TCT-314
Outcome and reproducibility of Heart Team decisions: a single center experience
Antonis Pavlidis1, Divaka Perera2, Brian Clapp3, Christopher Blauth4, Christopher P. Young5, James Roxburgh5, Vinayak Bapat6, John Chambers7, Martin Thomas8, Simon Redwood9
1Department of Cardiology, St. Thomas' Hospital, London, United Kingdom, 2Cardiovascular Division, St. Thomas’ Hospital Campus, King's College London, London, United Kingdom, 3Department of Cardiothoracic Surgery, St. Thomas’ Hospital, London, United Kingdom

Background: A multidisciplinary team (MDT) approach is now a class IC recommendation in the European and American guidelines for decision-making in patients with complex coronary artery disease (CAD). The Heart Team (HT) consists of at least one interventional cardiologist, a cardiac surgeon and a non-invasive cardiologist. The aim of this study was to evaluate the implementation and consistency of HT decisions in a tertiary cardiac centre.

Methods: We prospectively evaluated our data derived from 51 MDT meetings held between April 2012 and April 2013. A subset of cases was randomly selected and presented with the same clinical data, at least 6 months after the initial decision in order to evaluate the consistency of initial decisions.

Results: Amongst patients discussed (n=399) 23% were females. An average of 8 Patients were discussed in each weekly meeting. This was attended by a median number of 1 non-interventional cardiologist, 3 interventionists and 3 cardiac surgeons. The most common HT decisions included continued medical management (30%), coronary artery bypass grafting (CABG) (26%) and percutaneous coronary intervention (PCI) (17%). Other decisions, such as further assessment of symptoms or evaluation with dobutamine stress echo, cardiac MRI, repeat coronary angiogram, pressure wire studies (PWS), intravascular ultrasound (IVUS) or exercise treadmill test (ETT) were made in 27% of the cases discussed. HT decisions were implemented in 93% of the cases. The most common reasons for non-implementation were unrecognised comorbidities (11%), change of symptoms (n=7), patient refusal (n=7) and death (n=4). On re-discussion of the same data (n=25) within a median period of 9 months 20% of decisions (n=5) differed from the original HT recommendation.

Conclusions: The Heart Team is a robust process in the management of patients with complex CAD and decisions are largely reproducible. Although outcomes are successfully implemented in the majority of the cases, it is important that all clinical information is available during discussion and patients’ preference is taken into account.

TCT-315
Increasing Utilization of Percutaneous Coronary Interventions from 1988 to 2006 in Patients with type 2 Diabetes Mellitus in the United State
M. Reza Movahed1, Mehrtaash Hashemzadeh2, Mehrnoosh Hashemzadeh2
1CareMore and University of Arizona, Tucson, AZ, 2Long Beach VA Health Care System, Long Beach, AZ, 3PIMA College, Tucson, AZ

Background: Percutaneous coronary interventions have increased in recent years in high risk patients. The goal of this study was to evaluate this trend in type 2 diabetes (DM) patients undergoing PCI in the United States.

Methods: The Nationwide Inpatient Sample (NIS) database was utilized to calculate a low MACCE rate at 1 year. No bene

TCT-316
Abstract Withdrawn

TCT-317
Impact of Glycemic Control on Cardiovascular Outcomes in Secondary Prevention of Diabetic Patients after a First Coronary Event. Insights from an international registry including 1,036 patients.
Olivier Varenne1, Talith Majiw2, Philippe Commes2, Arif A. Al-Noory2,3, Patrick Henry4, Peter Sinnaeve5, Wajir Ahmed1,2, Cochin Hospital, Paris, France, 3Dubai Hospital, Dubai, United Arab Emirates, 4Polyclinique les Fleurs, ollonvance, France, 5Al-Qassimmi Hospital, Sharjah, United Arab Emirates, 6Laarthouse Hospital, Paris, France, 7Catholic University Leuven, Leuven, Belgium, 8King Fahed Armed Forces Hospital, Jeddah, Saudi Arabia

Background: The effect of glycemic control on major cardiovascular (CV) and cerebrovascular events (MACCE) after percutaneous coronary intervention in patients with Type 2 diabetes (DM) remains controversial.

Methods: We report an international, observational study on DM patients with coronary artery disease eligible for percutaneous coronary intervention. Patients with Type 1 diabetes and ST elevation myocardial infarction (MI) were not included. Clinical follow up and glycemic control as assessed by glycosylated hemoglobin (HbA1c) were obtained at year 1.

Results: A total of 1,036 patients aged 61.9 (+/-0.3) years were included. CV risk factors included smoking, hypercholesterolemia, hypertension and overweight in 49.7%, 78.2%, 76.6% and 47.6%, respectively. Clinical presentation included acute coronary syndrome, silent ischemia and stable angina in 22%, 15.6% and 30.8%, respectively. 1,687 coronary stenosis were treated with at least one Erezolimus eluting stent (EES) in the the left main (n=52), the left anterior descending artery (n=744), the left circumflex artery (n=506) or the right coronary artery (n=538). The mean length and diameter of the implanted EES were 19.0 +/- 0.2mm and 2.88 +/- 0.01mm, respectively. MACCE was observed in 95 (9.2%) patients: CV death (n=16 (1.5%), myocardial infarction (n=8 (0.8%)), ischemia driven revascularization (66 (6.4%)) and ischemic stroke (n=5 (0.5%)). The MACCE rate was not significantly different among the low, intermediate and high tertile groups of HbA1c.

Conclusions: The use of EES in a large population of DM2 patients is associated with a low MACCE rate at 1 year. No beneficial effect of good glycemic control as assessed by HbA1c on MACCE was observed in this “all-comer” diabetic population at 1 year.

TCT-318
Cardioprotection with Glucagon-like Peptide-1 (GLP-1) may occur independent of coronary collaterals and metabolic substrate utilisation
Liam M. McCormick1, Stephen P. Houston2, Paul A. White3, Philip A. Read3, Richard G. Axell3, Sophie J. Clarke1, Michael O’Sullivan4, Nick E. West2, Sarah P. Dutka1
1University of Cambridge, Cambridge, United Kingdom, 2Papworth Hospital, Cambridge, United Kingdom, 3Addenbrooke's Hospital, Cambridge, United Kingdom, 4Cardiology and Diabetes Research Centre, University of Cambridge, Cambridge, United Kingdom

Background: Mechanisms for cardioprotection with Glucagon-like peptide-1 (GLP-1) are unclear. Human studies have mainly assessed the effects of GLP-1 when administered after an ischemic insult, when reperfusion injury pathways have been activated. There is however, limited data investigating the impact of GLP-1 on supply ischemia when given before PCI.

Methods: 30 patients with normal LV function were studied during elective LAD PCI. Pressure-volume loops were recorded using a LV conductance catheter at baseline, during 1 min-low pressure balloon occlusion (BO1), after 30mins recovery, and during a 2nd 1 min-balloon occlusion (BO2). Patients were randomized to receive either IV saline (control) or GLP-1 (1-3.6; 1.2 pmol/kg/min) given before BO1. Coronary wedge pressure (Pw) & simultaneous coronary artery/sinus glucose samples were measured during BO1. Data were analyzed offline by a blinded reviewer for measures of systolic (dP/dTmax) & diastolic (dP/dTmin) function.

Results: Compared with controls, pre-treatment with GLP-1 reduced LV dysfunction during BO1 (Δ dP/dTmax -5.7% vs -15.3%, p=0.04; Δ dP/dTmin -10.4% vs -21.8%, p=0.04); improved recovery at 30mins (Δ dP/dTmax +4.8% vs -12.2%, p=0.03) & reduced LV dysfunction after BO2 (Δ dP/dTmax -7.7% vs -25.3%, p=0.02; Δ dP/ dTmin -15.3% vs -30.3%, p=0.05). Collateral recruitment (Pw 24.4 vs 20.4mmHg, p=0.36; pressure-derived collateral flow index 0.19 vs 0.17, p=0.57) & glucose utilisation was similar in both groups.