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Substrate quality and the availability of nutrients are major factors controlling microbial decomposition
processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground
C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition.
Here we investigate if seasonal and experimentally induced changes in microbial community compo-
sition lead to alterations in functional properties of microbial communities and thus microbial processes.
Beech forest soils characterized by three distinct microbial communities (winter and summer commu-
nity, and summer community from a tree girdling plot, in which belowground carbon allocation was
interrupted) were incubated with different 13C-labeled substrates with or without inorganic N supply
and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the
three investigated microbial communities differed in their functional response to addition of various
substrates. The winter communities revealed a higher capacity for degradation of complex C substrates
(cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and
reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was
lower in winter than in summer, demonstrating that summer and winter community were adapted to
the availability of different substrates. The saprotrophic community established in girdled plots exhibited
a significantly higher utilization of complex C substrates than the more plant root associated community
in control plots if additional nitrogen was provided. In this study we were able to demonstrate exper-
imentally that variation in resource availability as well as seasonality in temperate forest soils cause
a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community
structure and physiological adaptations of microbial communities to altered resource supply.

� 2013 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Microbial decomposition of soil organic matter (SOM) plays
a key role in global C and N cycling (Davidson and Janssens, 2006).
It is well known that microbial decomposition processes are con-
trolled, amongst other factors, by substrate quality (e.g. lignin
content) and the availability of labile C and nutrients (Chapin et al.,
2002; Schmidt et al., 2011). Resource availability influences
decomposition processes via effects on microbial physiology, e.g.
production of extracellular enzyme activities. Microbial production
: þ43 1 4277 9542.
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of extracellular enzymes is stimulated by substrate supply or if
available nutrients or C are scarce (Allison and Vitousek, 2005;
Hernandez and Hobbie, 2010; Olander and Vitousek, 2000).
Enhanced availability of labile C substrates may also increase the
decomposition of recalcitrant SOM (‘priming effect’), which is
ascribed to either microbial activation by the labile C source or
enhanced degradation of SOM for the acquisition of limiting nu-
trients (Blagodatskaya and Kuzyakov, 2008; Fontaine et al., 2011).

Apart from changing the physiology of microbial communities,
alterations in resource availability may also influence microbial
processes indirectly. As different species of microbes differ in
substrate use efficiency and biomass composition and thus demand
for C and nutrients (Degens, 1999; Gusewell and Gessner, 2009),
changes in resource supply have been shown to induce shifts in
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microbial community composition (Eilers et al., 2010; Fierer et al.,
2012; Griffiths et al., 1999; Waldrop et al., 2004). Changes in
microbial community composition may in turn strongly affect
microbial processes since certain classes of enzymes are produced
by specific groups of microorganisms. This is especially true for
phylogenetically ‘narrow’ processes, i.e. processes performed by
a relatively small number of specialized species, such as polyphenol
degradation, while a higher functional redundancy between dif-
ferent microbial communities may be found for processes per-
formed by a broad array of soil microorganisms, such as C
mineralization or protein depolymerization (Balser and Firestone,
2005; Schimel et al., 2005).

While the relation between microbial community composition
and function has already been demonstrated in several studies
comparing functional properties of microbial communities from
different ecosystems (Balser and Firestone, 2005; Brant et al., 2006;
Paterson et al., 2011; Strickland et al., 2009; Waldrop and Firestone,
2004), few studies exist investigating the effects of microbial
community changes at a single site, e.g. community shifts following
increased or decreased plant inputs, on microbial functions (Brant
et al., 2006; Paterson et al., 2011; Wickings et al., 2011). It is still
not fully understood if and how changes in microbial community
composition resulting from seasonal and experimental induced
variation in resource availability affect the functional properties of
microbial communities, a topic which is especially important in the
light of ongoing global change.

In temperate forest ecosystems a seasonal pattern of microbial
processes has been observed which is related to a seasonal var-
iation in availability of different substrates, as well as variation in
soil temperature and moisture (Kaiser et al., 2011, 2010b). The
seasonal variation in resource availability is mainly driven by
plants via belowground C exudation and nutrient uptake during
the growing season and litter fall in autumn. These seasonal
changes in resource availability have also been shown to induce
shifts in microbial community structure (Kaiser et al., 2011,
2010b).

This study aimed at elucidating whether changes in the com-
position of soil microbial communities related to seasonal and
experimentally induced variation in resource availability lead to
altered functional properties of these microbial communities. We
hypothesized (1) that distinct microbial communities that are
adapted to different substrates vary in their physiological capacities
and in their functional response to addition of various organic
substrates and (2) that the functional response of different micro-
bial communities to addition of C substrates is influenced by
microbial nutrient limitation.

In order to test these hypotheses we performed an incubation
experiment with soils from a beech forest study site (Kaiser et al.,
2010b) characterized by three different microbial communities.
We chose winter and summer microbial communities as we
assumed microbial adaptation to high availability of labile C in
summer and to more recalcitrant substrates (litter) in winter. In
summer we also collected soils from a tree girdling plot in which
belowground carbon allocation had been interrupted which pro-
moted the establishment of a more saprotrophic community. Col-
lecting soils from a single site ensured that soils were comparable
in soil properties. We incubated the different soils with a range of
labile and complex substrates (glucose, protein, microbial cell walls,
cellulose and plant cell walls) and analyzed changes in various
microbial processes and pools of labile C and N in response to
substrate addition and experimentally enhanced inorganic N sup-
ply. By using 13C labeled substrates we were also able to directly
monitor microbial substrate utilization and analyze how the vari-
ous amendments led to changes in the utilization of soil organic
matter (i.e. priming).
2. Material and methods

2.1. Origin of soil

The soil for the incubation experiment originated from a 65-
year-old beech forest (Fagus sylvatica) about 40 km southwest of
Vienna (48�070 N 16�030 E, 510 m a.s.l.). Soils were classified as
Dystric Cambisols over flysh (pH in CaCl2 between 4.5 and 5.1) with
a mean organic carbon content of 7.45% and nitrogen content of
0.48% in the A horizon. The study site and experimental setup in the
field was described in detail previously (Kaiser et al., 2010b),
microbial communities were characterized by Kaiser et al. (2010b)
and Rasche et al. (2010). Girdling of beech trees had been per-
formed in May 2006 by removal of the bark over 10 cm sections
around the circumference of the stems. Soils for the incubation
experiment were collected in February 2008 (winter community)
and in June 2008 (summer community and community from gir-
dling plots). 4 subsamples of mineral soil (5 cm depth, A-horizon)
were collected from each of 6 replicate plots inwinter and summer,
respectively, and from 6 replicate girdled plots in summer. Soils
from replicate plots were pooled, sieved (5 mm) and stored at 4 �C
(winter) and 12 �C (summer) until the start of the incubation
experiment. Half of the winter soil was transferred to 12 �C for
equilibration 3 days before the incubation.

2.2. Substrates

Five 13C-labeled substrates differing in complexity and C and N
content were used for the incubation experiment: Glucose, protein,
microbial cell walls, cellulose and plant cell walls, containing 20
atom % 13C, except for cellulose (16 atom %) and protein (98 atom %).
Glucose (99 atom % 13C, from Sigma) and cellulose (97 atom % 13C,
from IsoLifeBV) were diluted with the respective unlabeled sub-
stances, algal protein extract (98 atom % 13C, from Sigma) was
applied undiluted.

13C-labeled microbial cell walls were prepared as follows: Two
bacterial species (Pectobacterium carotovorum and Verrucomi-
crobium spinosum) and one fungal species (Aspergillus nidulans)
were grown on 13C-glucose (20 atom % 13C). Growth conditions
were described by Keiblinger et al. (2010). Microbial biomass was
dried and then resuspended in NaCl-solution. After mechanical
destruction of cell walls by ultrasonic treatment and bead beating,
residues were repeatedly extracted with NaCl-solution, water,
methanol/chloroform (5:3), hexane and pure water to remove all
labile cell constituents. The remaining residues were dried, ho-
mogenized (ball mill) and stored frozen.

13C-labeled plant cellwallswereprepared as follows: 13C-labeled
wheat roots (IsoLiveBV, U-60402) and unlabeled, dried wheat roots
werefinelyground and homogenized in a ballmill. Thematerialwas
then incubated with a-amylase solution to remove starch (Richter
et al., 2009) and further extracted repeatedly with methanol/
chloroform/water (12:5:3) to remove other labile substances.

2.3. Experimental setup

The respective substrate (1 mg substrate g�1 soil of glucose and
protein, 4 mg g�1 soil of the other substrates) was amended to each
soil in a dry form. A subset of the summer soils (from control and
girdling plots) amended with either cellulose or plant cell walls,
was also amended with inorganic N (3 mg NH4NO3 g�1 soil). We
added N to these treatments in order to test the effects of increased
N availability on the degradation of C substrates (one of them lignin
containing), assuming microbial N limitation in summer.

Incubation of soils (22 g) was performed in a microcosm system
with 5 replicates for each substrate and soil (Inselsbacher et al.,
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2009). For each soil controls without added substrate were pre-
pared (2 � 5 replicates per soil). The microcosms were loosely
closed by moist cotton wool and incubated in the dark for 2 days
(glucose and protein incubations) or 6 days (microbial cell walls,
cellulose and plant cell walls incubations). Incubation temperature
was 12 �C; additionally soils from the winter community were
incubated at 4 �C. The process rates of the winter communities
relative to their control incubations were not significantly different
between 12 �C and 4 �C incubation temperature, thus only the re-
sults of 12 �C winter incubations are presented here. At the end of
the incubation microcosms were destructively harvested for
determination of C and N pools, gross N mineralization, enzyme
activities and phospholipid fatty acids.

2.4. Microbial respiration

Microbial respiration rates were measured at 5 time points
during the incubation period. At the measurement, incubation
tubes were sealed at the bottom, cotton wool was removed and
instead polypropylene tubes closed by airtight rubber caps were
mounted on the incubation tubes (Inselsbacher et al., 2009). 15 ml
of headspace gas was sampled by syringe immediately after closing
the tubes and replaced by 15 ml of air (ambient CO2 concentration).
A second gas sample was taken after 30 min. Concentration and
carbon isotope ratio of CO2 (relative to VPD) were determined via
a GasBench II interfaced to continuous-flow isotope ratio mass
spectrometry (IRMS; Delta V Advantage, Thermo Fisher, Germany).
Respiration from substrate was calculated according to the fol-
lowing equation:

Rsubstrate ¼ APE13Cresp=APE13Csubstrate*100*Rtotal

where APE13C means atom % excess 13C in respiration and sub-
strates, respectively, and Rtotal is total respiration.

The change in C mineralization from SOM (including microbial
biomass C) induced by addition of organic substrates (¼‘priming
effect’) was calculated as follows:

PEð%Þ ¼ ððRtotal � RsubstrateÞ � RcontrolÞ=Rcontrol*100

where Rtotal is the total respiration from incubations with sub-
strates, Rsubstrate is the respiration from substrate and Rcontrol is the
respiration from control incubations.

Microbial carbon use efficiency (CUE) was calculated according
to the following equation:

CUE ¼ 13Cmic=
�13Cmic þ 13Cresp

�

where 13Cmic is the amount of substrate 13C in the microbial bio-
mass and 13Cresp is the cumulative respired substrate 13C.

2.5. Gross N mineralization

Gross N mineralization was assessed using the pool dilution
technique (Kaiser et al., 2005; Myrold and Tiedje, 1986). 15NH4Cl
was applied to subsamples of fresh soil, incubated for 4 h or 24 h,
then extracted with 2M KCl. Ammonium was isolated by the
microdiffusion method and 15N values of NH4

þ were analyzed by an
elemental analyzer coupled to an IRMS (DeltaPLUS, Thermo Fin-
nigan). Gross N mineralization rates were calculated according to
the following equation:

m ¼ ðAt � A0Þ=t*ðlnðAPE0=APEtÞ=lnðAt=A0ÞÞ
where m is gross mineralization, At is the NH4
þeN pool after time t,

A0 is the initial NH4
þeN pool, APE (atom % excess) is

atom %15N� NH4
þ
sample � atom %15N� NH4

þ
natural abundance.

2.6. C and N pools

Inorganic N was determined from water extracts by chemically
suppressed ion-chromatography (Dionex HPAEC on a AS11 column
for NO3

� and Dionex HPCEC on a CS16 column for NH4
þ) (Kaiser et al.,

2005). Organic C and total N were analyzed in water extracts by
a TOC/TN analyzer (TOC-V CPH E200V/TNM-1 220V, Shimadzu).
Microbial biomass C and N was determined by the chloroform
fumigation extraction method (Amato and Ladd, 1988). Microbial C
and N was estimated from the difference of organic C and total
nitrogen measured by a TOC/TN analyzer in KCl extracts of fumi-
gated and unfumigated soils.

2.7. Extracellular enzyme activities

Potential enzyme activities were measured by microplate fluo-
rimetric and photometric assays according to Kaiser et al. (2010b).
4-methylumbelliferyl-b-D-cellobioside, 4-methylumbelliferyl-b-D-
N,N0,N00-triacetylchitotrioside and L-leucine-7-amino-4-methyl cou-
marin, respectively, were used as substrates for the fluorimetric
detection of b-1,4-cellobiosidase, endochitinase and leucine
amino-peptidase activities. Phenoloxidase and peroxidase activ-
ities were measured photometrically after addition of L-3,4-
dihydroxyphenylalanine (DOPA).

Actual polysaccharide degradation rates were measured without
substrate addition but with the addition of toluene to inhibit micro-
bial uptake of enzymatic products, leading to their accumulation
in the soil suspension (Boschker et al., 1995; Kaiser et al., 2010b).
Glucose accumulation in the soil solution (analyzed by HPLC)
was used for estimation of combined cellulase and amylase activities.

2.8. Phospholipid fatty acids

Phospholipid fatty acids (PLFAs) were extracted by a mixture of
methanol, chloroform and citrate buffer (2:1:0.8, v/v/v), then sep-
arated from neutral lipids on silica columns and finally subjected to
alkaline methanolysis (see Koranda et al. (2011) for details). Dried
fatty acid methyl esters were re-dissolved in isooctane and con-
centrations and carbon isotope ratios of PLFAs were determined by
a Trace Ultra GC (Thermo Fisher) interfaced with an IRMS (Delta V
Advantage, Thermo Fisher) via a combustion unit (GC combustion
II/TC, Thermo Fisher). A mixture of FAMEs (Supelco, nr. 47080-U
and 47885-U) was used as a qualitative standard. An internal
standard (19:0) was used for calculation of FAME concentrations, as
well as for correction of d13C values. d13C values of PLFAs were also
corrected for d13C values of the C added during methanolysis. We
used the sum of the fatty acids i15:0, a15:0, i16:0, i17:0, a17:0 as
indicator of Gram-positive bacteria, the sum of 16:1u9, 16:1u7,
18:1u7, 18:1u5, cy17:0, cy19:0, cy18:0 as indicator of Gram-
negative bacteria, and all these together with 17:0, 17:1u6, 17:1u7
as ameasure for total bacteria. The quantity of 18:2u6,9was used as
an indicator of fungal biomass (Kaiser et al., 2010a).

We estimated 13C incorporation into microbial biomass by cal-
culating the weighted average d13C value of PLFAs and multiplying
it with the amount of microbial biomass C, keeping in mind that
d13C values may vary between different cell components.

2.9. Statistics

Data were transformed prior to analysis to achieve normality
and homogeneity of variances (natural logarithmic transformation
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was applied for absolute concentrations and process rates, square
root transformation for relative values). Characteristics of the three
soils were compared by one-way ANOVA. Multivariate statistics
were performed with standardized data. We applied a principal
component analysis (PCA) and analysis of similarity (ANOSIM),
which is a permutation-based test, to evaluate differences in the
functional response of microbial communities to substrate addi-
tion. Relative values of microbial processes, C and N pools and
microbial groups in percent of control incubations were analyzed
for differences from 100% using student’s t-test. Apart from sig-
nificance level p < 0.05 we also considered p < 0.1 as indicating
a marginal significance. Differences between microbial commu-
nities in incubations of one substrate were assessed using one-way
ANOVA and Tukey’s post-hoc test, differences between incubations
of complex C substrates with and without added inorganic N,
respectively, were analyzed using student’s t-test. Two-way ANOVA
was applied for determination of separate effects of substrate and
community type on incubations of different substrates. Addition-
ally, three-way ANOVA was applied for determination of the effect
of N addition in incubations of complex C substrates. Univariate
statistical analyses were performed using Statistica 6.0, multi-
variate statistics were run with Primer 6.

3. Results

3.1. Characterization of soil and functional microbial communities

Soils collected either in winter or in summer from control plots
and from girdled plots were characterized by distinct microbial
communities (description of seasonal changes in microbial com-
munity composition and effects of tree girdling in Kaiser et al.,
2010b) and exhibited differences in availability of C and N and
microbial biomass size (Table 1). Nitrate concentrations were sig-
nificantly higher in soils from the winter harvest than from the
summer harvest, while no significant differences could be deter-
mined for NH4

þ. Availability of NH4
þ, however, doubled in control

incubations of soil collected in winter during the experiment (from
0.21 � 0.039 to 0.43 � 0.070 mmol g�1 DW) but decreased in
summer soil (from 0.19 � 0.005 to 0.11 � 0.009 mmol g�1 DW)
indicating generally higher inorganic N availability in winter than
in summer. Total dissolved N concentrations, on the other hand,
were highest in soils of girdled plots and lowest in soils collected
in winter. Winter soil also exhibited a significantly lower concen-
tration of DOC than the summer soil. Microbial biomass was lowest
in girdled plots and had the highest C/N ratio.

Microbial process rates were generally lower in winter than in
summer (for detailed description of seasonal variation in microbial
processes see Kaiser et al. (2010b)). Actual cellulase/amylase,
Table 1
Characterization of soils collected inwinter, in summer and in summer from girdling
plots. Values from soil incubations without substrate addition (winter: 4 �C, summer
12 �C). Mean values (n ¼ 5). Significant differences (by Tukey’s post-hoc test;
p < 0.05) are indicated by different letters.

Winter Summer Summer-
girdling

NH4
þ (mmol g�1 DW) 0.21a 0.19a 0.15a

NO3
� (mmol g�1 DW) 1.73b 0.65a 0.78ab

Total dissolved N (mmol g�1 DW)y 2.5a 3.3b 4.6c

Dissolved organic C (mmol g�1 DW) 8.4a 13.6b 14.4b

Microbial C (mmol g�1 DW) 31.7ab 37.0b 24.2a

Microbial N (mmol g�1 DW) 5.1ab 6.9b 3.4a

Microbial C/N ratio 6.2ab 5.5a 7.2b

Net N mineralization
(nmol NH4eN g�1 DW h�1)

�6.1a �1.8a 3.0a

yMeasured in KCl-extracts.
peptidase and endochitinase activities were lower in girdled plots
than in summer control plots, while oxidative enzyme activities
were not significantly different (Table S1). If enzyme activities were
calculated per unit biomass, however, oxidative enzyme activities
were significantly higher in girdled plots than in control plots.

3.2. Changes in C and N pools by substrate addition

Addition of glucose significantly increased microbial C and C/N
ratio in soils collected in winter, in summer and from girdled plots
(Table S2). Incubations of microbial cell walls, cellulose and plant
cell walls exhibited reduced microbial biomass (both C and N) in
soil collected in summer from control plots while the first two
substrates revealed the opposite effect in soil from girdled plots.
Microbial C was not affected by N addition in either of the com-
munities. Addition of cellulose and plant cell walls significantly
increased microbial N in winter (148 and 156% of control in-
cubations, respectively), which translated into a marked decrease
in C/N ratio of microbial biomass (63 and 66% of controls, respec-
tively; p < 0.001).

NH4
þ concentrations significantly increased with protein addi-

tion in soils collected in winter, summer and from girdled plots
(Table S2). Glucose and cellulose incubations of winter soil
exhibited markedly reduced NH4

þ concentrations compared to
control incubations (43 and 33%, respectively; p < 0.001), while in
soil from girdled plots NH4

þ availability was enhanced by the
addition of cellulose.

3.3. Changes in microbial processes by substrate addition/microbial
substrate utilization

A principal component analysis of 7 microbial process rates (C
mineralization, SOM mineralization, substrate 13C in respiration,
actual cellulase/amylase, cellobiosidase, peptidase, and chitinase
activities) relative to unamended controls revealed that the func-
tional response of microbial communities to substrate addition
depended on the type of added substrate, glucose and protein in-
cubations being set apart from incubations of microbial cell walls
and complex C substrates (Fig. 1). While the three different
microbial communities responded similarly to the addition of
microbial cell walls and protein, clear functional differences be-
tween microbial communities were observed for the C substrates.
Winter community significantly differed from the summer com-
munity in the response to addition of both labile C (glucose) and
complex C substrates (cellulose, plant cell walls; ANOSIM p< 0.05).
Significant differences between communities from summer control
plots and girdled plots were found in incubations of complex C
substrates (p < 0.05). Enhanced inorganic N availability clearly
influenced the functional response of the community from control
plots to addition of complex C substrates (p < 0.05), while a sig-
nificant effect of N on the community from girdled plots was found
in incubations of cellulose only. The first PCA axis mainly separating
the glucose and protein incubations from the other substrates was
negatively correlated to concentrations of microbial C and micro-
bial C/N ratio (relative to control incubations) and positively cor-
related to NH4

þ, NO3
� and total dissolved N. The second PCA axis

separating the winter community as well as the community from
girdled plots from the summer community showed negative cor-
relations to concentrations of microbial C and N, NH4

þ and also the
abundance of fungi (relative to control incubations). Factor loadings
on PCA 1 were most negative for respiration, APE13C in respiration
and cellulase/amylase activity, while cellobiosidase, endochitinase
and peptidase activities showed highest loadings on PCA 2.

Respirationwas more than doubled by the addition of labile C in
incubations of all microbial communities, the increase being
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Fig. 2. Changes in (a) cumulative C mineralization and (b) gross N mineralization rates
(relative to unamended controls) in response to addition of different organic substrates
and inorganic N in soils collected in winter (hatched bars), in summer (black bars) and
in summer from girdling plots (gray bars). Values are means � SE. (a) n ¼ 4, (b) n ¼ 5.
Significant differences between communities in incubations of a certain substrate
(determined by ANOVA, p < 0.05) are indicated by asterisks (*). Values of unamended
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significantly higher in winter than in summer (Fig. 2a). Addition of
a complex C substrate, plant cell walls, however, stimulated respi-
ration in summer only, while a significant decline in cumulative
respiration was observed in winter (p < 0.05). Increased inorganic
N availability did not affect cumulative respiration in soils from
either control or girdled plots. The different response in respiration
of winter and summer communities mainly reflected differences in
mineralization of soil organic matter rather than respiration of the
added substrates. In winter a marked priming effect of SOM
decomposition by glucose was observed (p < 0.001) (Fig. 3a), while
addition of plant cell walls reduced mineralization of SOM
(p < 0.05). In summer, however, a positive priming effect by plant
cell walls was found (p < 0.05). ANOVA results hence revealed
a highly significant community � substrate interaction for both
cumulative respiration and priming of SOM decomposition but no
main effect of community (Table 2).

Differences in carbon use efficiency between the different
communities may also contribute to the observed pattern of res-
piration. Winter community exhibited lower efficiency of glucose
utilization than summer community but higher efficiency in the
use of plant cell walls (Fig. 3b). As indicated by substrate 13C con-
centrations in respiration and microbial biomass (Table 3), glucose,
protein and microbial cell walls were generally more intensively
used by microbes than the polymeric C substrates. Uptake of added
glucose was higher in summer than in winter, while the opposite
was found for protein. The microbial community in soils from gir-
dled plots tended to use the complex C substrates more intensively
than the summer control community, a tendency considerably
enforced by the addition of inorganic N. Enhanced inorganic N
availability strongly increased the concentration of 13C in respira-
tion in both soils from control and girdled plots (p < 0.001). A
comparably strong effect of N addition on substrate 13C in microbial
biomass was only found in cellulose incubations of soils from gir-
dled plots.

ANOVA results for gross N mineralization revealed significant
effects of community, substrate and community � substrate
interaction (Table 2). Glucose addition significantly stimulated N
mineralization, with the highest increase being found in winter
(Fig. 2b). Interestingly, protein exhibited no or a negative effect,
while microbial cell walls, cellulose and plant cell walls increased
gross N mineralization, especially in incubations of the summer
community.

Significant effects of community, substrate as well as
community� substrate interactionwere also observed for all of the
measured extracellular enzyme activities (Table 2).

Actual cellulase/amylase activities were strongly stimulated by
glucose, the enzymatic product, as well as by microbial cell walls
(Fig. 4a). Winter community significantly differed from summer
community in the response to complex C substrates. While in
winter actual cellulase activity was stimulated by cellulose and
plant cell walls amendments (p < 0.001), no effect was found in
summer. The pattern of cellobiosidase activity, indicating potential
cellulolytic activity, differed considerably from actual cellulolytic
activity, with an increase in plant cell wall incubations of the
summer community (p < 0.05) but a decrease in cellulose in-
cubations of the community from girdled plots (p < 0.01) (Fig. 4b).



Table 2
ANOVA results showing effects of community type, substrate and inorganic N addition on a
indicate p < 0.05.

dF C mineralization Gross N
mineralization

F p F p

Community 2 0.14 0.8684 6.57 0.002
Substrate 4 193.50 0.0000 15.23 0.000
Community � Substrate 8 12.77 0.0000 1.75 0.106
þN 1 0.52 0.4789 n.d. n.d.
Community � N 1 0.05 0.8181 n.d. n.d.

dFa Cellobiosidase Peptidase

F p F p

Community 2 6.44 0.0029 10.68 0.00
Substrate 4 3.55 0.0115 2.89 0.02
Community � Substrate 8 4.70 0.0002 4.73 0.00
þN 1 0.64 0.4307 101.99 0.00
Community � N 1 9.65 0.0039 0.00 0.95

a dF Oxidative enzyme activities: 1, 3, 3, 1, 1 (summer only).
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Glucose
Protein

Micro
bial ce

ll w
alls

Cellulose

Plant cell w
alls

Cellulose +N

Plant cell w
alls

+N

Pr
im

in
g 

ef
fe

ct
  (

%
)

-40

-20

0

20

40

60

80

100

(b) Carbon use efficiency

Glucose
Protein

Microbial cell walls

Cellulose

Plant cell walls

Cellulose +N

Plant cell walls +N

C
U

E

0.0

0.2

0.4

0.6

0.8

1.0
Winter
Summer
Summer - Girdling

*
*

*

*

*

*

Fig. 3. (a) Cumulative priming effect of SOM respiration induced by addition of dif-
ferent organic substrates and inorganic N and (b) microbial carbon use efficiency
calculated from respired substrate 13C and substrate 13C in microbial biomass (see 2.4)
in soils collected in winter (hatched bars), in summer (black bars) and in summer from
girdling plots (gray bars). Values are means � SE (n ¼ 4). Significant differences be-
tween communities in incubations of a certain substrate (determined by ANOVA or t-
test, p < 0.05) are indicated by asterisks (*).
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Both actual cellulase/amylase and potential cellobiosidase activ-
ities, however, showed the same trends in the response of com-
munities to inorganic N addition, separating summer (control)
community from the community from girdled plots. While in soils
from control plots cellulolytic activity decreased in plant cell wall
incubations with high N availability compared to plant cell wall
incubations without added N (p < 0.05), the community from gir-
dled plots showed a significantly positive response to inorganic N
addition in cellulose incubations (p < 0.05), which was also
depicted by a significant community� N interaction for cellulolytic
enzymes (Table 2).

Differences between summer and winter communities in
response to complex C substrates were also revealed by peptidase
activities (Fig. 4c). In summer peptidase activity was significantly
enhanced by addition of cellulose (p < 0.05) and plant cell walls
(p < 0.001) while in winter the opposite effect was observed. The
community from girdled plots tended to exhibit a lower response to
these substrates than the community from control plots. Addition
of inorganic N significantly reduced peptidase activity (p < 0.001).
Endochitinase, responsible for the depolymerization of N-rich
microbial cell walls, showed a similar, although less significant
response to N addition and similar differences between commu-
nities in plant cell wall incubations (Fig. 4d).

Oxidative enzyme activities were significantly enhanced by the
addition of plant cell walls in both soils from control and girdled
plots, as well as by microbial cell walls in soil collected in winter
(Fig. 4e and f). Stimulation of phenoloxidase activity by plant cell
walls was higher in soil from girdled plots than from control plots
(p < 0.05). Inorganic N addition exerted little effect on oxidative
enzyme activities, only a marginally significant decrease in perox-
idase in soil from control plots was found (p < 0.1).

3.4. Changes in abundances of microbial groups by substrate
addition

Substrate addition generally had a stronger influence on fungal
abundance than on bacterial abundance (Table S3). We observed
a marginally significant increase in fungal abundance after glucose
addition (p < 0.1) and a strong decrease after addition of cellulose
and plant cell walls in soil collected in summer from control plots
(79 and 49% of control incubations, respectively; p< 0.05), while in
soil from girdled plots a slightly positive response to cellulose was
observed. Enhanced inorganic N supply increased the abundance of
fungi in soils from both control and girdled plots (p < 0.05). A
positive effect of organic N, however, was observed in soil from
lterations of variousmicrobial processes. n.d. means ‘not determined’. Values in bold

Priming effect C use efficiency Cellulase/Amylase

F p F p F p

7 1.00 0.3747 2.66 0.0842 15.68 0.0000
0 9.22 0.0000 69.39 0.0000 147.82 0.0000
6 11.27 0.0000 12.84 0.0000 18.44 0.0000

1.84 0.1881 0.91 0.3515 1.37 0.2497
0.00 0.9812 1.14 0.2977 6.76 0.0140

Endochitinase Phenoloxidase Peroxidase

F p F p F p

01 11.08 0.0001 6.81 0.0136 5.85 0.0214
94 6.88 0.0001 6.67 0.0013 9.91 0.0001
02 3.80 0.0012 4.96 0.0062 4.59 0.0088
00 13.05 0.0010 0.05 0.8202 1.03 0.3259
82 0.01 0.9190 0.59 0.4553 0.10 0.7595



Table 3
Microbial utilization of 13C-labeled substrates by the winter, summer and summer-
girdling community indicated by concentrations of substrate 13C in respiration and
microbial biomass (estimated from PLFAs). Mean values; n ¼ 4 (respiration), n ¼ 3
(microbial biomass). Significant differences (by Tukey’s post-hoc test; p < 0.05) are
indicated by different letters. n.d. means ‘not determined’.

Substrate 13C in respiration
(atom % excess 13C)

Substrate 13C in
microbial biomass (atom
% excess 13C)

W S G W S G

Glucose 10.4a 12.6b 10.9ab 0.84a 1.14b 1.13ab

Protein 11.4 8.9 8.9 1.40b 1.00a 1.12a

Microbial cell walls 2.7a 3.4b 3.7b 1.91 1.51 2.09
Cellulose 0.31 0.31 0.41 0.06ab 0.04a 0.09b

Cellulose þ N n.d. 0.59a 1.07b n.d. 0.14a 0.42b

Plant cell walls 0.29a 0.36ab 0.43b 0.11 0.11 0.08
Plant cell walls þ N n.d. 0.65a 1.00b n.d. 0.11a 0.16b
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control plots only. The response of fungal abundance to substrate
additionwas negatively correlated to changes in peroxidase activity
in incubations of the summer community (p < 0.05), while in in-
cubations of the community from girdled plots a positive correla-
tion of fungal abundance with peroxidase activity (p < 0.05) and
negative correlations with peptidase and endochitinase activities
(p< 0.05) were observed. In contrast to fungal abundance, the total
bacterial abundance was not significantly affected by substrate
addition (Table S3).
4. Discussion

Previous studies have demonstrated a seasonal variation in
microbial decomposition processes in temperate forest soils which
was related to a seasonal shift in availability of substrates and
a seasonal variation in soil temperature and moisture (Kaiser et al.,
2011, 2010b). In these studies the reduction of belowground C
allocation by tree girdling strongly affected microbial processes, as
also reported by others (Ekberg et al., 2007; Högberg et al., 2001;
Subke et al., 2004). Seasonal and experimentally induced alter-
ations in resource availability and abiotic factors, however, have
also been shown to induce changes in microbial community com-
position (Fierer et al., 2012; Kaiser et al., 2010b; Lauber et al., 2008;
Yarwood et al., 2009). Here we demonstrate experimentally that
microbial community changes due to alterations in resource
availability result in functional differences between microbial
communities implying that the distinct microbial communities
differ in their physiological capacities. In agreement with our ex-
pectations, the functional response of microbial communities to
substrate addition depended on the type of added substrate (Fig. 1,
Table 2), presumably since extracellular enzyme activities as well as
C and N mineralization rates vary with resource supply and stoi-
chiometry (Allison and Vitousek, 2005; Geisseler and Horwath,
2009; Hernandez and Hobbie, 2010). In addition, we also
observed a significant influence of community type on relative
process rates (Fig. 1, Table 2) underlining functional differences
between microbial communities, especially in the decomposition
of complex C substrates. This is in line with other studies also
reporting functional differences between distinct microbial com-
munities (Brant et al., 2006; Fierer et al., 2012; Paterson et al., 2011).

When interpreting these results, it has to be kept in mind,
however, that the soils collected at different seasons and from
girdled plots differed in both microbial community composition
and availability of labile C and N, which implies that effects of
resource availability and effects of community structure or physi-
ological adaptations of microbes may combine here. We
experimentally enhanced inorganic N availability in summer soils,
which facilitates separation of these effects.

Soil collected in winter was characterized by lower availability
of DOC but higher availability of inorganic N than summer soil
(Table 1). The relatively low C/N ratio of microbial biomass in
summer soil was probably due to the fact that soil was sampled at
the beginning of summer, prior to the sharp decrease in microbial
biomass N usually observed at this site in July (Kaiser et al., 2011).
Regardless of differences in resource availability our results
revealed considerable functional differences between summer and
winter communities in response to addition of C substrates,
reflecting microbial adaptation to availability of different types of C
sources in summer and winter. The winter community responded
to the addition of complex C substrates with significantly enhanced
actual cellulase/amylase activity (Fig. 4a) and reduced mineraliza-
tion of soil organic matter (Fig. 3a). Both suggest adaptation of the
winter community to degradation of complex C substrates, such as
plant litter, which is also reflected by the high carbon use efficiency
for plant cell walls in this community (Fig. 3b). In summer, on the
contrary, actual cellulase/amylase activity was not influenced by
the addition of plant cell walls and was decreased by the additional
enhancement of inorganic N availability. This may indicate that the
effects on cellulolytic enzyme activities (and SOM mineralization)
observed in plant cell wall incubations of the winter community
were not due to higher N availability in winter but reflected
a functional property of the winter community. The marked
increase in microbial biomass N and decrease in biomass C/N ratio
in response to addition of polymeric C substrates in winter
(Table S2) is consistent with our previous results showing a phase
of enhanced microbial N uptake and N storage in microbial biomass
during winter months (Kaiser et al., 2011). Glucose addition caused
a considerably stronger increase in C mineralization in winter than
in summer (Fig. 2a). This was mainly due to a strong priming effect
of glucose on SOM mineralization in winter (Fig. 3a), which may
reflect a depletion of labile carbon in winter that may have been
overcome by the pulse of labile C. Enhanced turnover of microbial C
pools after microbial activation may also contribute to this effect
(‘apparent priming effect’ (Blagodatskaya and Kuzyakov, 2008)).
The summer community, on the other hand, seemed to be more
adapted to utilization of labile C sources (which are known to be
supplied to microbes during summer by plant roots (Dennis et al.,
2010; Jones et al., 2009)), as exemplified by higher uptake rates of
glucose compared to the winter community (Table 3) and higher
carbon use efficiency for glucose (Fig. 3b). Activity of peptidase (and
chitinase; Fig. 4c/d) was increased by complex C substrates in
summer (contrasting to negative effects in winter), while inorganic
N addition reduced peptidase and chitinase activities, as reported
from other studies (Allison and Vitousek, 2005; Olander and
Vitousek, 2000). The increase in N-acquiring enzymes by the
addition of cellulose and plant cell walls in summer may indicate
microbial N limitation during the plant growing season and can be
related to a positive priming effect of SOM decomposition (Fig. 3a),
suggesting ‘microbial N mining’ (Fontaine et al., 2011).

In a previous study it was demonstrated that tree girdling sig-
nificantly reduced the abundance of mycorrhizal fungi. Increased
input of dead fine root biomass resulted in enhanced saprotrophic
activity and high biomass turnover two years after girdling (Kaiser
et al., 2010b). This is also indicated by oxidative enzyme activities
and high levels of dissolved (organic) N, as well as high gross N
mineralization in soils from girdled plots in our study (Tables 1 and
S3). Differences in the response to substrate addition between
microbial communities from girdled and control plots are thus
likely to reflect the different functional properties of a purely sap-
rotrophic community and a microbial community shaped by plant
roots.
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Fig. 4. Changes in extracellular enzyme activities (relative to unamended controls) in response to addition of different organic substrates and inorganic N in soils collected in winter
(hatched bars), in summer (black bars) and in summer from girdling plots (gray bars). Values are means � SE (n ¼ 5). Significant differences between communities in incubations of
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Oxidative enzyme activities were enhanced in both soils from
control and girdled plots by the addition of plant cell walls, but the
increase in phenoloxidase activity was significantly higher in the
soil from girdled plots. Enhanced oxidative enzyme activities in
plant cell wall incubations may arise from the degradation of the
lignin-containing substrate or from enhanced degradation of SOM
(priming) (Fig. 3a). Increased inorganic N concentration showed
little effect on oxidative enzyme activities, in contrast to other
studies reporting negative (Carreiro et al., 2000; Sinsabaugh et al.,
2002) but also positive effects (Saiya-Cork et al., 2002) of N fertil-
ization or additions. However, as revealed by 13C concentrations in
respiration and microbial biomass (Table 3), microbial utilization of
complex C substrates was markedly enhanced by inorganic N
addition and was significantly higher in soils from girdled plots
than from control plots, which suggests a higher capacity of the
saprotrophic community in girdled plots for degradation of these
substrates, reflecting microbial adaptation to high availability of
dead root biomass in girdled plots.

Interestingly, cellulolytic enzyme activities responded differ-
ently to N addition in soils from girdled and control plots. In soil
from girdled plots N addition increased cellulolytic enzyme activity
in cellulose incubations (Fig. 4a and b), consistent with results from
previous studies (Allison and Vitousek, 2005; Geisseler and
Horwath, 2009; Saiya-Cork et al., 2002; Sinsabaugh et al., 2002),
whereas activity of these enzymes was decreased by inorganic N in
soil from control plots. N limitation of the microbial community in
girdled plots is unlikely to be the cause since lower peptidase and
chitinase activities in these incubations indicate higher N avail-
ability in soils from girdled plots. Differences in the response of
cellulolytic enzyme activities to N addition might hence suggest
that different species of microbes were responsible for the degra-
dation of complex C substrates in control plots and girdled plots, as
indicated by their different response to N. It also suggests that N
addition caused a community shift which was different in soils
from control and girdled plots. Relating enzyme activities to
changes in the abundances of different microbial groups, especially
the abundance of fungi (Table S3) may help to clarify this. Counter
to the current paradigm, the abundance of fungi was strongly
decreased by the addition of complex C substrates in soil from
control plots (pointing to cellulose-degrading bacteria out-
competing those fungal taxa adapted to labile C sources), while the
opposite trend was observed in incubations of soil from girdled
plots. But in both soils, abundance of fungi was enhanced by inor-
ganic N addition. The fact that, unlike soil from girdled plots, soil
from control plots exhibited a different response of cellulolytic
enzyme activities and the abundance of fungi to N addition might
indicate that fungi may be less involved in degradation of poly-
meric C substrates in control plots and that instead other members
of the microbial community play an important role in cellulolytic
activity. Differences in physiological capacities of fungi in control
and girdling plots, respectively, are also indicated by positive cor-
relations between relative peroxidase activity and fungal abun-
dance in soil from girdled plots, but negative correlations in soil
from control plots.

In summary our results revealed that microbial communities in
soils collected at different seasons and from experimentally altered
plots clearly differed in their response to substrate addition. The
observed pattern in microbial processes reflects distinct physio-
logical capacities of winter and summer communities. The winter
community revealed a higher capacity for degradation of complex C
substrates (cellulose, plant cell walls) but lower utilization of labile
C sources (glucose) than the summer community. The saprotrophic
community established in girdled plots exhibited a significantly
higher utilization of complex C substrates compared to the com-
munity from control plots if additional nitrogen was provided.
It can thus be concluded that the plant-induced variation in
resource availability in temperate forest soils leads to a seasonal
variation in functional properties of soil microorganisms, resulting
from seasonal changes in microbial community structure and
physiological adaptations of microorganisms.
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