ð4Þ

where

fðkÞc ¼ TQðkÞðfe þ fjÞðkÞ ð5Þ

For the assembled structure with n substructures, the kinetic
energy, the strain energy and the work of the applied external

forces are given by

T ¼ 1

2

Xn
k¼1

T _gðkÞMðkÞ
c _gðkÞ

U ¼ 1

2

Xn
k¼1

TgðkÞKðkÞc gðkÞ

s ¼
Xn
k¼1

TgðkÞfðkÞc ð6Þ

In order to assemble the components, the force and displace-
ment continuity at the interface are used. That is to say for n
substructures coupled at a common boundary one has

– Displacement continuity:

y1j ¼ y2j ¼ � � � ¼ ynj ¼ yj ð7Þ

– Equilibrium of coupling forces:

Xn
k¼1

fkj ¼ 0 ð8Þ

The conservation of interface dof allows assembling these
matrices as in the ordinary finite element methods. Let us

denote by yc the vector of independent displacements of
the assembled structure:

yc ¼

lð1Þ

..

.

lðnÞ

yj

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð9Þ

The compatibility of interface displacements of the assembled

structure is obtained by writing for each substructure SðkÞ the

following relation:

gðkÞ ¼ bðkÞyc ð10Þ

where bðkÞ is the matrix of localization or of geometrical con-

nectivity of the SSðkÞ substructure. It makes possible to locate

the dof of each substructure SSðkÞ in the global dof of the
assembled structure. They are the Boolean matrices whose ele-
ments are 0 or 1.

The free, fixed interface component mode synthesis meth-
ods will be used in this paper and the corresponding matrices
are explicitly given in Appendix A.

A transformation matrix can be defined for each substruc-

ture SSðkÞ by

ZðkÞ ¼ QðkÞbðkÞ ð11Þ

where QðkÞ is given by the considered CMS method.
The kinetic energy, the strain energy and the work of the
external forces are then given by

T ¼ 1

2
T _gMc _g

U ¼ 1

2
TgKcg

s ¼ Tgfc ð12Þ

where

Mc ¼
Xn
k¼1

TZðkÞMðkÞZðkÞ

Kc ¼
Xn
k¼1

TZðkÞKðkÞZðkÞ

fc ¼
Xn
k¼1

TZðkÞðfðkÞj þ fðkÞe Þ ð13Þ

Using the interface dof compatibility of displacements, it can
easily be shown that

Xn
k¼1

TZðkÞf
ðkÞ
j ¼ 0 ð14Þ

Thus, the work of the applied forces becomes

fc ¼
Xn
k¼1

TZðkÞfðkÞe ð15Þ

For dynamic systems with viscous damping it is necessary to

add a force of viscous dissipation f� ¼ �C _y. With the CMS
concept this force can be rewritten as

f�c ¼ �Cc _g ð16Þ

where

Cc ¼
Xn
k¼1

TZðkÞCðkÞZðkÞ ð17Þ

Finally, the reduced equation of motion can be written as
follows:

Mc€yc þ Cc _yc þ Kcyc ¼ fc ð18Þ

The correspondent undamped eigenvalue problem is

ðKc � kMcÞ/c ¼ 0 ð19Þ

where /c are the eigenvectors of the assembled structure.
Noted that the two problems may still be large due to the

interface dofs. The size of these systems can be reduced.

2.2. Reduction of interface degrees of freedom

In most of the CMS methods, the coupling of the substructures

is performed through the interface displacements, especially
when the size of the coupled system is still large due to great
number of degrees of freedom at the interface. In order to

reduce the number of interface coordinates and therefore the
size of the coupled system, a procedure based on the interface
modes is used [6].

The interface modes matrix u is defined as the first eigen-
modes of the reduced eigenproblem:

ðKcj � kjMcjÞuj ¼ 0 ð20Þ
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This results from the Guyan condensation [17] of the whole

structure to the interface. The displacements of the interface
dof are expressed as

yj ¼ ulj ð21Þ

For the assembled structure, the vector of independent dis-
placement is rewritten as

g ¼

lð1Þ

..

.

lðnÞ

yj

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

Ið1Þ

. .
.

IðnÞ

u

2
66666664

3
77777775

lð1Þ

..

.

lðnÞ

lj

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ T�g ð22Þ

In this case, the transformation matrix becomes

ZðkÞ ¼ QðkÞbðkÞT ð23Þ

Based in this double reduction, the resulting system is small
enough to be handled. For CPU time reduction the perturba-

tion method will be applied to the resulted frequency and time
dependant systems.

3. Stochastic perturbation method

The basic idea of the stochastic perturbation method is to
expand all random variables and matrices via Taylor series

about their spatial expectation using a small parameter. Let

us assume that for each substructure the mass MðkÞ and the

stiffness KðkÞ matrices are related to a vector of the random

variables ai (i = 1, . . . , I). Thus, the condensed mass Mc and
stiffness Kc matrices are related to same vector of the random
variables.

The first two moments of eigenmodes (average and vari-

ance), will be calculated by using the second order perturba-
tion method.

One defines the vector of the average parameters ai, and the

quantity dai ¼ ai � ai. All the matrices and the vector in Eqs.
(18) and (20) are random, and are expanded through second
order Taylor series as follows:

Mc ¼M0
c þMn

c dan þMnp
c dan dap

Kc ¼ K0
c þ Kn

c dan þ Knp
c dan dap

ki ¼ k0
i þ kn

i dan þ knp
i dan dap

/c
i ¼ /0

i þ /n
i dan þ /np

i dan dap ð24Þ

where ½��0; ½��n and ½��np are deterministic matrices corresponding
to the zero, the first and the second order partial derivatives

with respect to the random parameter ai and given by

A0 ¼ AðaÞj�a An ¼ @AðaÞ
@an

����
�a

Anp ¼ 1

2

@2AðaÞ
@an@ap

����
�a

ð25Þ

Indicial notations are used, with indices n, p running over the
sequence 1,2, . . . , I as well as the repeated indices summation.

For structures with small uncertainties, one can assume
that the transformation matrix Z is deterministic. The zero,
first and second-order derivatives of the condensed matrices
Mc and Kc are given by:
M0
c ¼

XN
k¼1

TZðkÞð�aÞMðkÞð�aÞZðkÞð�aÞ

Mn
c ¼

XN
k¼1

TZðkÞð�aÞ@M
ðkÞ

@an

����
�a

ð�aÞZðkÞð�aÞ

Mnp
c ¼

XN
k¼1

TZðkÞð�aÞ@
2
MðkÞ

@an@ap

����
�a

ð�aÞZðkÞð�aÞ

K0
c ¼

XN
k¼1

TZðkÞð�aÞKðkÞð�aÞZðkÞð�aÞ

Kn
c ¼

XN
k¼1

TZðkÞð�aÞ@K
ðkÞ

@an

����
�a

ð�aÞZðkÞð�aÞ

Knp
c ¼

XN
k¼1

TZðkÞð�aÞ @
2
KðkÞ

@an@ap

����
�a

ð�aÞZðkÞð�aÞ ð26Þ

These partial derivatives with respect to the random variables
will be used to predict the stochastic eigenmodes and frequen-

cies as well as the stochastic responses in frequency and time
domains.

Substituting the developments (24) into the reduced Eq.
(19), and equating terms of same order obtain for each mode

i the following equations:
Zero order equation:

ðK0
c � k0

iM
0
cÞ/

0
ci ¼ 0 ð27Þ

First order equation:

ðK0
c � k0

iM
0
cÞ/

n
ci dan ¼ ðKn

c � kn
i M

0
c � k0

i M
n
cÞ/

0
ci dan ð28Þ

Second order equation:

ðK0
c � k0

iM
0
cÞ/

np
ci dan dap ¼ �ððKnp

c � knp
i M

0
c � 2kn

i M
p
c

� k0
iM

np
c Þ/

0
ci þ ðKn

c � kn
iM

0
c

� k0
iM

n
cÞ/

p
ciÞdan dap ð29Þ

The computational detail of the first two moments of the
eigenmodes is given in Appendix B.

The zero, the first and second order partial derivatives of

eigenvectors corresponding to the substructure SSðkÞ are then

given by

/0ðkÞ ¼ ZðkÞ/0
c

/nðkÞ ¼ ZðkÞ/n
c

/npðkÞ ¼ ZðkÞ/np
c ð30Þ

where ZðkÞ is the transformation matrix corresponding to the

substructure SSðkÞ and the vector /c is the eigenvector corre-
sponding to the reduced equation.

The means and the covariance of the eigenvalues and the

eigenvectors are given by the following relationships:

E½ki� ¼ k0
i þ

1

2
kð2Þi

covðk;ikjÞ ¼
X
n;p

kn
i k

p
j covðan; apÞ

E½/i� ¼ /0
i þ

1

2
/ð2Þi

covð/i;/jÞ ¼
X
n

X
p

X
i¼1

X
j¼1

/n
i /

p
j covðan; apÞ ð31Þ



Table 1 Comparison of beam eigenmodes obtained by the

whole structure and fixed interface method for deterministic

case.

Mode Whole

structure

(rd/s)

Fixed interface

method (rd/s)

Error

eigenvalues

(%)

Error

eigenvectors

(%)

1 81.7611 81.7618 0.0008 0.0537

2 225.3777 225.3852 0.0033 0.1670

3 441.8304 441.8583 0.0063 0.3297

4 730.3683 730.8264 0.0627 1.2793

5 1091.045 1091.403 0.0329 1.2124

6 1523.856 1527.933 0.2675 4.1079

7 2028.805 2037.082 0.4080 5.8452

Table 2 Comparison of beam eigenmodes obtained by the

whole structure and free interface method for deterministic

case.

Mode Whole

structure

(rd/s)

Free interface

method (rd/s)

Error

eigenvalues

(%)

Error

eigenvectors

(%)

1 81.7611 81.7611 0.0000 0.0002

2 225.3777 225.3777 0.0000 0.0023

3 441.8304 441.8305 0.0000 0.0111

4 730.3683 730.3696 0.0002 0.0629

5 1091.045 1091.048 0.0003 0.1039

6 1523.856 1523.924 0.0044 0.4691

7 2028.805 2029.058 0.0125 0.8887

Dynamic analysis of large structures with uncertain parameters 375
4. Numerical examples

In order to demonstrate the efficiency of this methodological
approach, some benchmark tests are elaborated for beam

and assembled plates with linear and nonlinear stochastic
parameters.

4.1. Stochastic beam

Let us consider the transverse vibration of an Euler beam dis-
cretized by 100 simple FE. Each node has 2 dofs in-plane rota-

tion and a transverse displacement. The beam is of length L
and of circular cross-section with radius r. In order to use
the presented CMS methods, the beam is assumed to be com-

posed of two substructures SSð1Þ and SSð2Þ as presented in

Fig. 1. The first substructure consists of 60 finite elements
and the second substructure consists of 40 ones. The beam is
assumed to be clamped at both ends and the assembled struc-

ture has a total of 198 dofs. The substructure SSð1Þ has 120 dofs

in which 2 are the interface dofs and the substructure SSð2Þ has
80 dofs in which 2 are the interface dofs. Let E and q denote
element Young modulus and mass density.

The pulsation range of interest is chosen to be 0–2000 rd/s.
For the Craig–Bampton method (CB) and the free interface
method (FI), the substructure modes whose pulsations are
smaller than a cutout pulsation defined by xcp ¼ 2 � xu are

selected. For (CB) method, the size of the reduced system is

17, 9 normal modes are retained for the substructure SSð1Þ, 6

modes for SSð2Þ and 2 interface dofs. For (FI) method, 10 nor-

mal modes for the substructures SSð1Þ, 7 modes for SSð2Þ, and 2
interface dofs are retained. The size of reduced system is thus

19.
The modal parameters calculated by the present component

mode synthesis (CMS) method are compared with those

directly calculated using the whole structure. Tables 1 and 2
give the eigenmodes errors based on the following error
criteria:

ek ¼ 100� kc � kexactj j
kexact

e/ ¼ 100� /c � /exactk k
/exactk k ð32Þ

where kexact and /exact are obtained by solving the whole FE

discretized system.
It is clearly shown that the eigenmodes of the entire struc-

ture are accurately obtained using the Craig–Bampton (CB)

and the free interface (FI) methods and the (FI) method is
more accurate.

For stochastic case, let us note that some random parame-

ters such as Young modulus and mass density intervene lin-
early, and others such the radius intervenes nonlinearly in
the stiffness and mass matrices. This nonlinear effect is harder
SS(1) SS(2)
x

y

O

Figure 1 Example 1: Sub structured clamped beam.
to be analyzed. For stochastic case, the radius parameter is
supposed to be a random variable and defined as follows:

r ¼ r0 1þ rr

r0
nr

� �
ð33Þ

where nr is a zero mean value Gaussian random variable,

r0 ¼ 0:01 m is the mean value and rr is the standard deviation
of this parameter. In this nonlinear case, the perturbation
method combined with the fixed interface method (CB) and
the free interface method (FI) is developed. The following data

are considered:

L ¼ 1 m; E ¼ 21� 1010 N=m
2; q ¼ 7800 kg=m

3

The mean and variance of the eigenmodes have been calcu-
lated by the proposed approach. The obtained results are com-
pared with those obtained by direct Monte Carlo simulation

500 samples using the whole structure (WS, MCS) for
rr ¼ 2% based on the following error criteria:

Relative errors on the mean and variance of eigenvalue:

em ¼ 100� meanðkcÞ �meanðkexactÞj j
meanðkexactÞ

ev ¼ 100� varðkcÞ � varðkexactÞj j
varðkexactÞ

ð34Þ

Relative errors on the mean and variance of eigenvectors:

em/ ¼ 100� meanð/cÞ �meanð/exactÞk k
meanð/exactÞk k

ev/ ¼ 100� varð/cÞ � varð/exactÞj j
varð/exactÞj j ð35Þ
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The obtained results are plotted in Figs. 2–5 and an agreement

between these results is clearly observed. It is clearly observed
that the coupling Free Interface and perturbation method lead
to better results. The CPU time, needed by the proposed

approaches is presented in Table 3 for the considered beam.
It is clearly shown that the proposed methods using the whole
structure and the condensed approaches lead to impressive
CPU time reductions.

4.2. Assembled plates

In order to use the CMS methods with reduction of the inter-

face dof, let us consider an assembled plate as presented in
Fig. 6. This structure fixed at two ends is used to test the accu-
racy of the proposed approach to predict the first two

moments of eigenvalues and eigenvectors. The plate and its
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Figure 2 Percent error in mean of eigenvalues, MCS with 500

samples, perturbation method with the whole structure WS and

with CB and FI methods. rr ¼ 2%.
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Figure 3 Percent error in variance of eigenvalues, MCS with 500

samples, perturbation method with the whole structure WS and

with CB and FI methods. rr ¼ 2%.
finite element discretization are shown in Fig. 6. The consid-
ered finite element mesh of the whole structure has 576 quadri-
lateral thin plate elements and 3834 degrees of freedom (6 dofs/

node). The two substructures SS1, SS2 and the geometrical
1 2 3 4 5 6 7
0
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2
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E
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Figure 4 Percent error in mean of eigenvectors, MCS with 500

samples, perturbation method with the whole structure WS and

with CB and FI methods. rr ¼ 2%.
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Figure 5 Percent error in variance of eigenvectors, MCS with

500 samples, perturbation method with the whole structure WS

and with CB and FI methods. rr ¼ 2%.

Table 3 CPU time (s) comparison for stochastic eigenmodes

of the considered beam, perturbation method with whole

structure and component mode synthesis methods.

Monte Carlo

simulation

with whole

structure

Perturbation

method with

whole

structure

Perturbation

method with

Craig Bampton

method

Perturbation

method with

free interface

method

291.741850 1.327213 0.373967 0.369395
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Figure 6 Assembled plates, boundary conditions, loads and discretization, 3834 dofs.
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Figure 8 Percent error in mean of eigenvalues, perturbation

method with the whole structure WS and with CB, FI, CB-Red

and FI-Red component mode synthesis. fi 6 3fmax; rE ¼ 5% and

rq ¼ 5%.
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dimensions of the assembly are also given in Fig. 6. Each sub-

structure has 1950 degrees of freedom in which 78 are the junc-
tion dofs. In this study the geometrical parameters, the
thickness (e= 0.02), and the Poisson’s ratio (l ¼ 0:3Þ are
assumed to be deterministic. The masse density q and the

Young’s modulus E are assumed independent Gaussian ran-
dom variables.

E ¼ E0 1þ rE

E0

nE

� �

q ¼ q0 1þ rq

q0

nq

� �
ð36Þ

where n is zero mean value Gaussian random. The following

material parameters are used in this study: E0¼ 21�1010 N=m
2

and q0 ¼ 7800 kg=m
3
are the mean values of the structural

parameters, rE ¼ 5% and rq ¼ 5% are the standard deviations.

The first two moments (mean and variance) of eigenvalues and

eigenvectors are calculated by second order perturbation
method. The results obtained by Craig Bampton method
(CB), Free interface method (FA), Craig Bampton method

with reduction of junction dof (CBR) and Free interface
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Figure 7 Percent error in mean of eigenvalues, perturbation

method with the whole structure WS and with CB, FI, CB-Red

and FI-Red component mode synthesis. fi 6 2fmax;rE ¼ 5% and

rq ¼ 5%.
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Figure 9 Percent error in variance of eigenvalues, perturbation

method with the whole structure WS and with CB, FI, CB-Red

and FI-Red component mode synthesis. fi 6 2fmax; rE ¼ 5% and

rq ¼ 5%.
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method with reduction of junction dof (FAR) are compared to

the results obtained by the whole structure.
The useful frequency band of the whole structure is a priori

fixed between 0 and fu = 2000 Hz containing 12 global

eigenmodes.
For Craig Bampton method and free interface method, to

select the substructure normal modes, we use the criterion that
consists in selecting all the substructure modes whose frequen-

cies are smaller than a cutout frequency defined by fcs ¼ cifu.
Two cases are selected corresponding respectively to ci ¼ 2
(fcs ¼ 4000 HzÞ and ci ¼ 3 (fcs ¼ 6000 HzÞ. For ci ¼ 2, we

retain respectively 10 and 13 normal modes for each substruc-
ture. The size of reduced system is 98 for Craig Bampton
method and 104 for free interface method (total number of

substructure modes and junction dof). For ci ¼ 3, 15 and 20
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Figure 10 Percent error in variance of eigenvalues, perturbation

method with the whole structure WS and with CB, FI, CB-Red

and FI-Red component mode synthesis. fi 6 3fmax; rE ¼ 5% and

rq ¼ 5%.
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Figure 11 Percent error in mean of eigenvectors, perturbation

method with the whole structure WS and with CB, FI, CB-Red

and FI-Red component mode synthesis. fi 6 2fmax; rE ¼ 5% and

rq ¼ 5%.
normal modes are retained for each substructure. The size of
reduced system is 108 for Craig Bampton method and 118
for free interface method (total number of substructure modes

and junction dof).
For methods with reduction of junction dof the interface

normal modes are selected by using a similar criterion with a

cutout frequency defined by fcs ¼ 3fu (fcs ¼ 6000 HzÞ, and 10
normal modes are retained. For case 1 (ci ¼ 2Þ, the size of
reduced system is 30 for Craig Bampton method and 36 for

free interface method (total number of substructure modes
and interface modes). For case 2 (ci ¼ 3Þ, the size of reduced
system is 40 for Craig Bampton method with interface modes,
and 36 for free interface method with interface modes (total

number of substructure modes and interface modes). The rel-
ative errors in the mean of eigenvalues are plotted in Figs. 7
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Figure 12 Percent error in mean of eigenvectors, perturbation

method with the whole structure WS and with CB, FI, CB-Red

and FI-Red component mode synthesis. fi 6 3fmax; rE ¼ 5% and

rq ¼ 5%.
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and 8, of the variance of eigenvalues are plotted in Figs. 9 and
10, the mean of eigenvectors are plotted in Figs. 11 and 12 and
of the variance of the eigenvectors are plotted in Figs. 13 and
14. These figures show that when we increase the cutout fre-

quency the relative errors in the mean and variance of eigen-
modes decrease.

5. Conclusion

A methodological approach based on a coupling of compo-
nent mode synthesis methods and perturbation method is

developed and used to investigate the stochastic eigenmodes
of structures with uncertain parameters for large linear FE
models of beams and assembled plates with linear and nonlin-

ear stochastic parameters. For the first two moments of eigen-
values and eigenvectors for stochastic structures, it is shown
that by increasing the cutout frequency of the choice of the

substructure normal mode, the accuracy is increasing.
Agreement between results obtained by these methods and
by the direct Monte Carlo simulation is demonstrated. The
presented approaches are efficient and fast computational ones

for the stochastic eigenmodes of structures with uncertain
parameters for large structural systems with linear and nonlin-
ear random parameters.
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Appendix A. Component mode synthesis

A.1. Fixed interface method

In the fixed interface method, the displacements of each sub-
structure are expressed as
y ¼ Ygþ wcyj ðA:1Þ

The matrix Q is given by

Q ¼ wc Y½ � ðA:2Þ

in which Y is the matrix of truncated undamped normal modes
of the substructure SS with a fixed interface as boundary con-
dition. wc is the matrix of the constrained mode associated

with the interface, which is the static deformation shapes of
SS obtained by imposing successively a unit displacement on
one interface, while holding the remaining interface coordi-

nates fixed.

A.2. Free interface method

In the free interface method, the displacements of each sub-
structure are expressed as

y ¼ Ygþ wrnr þ wana ðA:3Þ

Y is the matrix of truncated undamped normal modes of the
substructure SS with a free interface as boundary condition.

wr is the matrix of rigid body modes for an unconstrained sub-
structure with a free interface. wa is the matrix of attachment
modes associated with the interface, which are the static defor-

mation shapes of SS obtained by applying successively a unit
force to one coordinate of the interface.

wa ¼ GFj

where

Fj ¼
Ij

0

� �
ðA:4Þ

in which G is the residual flexibility matrix. The expression of

G depends on the nature of the problem.
If the substructure is statically determined (i.e. no rigid

body modes) then

G ¼ K�1 ðA:5Þ

Else G ¼ TAK�1ðcÞA

where A ¼ I� uðrÞTuðrÞM and TuðrÞMuðrÞ ¼ I, I: unit matrix

and uðrÞ: matrix of rigid modes

KðcÞ: stiffness matrix obtained by fixing arbitrary dof to

make the structure isostatic and replacing the corresponding
part of the initial stiffness matrix by zero.

To preserve the interface dof, the following partition is

used:

Y ¼
Yj

Yi

� �

wr ¼
wrj

wri

� �

wa ¼
waj

wai

� �
ðA:6Þ

Using this partition one obtains the following:

na ¼ w�1aj yj � w�1aj Yjgþ w�1aj wrjnr ðA:7Þ

The matrix Q is then given by

Q ¼ waw
�1
aj wr � waw

�1
aj wrj Y� waw

�1
aj Yj

h i
ðA:8Þ
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The residual attachment modes war, obtained by removing in

the attachment modes the components of the normal mode
already retained in Y, can be used to get

y ¼ Ygþ wrnr þ warnar ðA:9Þ

war is the residual attachment modes obtained by

war ¼ RFj ðA:10Þ

And

R ¼ G� YK�1TY ðA:11Þ

where K is the matrix of the retained eigenvalues. The matrix
Q can be written as

Q ¼ warw
�1
arj wr � warw

�1
arjwrj Y� warw

�1
arjYj

h i
ðA:12Þ
Appendix B

Based on the second order perturbation method the three alge-

braic systems given in Eqs. (28)–(30) have to be solved. The
zero order corresponds to the deterministic reduced eigenprob-
lem. For orders 1 and 2 one simplifies the problems by inte-

grating the orders 1 and 2 equations after having multiplied
them by the density of joint probability of a. The eigenvectors
are assumed to be M0 normalized.

The first order derivative of eigenvalues is given by

kn
i ¼ T/0

i ðKn � k0
iM

nÞ/0
i ðB:1Þ

There are then I systems to solve for first order in order to cal-

culate the first derivative of eigenvalues.
The eigenvalue of second order is defined as the double sum

of the second order partial derivative multiplied by covariance

of the random variables; the second order derivative of eigen-
values is given by [7]

kð2Þi ¼ T/0
i ½ðKnp � 2kn

iM
p � k0

iM
npÞ/0

i

þ 2T/0
i ðKn � kn

iM
0 � k0

iM
nÞ/p

i �covðan; apÞ ðB:2Þ

Note that there is only one system for second order. The
derivative of the random eigenvectors is expressed as a

linear combination of eigenvectors of the deterministic
eigenvectors. One forms the equations then giving the
coefficients of this linear combination by using the

orthogonality conditions to the stiffness matrix K and mass
matrix M.

The first order derivative of eigenvectors is given by

/n
i ¼

XL
l¼1

Cn
il/

0
l ðB:3Þ

with : Cn
il ¼

T/0
l Rif gIn

k0
l � k0

i

l – i

and : Cn
ii ¼ �

1

2
T/0

i M
n/0

i

where

Rif gIn ¼ �ðKn � kn
iM

0 � k0
iM

nÞ/0
i

The second order derivative of eigenvectors is obtained in the

same way and given by

/ð2Þi ¼
XL
l¼1

Dnp
il /0

l ðB:4Þ

with : Dn;p
il ¼

T/0
l Rif gIIn;p

k0
l � k0

i

l – i

and : Dn;p
ii ¼ �

1

2
T/0

iM
np/0

i � 2T/0
iM

n/p
i þ Cn

iiC
p
ii

� �
covðan; apÞ

where

Rif gIIk;m ¼ �½ðKnp � knp
i M0 � 2kn

iM
p � k0

iM
npÞ/0

i þ 2ðKn

� kn
iM

0 � k0
i M

nÞ/p
i �covðan; anÞ
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