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Abstract:

A quadrantal point infilling strategy is developed to generate point and combine clouds of points automatr

The main purpose of this paper is to develop a gridless method for unsteady flow simulat ion.

cally. A point moving algorithm is introduced to ensure the clouds of points follow ing the movements of
bodyboundaries. A dual time method for solving the tw o dimensional Euler equations in Arbitrary La
grangiar Eulerian (ALE) formulation is presented. Dual time method alows the reat time step to be
chosen on the basis of accuracy rather than stability. It also permits the acceleration techniques, w hich
are commonly used to speed up steady flow calculations, to be used when marching the equations in pseur
do time. The spatial derivatives, which are used to estimat ing the inviscid flux, are directly approximat
ed by using local least squares curve method. An explicit multistage Runge Kutta algorithm is used to ad
vance the flow equations in pseudo time. In order to accelerate the solution to convergence, local time
stepping technique and residual averaging are employed. T he results of NACA(0012 airfoil in transonic
steady flow are presented to verify the accuracy of the present spatial discretizat ion met hod. Finally, two
A GARD standard test cases in which NACAQO12 airfoil and NA CA64A010 airfoil oscillate in transonic
flow are simulated. The computational results are compared with the experimental data to demonstrate

the validity and practicality of the presented method.
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According to the discretization manners of
computational region, numerical algorithms in
computational fluid dynamics ( CKD) can be divid
ed into two rough sorts: the classical grid methods
and the burgeoning gridless methods' "™ in recent
years. In gridless methods, clouds of points which
are composed of the point itself and its neighbor
points, are adopted to substitute for grid cells. T he

spatial derivatives are directly determined by using
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local least-squares curve fits over each cloud of
points. Gridless methods have much geometrical
flexibility for computing with complex configura-
tions because they throw off the grid cell thought
and break away from the restrictions of the grid
quality and topological structure.

During using grid algorithm to calculate the
unsteady flow, the body-fitted dynamic grid tech-

.68 .
nlque[ ! must be used to simulate unsteady mo-
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tions of body boundaries. But with the restrictions
of the grid quality and the grid topological struc
ture, itis very difficult to use moving grids method
in the conditions of body boundaries moving in
large extent. As mentioned above, gridless methr
ods have no restrictions of grid skewness and
stretching distortions, thus, they have distinct ad
vantages for unsteady flow calculation. However,
previous researches on gridless solution methods
were mainly concerned with steady flow.

T he main purpose of this paper is to develop a
gridless method for unsteady flow simulation. A
quadrant point infilling strategy is developed to
generate point and combine clouds of points auto
matically. A point moving algorithm is introduced
to ensure the clouds of points following the move
ments of body boundaries. The spatial derivatives,
which are used to estimating the inviscid flux, are
directly approximated by using local least squares
curve method. A dual time method” for solving
the two-dimensional Euler equations in Arbitrary
Lagrangiar Eulerian (ALE) formulation is present
ed. In this approach, an implicit second ordertime
discretisation is used in the physical time marching
procedure, the pseudo time integration is carried
out by an explicit four-step Runge Kutta scheme
and is accelerated by local time stepping and im plic
it residual smoothing. The results of NACA0012
airfoil in transonic steady flow are presented to ver
ify the accuracy of the present spatial discretization
method. Finally, two AGARD standard test cas
es ' in which NACA00I2 airfoil and
NACA64A010 airfoil oscillate in transonic flow are
simulated. The computational results are com pared
with the experimental data to demonstrate the va

lidity and practicality of the presented method.

1 Generation and Moving Technique
for Clouds of Points

In gridless method, each discrete point in the
computational field has its own cloud of points. As
shown in Fig. 1, the point cloud of point i is comr
posed of the point i itself and its neighbor points
(the points in the circle). During the flow solving

process, spatial derivatives of point i are evaluated
by aleastsquares fit algorithm in the point cloud of
point . The following is the basic idea of the tech-
nique for generating clouds of discrete points auto-

matically .
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Fig.1 Sketch map for the framework

of the cloud of point ¢

all kinds of the boundaries ( body

boundaries and far field, etc) inthe flow computa-

First,

tional field are compartmentalized into the form of
discrete points . For an arbitrary discrete point i,
according to the given background information, the
searching radius r of discrete point ¢ in the flow
computational field can be ascertamed. Then, the
searching region for the cloud of the point i can be
defined as a circle within the radius of r from the
point . Especially, the searching region is a far
shaped region if point i is on the boundary. The
searching region of point i can be compartmental-
ized into several sulrregions on the principle of
keeping the farr shaped angles equivalent (shown in
Fig.2) . Generally, if the point is in the flow com-
putational field, the searching region is recom-
mended to be divided into six sub-regions, and if
the point is on the boundary, four sub-regions are

enoug h.

Fig.2 Sketch map for generating the cloud of point ¢
by using quadrant point infilling strategy

Then, search the point in each sub-region, if
there have been already one or more discrete points

in a sub-region, the point having the shortest dis
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tance to point ¢ should be added to the cloud of
point z, just like the solid points shown in Fig. 2.
If there is no point in a sub-region, a new point
should be located at the site that is on farrshaped
angle bisector of this sub-region and is 0. 5r away
from the point i. And then the new points ( hollow
points shown in Fig. 2) should be added to the
cloud of point i. Repeat the above process until the
cloud of every point in the computational field has
been formed.

In unsteady flow computation, in order to
simulate the relative movement of body boundaries,
it is requested that clouds of discrete points have
the ability of moving with the body boundaries.
Hence, a point moving algorithm is developed in
the following description. Take point i in compur
tational field as an example, its displacement Ar; in

one time step is determined b

Ari = Arjsin %;LTJ (1)
where the subscript j is the index of boundary
point which is the nearest point away from point i,
dij is the distance from point i to point j, Dj is the
shortest distance from point j to the other closed
boundary curve and Ar; is the displacement of point
J. It is easy to determine Ar; during the course of
computation because point j is on the boundary. In
the same way, the displacement of an arbitrary

point in the flow field also can be determined as

Eq.(1).

2  Unsteady Flow Numerical Simulation
M ethod

2.1 Governing equations

The Euler equation in Arbitrary Lagrangiamr
Eulerian (ALE) differential form for the Cartesian
coordinate system can be described as follows:

9Q JE dF _

at v oax T dy ~ 0 (2)
where
0=(P & P e,
E={P(u- ur) Pu(u- ur)+ p
B (u- up) eofu- up)+ pu}T,

F={P(v- vp) Pul(v- vp)

Po(v—wvp)+ p eo(v- vp)+ pv}T

The equations are norr dimensionalized with a
reference density Po and a speed of sound a .
Here P, u, v, p and ep represent the gas density,
velocity components in x and y directions, pres-
sure and total energy per unit volume. On the per
fect gas assumption, the pressure p can be calculat-
ed from the equation of state p = (Y- 1) *
[eo— '29( w’+ v2)] , where Y is the ratio of spe-
cific heats of the fluid and typically taken as 1. 4 for
air, upand vp represent velocity components in x
and y directions of the discrete points.
2.2 Numerical discretization

When gridless method is applied for the spatial
discretization of the governing equations, where
the shoe pinches is to determine the spatial deriva-

tive of the conserved variable @. The numerical

flux M+ oF can be obtained by the derivative
dx  dy

calculating principle of compound function.
Suppose the value of Phas been known on ev-

ery point, considering the cloud of a point shown in

Fig. 1, the spatial derivatives ap and ap can be
ox ady
computed by the following method. If n is the
number of discrete points in the cloud of point i,
then a system of n — 1 linear equations with the
9P and 9P
dx ady

unknow n variables can be obtained by a

firstorder accuracy Taylor series expansion about
point ¢
R= P+ (f—f (xi= i)+ 3‘5 (vi= i)
(j=1,2...n-1) (3)
where the subscript j is the index number of the
discrete points except for point i i the cloud of
point i. According to the construction manner of
the cloud of points, the total number of discrete
points in the cloud should be more than three,
hence the above equations are inconsistent in fact.
In order to obtain the approximate solution of the
inconsistent Eq. (3), a linear least-squares method
is used. It can be proved that the algorithm of cal

culating spatial derivative in this paper is equiva-
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lence to the method introduced in Ref.[ 1, 3].
A ccording to the above method, the numerical

oE oF
flux Ri— dx i+ ay

from the derivative calculating principle of com-

~in Eq. (2) can be derived

pound function by using the spatial derivative of the
conserved variables P, Qi, @ and e on the cloud of
points. So the semr discretization form of Eq. ( 2)

on point i can be expressed as

‘%+ R =0 (4)

Since the method of the present work is esserr
tially nomr dissipative, additional artificial dissipa
tion terms are required to prevent the tendency for
spurious even and odd point oscillations and to err
sure numerical stability in the course of spatial dis
cretization. Following the method of Ref.[ 3], ar
tificial dissipation terms are added to Eq. (4) for

point i, then it becomes

di /
WLR= 0 (5)

where R';= Ri— D, D; are the artificial dissipa
tion terms.

For inviscid flow, the flow tangent conditions
at the solid boundary points are imposed by setting
the slip velocities on the boundary faces and elimr
nating the normal velocity component. In the far
field, one dimensional characteristic analysis based
on Riemann invariants is used to determine the val
ues of the flow variables on the out boundary of the
computational dom ain.

2.3 Time integration

In a full implicit time concept, time deriva
tives m Eq. (5) are discretized by second-order
backward difference method, then Eq. (5) be
comes as

300~ 4Qi+ Q7 28+ R(QF)= 0
(6)

A duaktime method is introduced to advance
the Eq. (6) in real time layer, the derivative terms
of conserved variables with respect to pseudo time,
T is added to the left side of Eq. (6). By using the
denotation of Ri (Q" )= (30" '- 40'+ Q" ')/
20t+ Ri(Q""), Eq.(6) can be written as

dQ"Y/dT+ Ri(Q1) =0 (7

An explicit four-stage Runge Kutta algorithm

is used to advance the flow equations in pseudo
time, in which the solution is advanced from pseu-
dotime level n AT to level( n+ 1) AT, and can be

written as

Q"= @

0" = 0" - ,.SR; (@) form= 1t04(8)

4

o''= ¢
where the coefficients

a= /4, 0= 1/3, 3= 1/2, a4= 1.

T he major disadvantage of explicit schemes is
that the time step AT is restricted by the Courant
Friedrichs Lewy ( CFL) stability condition. In or
der to accelerate the solution to convergence, local
time stepping technique and implicit residual aver
aging technique are employed in the pseudo time
integration.

T he local time step AT of discrete point i is

given by the following equation

AT = min[ AT{,Z%} (9)
where
’ CCFL <
AT = mAZI/[l wi/(xi— xk) 1+ 1 vi/(yi-
=1

yi) I+ ai 1/ (xi— 20+ U(yi- yo) %], Cen
denotes the coefficient of CFL, ai is the local sound
speed at point i, the subscript £ is the index num-
ber of discrete points which belong to the cloud of
point z.

Residual averaging is another technique to ac-
celerate the solution to convergence. T his tech-
nique extends the region of stabilization, and then
increase the maximum value of time stepping per
mitted in the pseudo-time integration. In gridless
method, let R; represent the residual of point i, a

new residual can be given by

Ri= Ri+ g i‘,(R’k- R (10

where € is the coefficient of residual averaging, and
its recommended value is a number between 0. 2 to
0.5. T his technique of implicit residual averaging

allows the CFL number to be increased about two
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times larger than the unsmoothed value.

3 Results

T he spatial discretization accuracy of the pre
sent gridless method is evaluated by performing the
steady flow calculation about transonic flow around
the NACA 0012 airfoil. In order to further under
stand the characteristics of the current gridless
method in the case of unsteady flow, the unsteady
flow simulations for NACAOQ0012
NACA64A010 airfoil oscillations in pitch about

quarter chord in transonic flow are conducted. For

airfoill and

each test case, the criterion of convergence for the
pseudo time integration process is the maximum
value of residual decrease to the order of 10” °.
3.1 Transonic steady flow around NA CA0012
airfoil

To give an evaluation for numerical accuracy
of the present gridless method, a transonic steady
flow at Ma = 0.80 and a = 1.25 around
NACAQ012 airfoil is computed. T he close up view
of the field points is displayed in Fig. 3. There are

Fig. 3 Partial view of points distribution around

NACAQ0012 airfoil

200 points distributed on the boundary of airfoil
and 6145 points distributed on the whole computa
tional field. As shown in Fig. 4, the calculated sur
face pressure coefficient distributions compare well
with the experimental data. In this test case, both
the strong shock on the upper surface and the weak
shock on the lower surface are well captured.
T herefore, the gridless method presented in this
paper has nicer capability to resolve flow discontr

nuity.

-1.5
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0
e [Cxperimantal
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TR 1 TR | L T R
0 0.25 0.5 0.75 1.0
x/c

Fig.4 Pressure coefficient distribut ions for transonic

flow around N ACA0012 airfoil

3.2 Unsteady transonic flow around oscillating
NACA0012 airfoil

One of the standard test cases for the
NACAO0012 airfoil is considered. The com puted re-
sults are compared with the classical AGARD ex-
periment data”’. In this test case, the NACAO0012
airfoil oscillates in pitch about its quarter chord and
the instantaneous angle of attack a(¢) is given by

a(t) = Qo+ Qp sin (@) (11)
where o is the mean incidence, am is the amplitude of
pitching angle, the angular frequency © is related to
the reduced frequency k by the relationship k= o/
(2V ), where ¢ is the airfoil chord length and V w is
the free stream speed. The test case is simulated with
the following conditions: Ma= 0.755, ap= 0.016,
o= 2.51°, k= 0.0814.

T he distribution of cloud of points in the for
mer test case is taken as the initial point distribu-
tion of current case. T he computation is carried out
using 72 real-time steps in one oscillation cycle.
The average run time per oscillating period is nearly
0.3 h, and the number of pseudo-time steps for
each real-time step is approximate to 300. Com-
pared with the experimental data, the calculated
instantaneous pressure coefficient distributions at
four points in time during the forth circle of motion
are shown in Figs. 5(a)-5(d) . In these figures, ¢
(t) denotes the phasic angle of oscillation at that
moment. Instantaneous lift coefficients C|and in-
stantaneous moment coefficients Cy, vs the instan-
taneous angles of attack are plotted in Fig.6 and
Fig. 7. In these two figures, the calculated results

of the present approach agree well with the experr
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mental data and the related numerical results'® .
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Fig.5 Instantaneous surface pressure coefficient distrt

butions for NACA 0012 airfoil in the forth circle

of motion
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Fig.7 Moment coefficients vs the instantaneous
angle of attack
3.3 Unsteady flow around oscillating NACA64
A010 airfoil

To further understand the properties of the

present gridless method for unsteady flow simula-
tion, the transonic flow around NACA64A010 air
foil oscillation in pitch about its quarter chord is
simulated The instantaneous angle of attack can
distribution of points around the NACA64A010
airfoil is also given by Eq. (11) and with the fol
lowing conditions: Ma= 0.796, ap= 0.0°, a,=
1. 01°, k= 0.202.

Fig.8 Partial view of points distribution around

the NACA64A010 airfoil

Distribution of points around the NA CA 64
A010 airfoill is shown in Fig. 8. There are 270
points distributed around the airfoil and 5681
points distributed in the whole computational field.
In this case, 120 time steps are given for one oscil-
lation circle during the computation because the an-
gle frequency in here is higher.

Instantaneous lift coefficients C vs the instarr
taneous angle of attack are plotted in Fig. 9. The

| * Experimantal
D'l__ —— Calculated

-2H -1 0‘ 1 H2
al(?)

Fig.9 Lift coefficients vs the instantaneous

angle of attack

present results compare well with the experimental
datd !, The irphase and irrquadrature com po-
nents of the Ist harmonic of unsteady surface pres-
sure coefficients in the forth circle of oscillation are
shown in Fig. 10 and compared with the experi-

mental results there.
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Fig. 10 T he irphase and iir quadrature components of
the Ist harmonic of unsteady surface pressure

coefficients in the forth crde
4 Condusions

In this paper, a gridless algorithm has been
developed to simulate unsteady flow. A quadrantal
point infilling strategy is employed to generate the
cloud of points. A point moving algorithm is intro
duced to ensure the clouds of points following with
the movement of body boundaries. The spatial
derivatives are directly determined by using local
least-squares curve fits in each cloud of points, and
then numerical flux can be obtained. A dual time
method is used to advance the flow equations in
time. The computation of NACAOQO012 airfoil in
transonic steady flow proves the accuracy of spatial

discretization in the present gridless method. T he

unsteady flow of NACAO0012
NACA64A010 airfoil oscillation in pitch about their

quarter chord are simulated and the results are in

airfoil  and

good agreement with the experimental data. T hese
test cases demonstrate the validity and practicality
of the present method. The present research has

made primary foundation for applying the gridless

method to simulate unsteady flow. The present

method can also be directly extended to two-dimen-
sional unsteady viscous flow and three dimensional
unsteady flow .

References

[1] Barth T J. A gridless Euler/ Navier Stokes solution algorith
for complex aircraft applications| R]. AIAA Paper 93 -
0333, 1993.

[2]  Morinishi K. A gridless type solution for high Reynolds num-
ber multielement flow fields| R]. AIAA Paper 95- 1856,
1995.

[ 3] Liu J L, Su S J. A potentially gridless solution method for
the compressible Euler/ Navier Stokes equations[ R]. ATAA
Paper 96— 0526, 1996.

[4] Onate E, Idelsohn S. A meslr free finite point m ethod for ad
vective diffusive transport and fluid flow problems [J]. Com-
putational Mechanics, 1998, 21 (2):283- 292

[5] Lohner R, Sacco C, Onate E, et al. A finite point method
for compressible flows [J]. International Journal for Numert
cal M ethods n Engineering, 2002, 53 (8):1765- 1779.

[6] Hwang CJ, Yang SY. Locally implicit total variation dim ir
ishing schemes on mixed quadriaterattriangular meshes [J].
ATAA Journal, 1993, 31 (11):2008- 2015.

[7] Gaitonde A L. A duattime method for the solution of the ur
steady Euler equations [J]. Aeronautical Journal, 1994, 98
(10): 283- 291.

[8] Lu Z L. Generation of dynamic grids and computation of wr
steady transonic flow s aroune assemblies [ J]. Chinese Journal
of Aeronautics, 2001, 14(1):1- 5.

[9] Landon R H. NACA 0012 oscillatory and transient pitching
[R]. AGARD Report 702, AGARD, 1982. Dataset 3.

[10] DavisS S. NACA 64A010 (NASA Ames model) oscilatory
pitching[ R]. AGARD Report 702, AGARD, 1982. Dataset
2.

Biographies:

G WANG Gang Born in 1977 in Hube
province, a graduate student for the doc
toral degree in Northw estern Polytechnic
University. He is researching in compw
tational fluid dynamics.

: Tel: 029 88491342, E mail: wanggang

@ nwpu. edu. cn

SUN Ying dan  Born in 1979 in Liaon-
ing province, a post graduate student in
College of Aeronautics of Northwestern
| Polytechnic University. She is working
on the gridless method in CFD.

" Tel: 029 88493955, E mail: sunying
dan2002@ tom. com

YE Zheng yin Born in 1963 in Hubei province, professor of

Northwestern Polytechnic University. He is researching in
CFD and aero elastic dynamics.

Tel: 02988491374, E mail: yezy @ nwpu. edu. en

© 1994-2010 China Academic Journal Electronic Publishing House. Open access under CC BY-NC-ND license. http://www.cnki.net


http://creativecommons.org/licenses/by-nc-nd/4.0/

