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Abstract

We study the nonlinear problem −�u + V (x) = f (x,u), x ∈ R
N , lim|x|→∞ u(x) = 0, where the

Schrödinger operator −� + V is semibounded and the nonlinearity f is linearly bounded. We establish
compactness of Palais–Smale sequences and Cerami sequences for the associated energy functional un-
der general spectral-theoretic assumptions. Applying these results, we obtain existence of three nontrivial
solutions if the energy functional has a mountain-pass geometry.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

When variational methods are used in studying nonlinear Schrödinger equations of the form

{−�u + V (x)u = f (x,u), x ∈ R
N,

lim|x|→∞ u(x) = 0,
(1.1)

properties (especially, boundedness and compactness) of Palais–Smale sequences or Cerami se-
quences of the associated energy functional play always an essential role. In this paper we present
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results establishing compactness of such sequences for a quite general class of nonlinearities f

with a linear bound.
Throughout the paper, for the linear potential V we assume

(A1) V ∈ L
q

loc(R
N) is real-valued, and V − := min{V,0} ∈ L∞(RN) + Lq(RN) for some q ∈

[2,∞) ∩ (N
2 ,∞).

This assumption ensures that the Schrödinger operator S := −� + V , defined as a form sum,
is selfadjoint and semi-bounded on L2(RN), see, e.g., [17, Theorem A.2.7]. As discussed in
[6, p. 166], assumption (A1) also implies useful unique continuation properties which will be
used in the proofs of our main results. We denote by σ(S) ⊂ R the spectrum of S, by σpp(S) its
pure point spectrum and by σess(S) its essential spectrum. The form domain of S is the Hilbert
space

H :=
{
u ∈ H 1(

R
N

) | ‖u‖2
m =

∫
RN

|∇u|2 +
∫

RN

[
V (x) + m

]
u2 < ∞

}
, (1.2)

where m > − infRN σ (S) is arbitrary but fixed. For the nonlinearity f we assume

(A2) f ∈ C(RN × R, R), and f (x,u)
u

is bounded on R
N × (R \ {0}).

Note that Eq. (1.1) has a variational structure. More precisely, solutions of (1.1) are critical points
of the C1-functional

Φ :H → R, Φ(u) = 1

2

∫
RN

(|∇u|2 + V (x)u2)dx −
∫

RN

F (x,u)dx. (1.3)

Here F(x,u) := ∫ u

0 f (x, s) ds. Recall that a sequence (un) ⊂ H is said to be a Palais–Smale
sequence of Φ provided that Φ(un) is bounded and Φ ′(un) → 0 in H ∗, and it is said to be a
Cerami sequence of Φ provided that Φ(un) is bounded and (1 + ‖un‖m)Φ ′(un) → 0 in H ∗. To
apply variational methods, it is important to know whether Palais–Smale sequences or Cerami
sequences of Φ are relatively compact. The compactness of such sequences strongly depends
on the interplay of the nonlinearity f with the spectrum σ(S) of S. In order to control this
interaction, we introduce the following quantities:

f∗ = inf
x∈RN

lim inf|u|→∞
f (x,u)

u
, f ∗ = sup

x∈RN

lim sup
|u|→∞

f (x,u)

u
,

f∗∗ = lim inf|x|→∞ inf
u∈R,u �=0

f (x,u)

u
, f ∗∗ = lim sup

|x|→∞
sup

u∈R,u �=0

f (x,u)

u
.

These quantities make sense when (A2) is satisfied. It is clear that

max{f∗, f∗∗} � min
{
f ∗, f ∗∗}.

We then assume

(A3) [f∗, f ∗] ∩ σ(S) = ∅;
(A4) [f∗∗, f ∗∗] ∩ σess(S) = ∅.
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Assumptions (A3) and (A4) can be viewed as nonresonance conditions. Condition (A3) says that
for |u| large there is no resonance with respect to the spectrum of S, while (A4) implies that
f (x,u)/u does not interfere with the essential spectrum of S for large |x|. The first aim of this
paper is to prove the following result.

Theorem 1.1. Suppose that (A1)–(A4) hold. Then every Palais–Smale sequence of Φ is relatively
compact.

Next we state a result which allows resonance, and we assume

(A5) There exist β ∈ L1(RN) and ω ⊂ R
N , mesω > 0 such that either

(a)
f (x,u)u − 2F(x,u) � β(x) for all x ∈ R

N , u ∈ R,

lim|u|→∞
(
f (x,u)u − 2F(x,u)

) = +∞ for x ∈ ω,

or

(b)
f (x,u)u − 2F(x,u) � β(x) for all x ∈ R

N , u ∈ R,

lim|u|→∞
(
f (x,u)u − 2F(x,u)

) = −∞ for x ∈ ω.

Theorem 1.2. Suppose that (A1), (A2), (A4), and (A5) hold. Then every Cerami sequence of Φ

is relatively compact.

Remark 1.3. We briefly discuss examples for nonlinearities f satisfying our assumptions. For
this let g : R → R be a bounded and continuous function such that g∞ := lim|u|→∞ g(u) exists.

(a) If [infu∈R g(u), supu∈R g(u)] ∩ σess(S) = ∅ and g∞ /∈ σpp(S), then (A2), (A3) and (A4) are
satisfied for the nonlinearity f (x,u) = g(u)u.

(b) Suppose that f (x,u) = (λ + β(x)g(u))u, where λ /∈ σ(S), g∞ = 0 and β ∈ C(RN) with
β(x) → 0 as |x| → ∞. Then (A2), (A3) and (A4) are also satisfied.

(c) Suppose that f (x,u) = (λ + β(x)g(u))u, where now λ /∈ σess(S), β ∈ C(RN) ∩ L1(RN),
β � 0, β �≡ 0 with β(x) → 0 as |x| → ∞, and lim|u|→∞(g(u) − g∞)|u|α = c �= 0 for some
α ∈ (0,2). In this possibly resonant case (A2), (A4) and (A5) are satisfied.

Note that, in all three cases, no monotonicity assumption on the function g is required.

Equation (1.1) with nonlinearities having a linear bound as in (A2) has received growing
attention in recent years; see [2,8,9,12,13,15,16,18–20]. Compactness of Palais–Smale sequences
was observed and applied formerly in [15,19,20] for a parameter-dependent problem. There the
authors obtain multiple solutions for Eq. (1.1) with an asymptotically linear term in the case in
which V (x) is replaced with Vλ(x) = λg(x) + 1 for some g ∈ C(RN,R), g � 0, where Ω :=
int(g−1(0)) is nonempty, ∂Ω is smooth, and

lim|y|→∞
∣∣{x ∈ Br0(y): g(x) � M0

}∣∣ = 0 for fixed constants M0 > 0, r0 > 0.

As λ → ∞, the potential Vλ has a steeper and steeper well, and limλ→∞ infσess(−�+Vλ) = ∞.
Hence any asymptotically linear term does not interfere with the essential spectrum of −� + Vλ
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if λ is large enough. Therefore, in a sharp contrast to Theorems 1.1 and 1.2 above, essential
spectrum of −� + Vλ does not play any role in [15,19,20].

If the nonlinearity may interact with the essential spectrum of −� + V , Eq. (1.1) becomes
more delicate and additional monotonicity assumptions are usually imposed on V or f in order
to prove existence results. We summarize the results in this direction as follows. One positive ra-
dial solution was obtained in [18] where the equation is radially symmetric, V is a constant,
and f (x, s)/s is nondecreasing in s ∈ (0,∞). In [8], where the equation has no symmetry,
one positive solution was obtained provided that V is a constant, f (x, s) is periodic in xi for
i = 1, . . . ,N , and F(x, s)/s2 is nondecreasing in s ∈ (0,∞). Note that the monotonicity as-
sumption on F(x, s)/s2 is weaker than the monotonicity assumption on f (x, s)/s. To remove
the periodicity assumption on f imposed in [8], monotonicity of f (x, s)/s in s ∈ (0,∞), in
addition to other hypotheses, is also assumed in [13]. In [2], assuming again that f (x, s)/s is
nondecreasing in s ∈ (0,∞), compactness of Cerami sequences was proved for a certain range
of energy levels related to an associated problem at infinity, and then one positive solution and,
in special cases, also multiple solutions were obtained. One positive solution was also obtained
in [9], where V (x) is allowed to depend on x but f is not, the limit lim|x|→∞ V (x) exists and is
positive, and F(s)/s2 is nondecreasing. In [2,8,9,13,18], the associated functional has a moun-
tain pass geometry and thus there is a Cerami sequence at the mountain pass level. Therefore,
the main thing required for obtaining one positive solution is to prove that the Cerami sequence
has a convergent subsequence. And in doing this, the monotonicity assumption and the fact that
one aims at finding a positive solution play an essential role in the above-mentioned papers. If
the associated functional does not have a mountain pass geometry, then other methods have to be
used. In [12], 0 lies in a spectral gap of −�+V and one nontrivial solution was obtained by uti-
lizing a weak topology introduced in [11]; here it is assumed that the equation is asymptotically
periodic, and F(x, s)/s2 is nondecreasing in s ∈ (0,∞).

In Theorems 1.1 and 1.2, V and f are allowed to depend on x without any assumption con-
cerning periodicity or the existence of a limit for |x| → ∞, and the nonlinearity is allowed to
interact locally with the essential spectrum of −� + V . There is no monotonicity assumption in
Theorem 1.1, and we do not need a monotonicity assumption for all x ∈ R

N and all s ∈ (0,∞)

in Theorem 1.2. Furthermore, compactness is proved for Palais–Smale sequences or Cerami se-
quences at any energy level.

Theorems 1.1 and 1.2 will be proved in Section 2. To illustrate an application of the main
theorems obtained here, we present a result on existence of a positive solution, a negative solu-
tion, and a sign changing solution in Section 3. Throughout this paper, |u|p denotes the usual
Lp-norm of a function u ∈ Lp(RN), 1 � p � ∞.

2. Proof of the main results

Throughout this section, we assume that assumptions (A1), (A2) and (A4) are in force. Adding
a term of the form u → Cu, C ∈ R to both sides of Eq. (1.1), we may assume by (A4) that

0 /∈ σ(S), a1 := sup
[
σess(S) ∩ (−∞,0)

]
< 0,

b1 := inf
[
σess(S) ∩ (0,∞)

]
> 0, a1 < f∗∗ � f ∗∗ < b1. (2.1)
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In the following, we denote by P the spectral projection associated with the selfadjoint operator S

and the interval (−∞,0), and we set Q = I − P . Note that, by (2.1), the new norm ‖ · ‖ defined
on H by

‖u‖2 =
∫

RN

|∇Qu|2 +
∫

RN

V (x)(Qu)2 −
[ ∫
RN

|∇Pu|2 +
∫

RN

V (x)(Pu)2
]

(2.2)

is equivalent to the norm ‖ · ‖m introduced in (1.2). Note also that P(H) is perpendicular to
Q(H) with respect to the corresponding scalar product. In this section we always use the norm
‖ · ‖, but by equivalence of norms the results are valid for the norm ‖ · ‖m as well. We will also
use the following well-known lemma from linear spectral theory.

Lemma 2.1. Suppose that g ∈ L∞(RN) satisfies[
ess inf

RN
g, ess sup

RN

g
]
∩ σ(S) = ∅.

Then the equation

−�v + V (x)v = g(x)v, v ∈ H,

has no nontrivial weak solutions.

2.1. The nonresonant case

Here we prove the compactness of Palais–Smale sequences under the nonresonance assump-
tion (A3).

Proof of Theorem 1.1. Let (un)n be a sequence with Φ ′(un) → 0 in H ∗ as n → ∞. We first
show that (un)n is bounded in H . For this we suppose by contradiction that, passing to a subse-
quence,

‖un‖ → ∞ as n → ∞. (2.3)

We put vn := un‖un‖ . Passing to a subsequence, we may assume that vn ⇀ v ∈ H , and that

vn(x) → v(x) a.e. on R
N. (2.4)

We define gn : RN → R by

gn(x) =
{

f (x,un(x))
un(x)

, un(x) �= 0,

0, un(x) = 0.
(2.5)

Then gn ∈ L∞(RN), and |gn|∞ � supx∈RN ,u∈R\{0} |f (x,u)/u| < ∞. Hence, passing to a subse-
quence, we may assume that gn converges in the weak∗ topology to some function g ∈ L∞(RN).
Here the weak∗ topology refers to the identification of L∞(RN) with the topological dual of
L1(RN). We claim that v ∈ H is a weak solution of the equation

−�v + V (x)v = g(x)v.
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Indeed, let ϕ ∈ C∞
0 (RN). Then

∫
RN

∇v∇ϕ + V vϕ = lim
n→∞

∫
RN

∇vn∇ϕ + V vnϕ = lim
n→∞

1

‖un‖
∫

RN

∇un∇ϕ + V unϕ

= lim
n→∞

1

‖un‖
(

Φ ′(un)ϕ +
∫

RN

f (x,un)ϕ

)

= lim
n→∞

1

‖un‖
∫

RN

f (x,un)ϕ = lim
n→∞

∫
RN

gnvnϕ =
∫

RN

gvϕ.

In the last step we used that

∣∣∣∣
∫

RN

gn(vn − v)ϕ

∣∣∣∣ �
( ∫

suppϕ

(v − vn)
2 dx

) 1
2 |gnϕ|2 → 0 as n → ∞.

We now show that v = 0. If we assume by contradiction that v �≡ 0, then we can combine results
on unique continuation similarly as in [6, p. 166] to deduce that v �= 0 almost everywhere in R

N .
More precisely, first the strong unique continuation property (see Jerison and Kenig [10]) implies
that v cannot have a zero of infinite order. Then results of de Figueiredo and Gossez [4] and
Gossez and Loulit [5] show that v cannot vanish on a set of positive measure. As a consequence,
|un| → ∞ almost everywhere on R

N , and therefore

f∗ � lim inf
n

gn(x) � lim sup
n

gn(x) � f ∗ for a.e. x ∈ R
N.

Hence, for every measurable subset M ⊂ R
N of measure 0 < |M| < ∞ we obtain

f∗|M| �
∫
M

lim inf
n

gn � lim
n

∫
M

gn =
∫
M

g �
∫
M

lim sup
n

gn � f ∗|M|

by Fatou’s lemma. Consequently we have [ess infg, ess supg] ⊂ [f∗, f ∗], and therefore
[ess infg, ess supg] ∩ σ(S) = 0. Now Lemma 2.1 yields v ≡ 0, as claimed. Next we fix a2 < 0,
b2 > 0 such that

a1 < a2 < f∗∗ � f ∗∗ < b2 < b1.

Note that

f∗∗ � lim
R→∞ inf

n∈N,|x|�R
gn(x) � lim

R→∞ sup
n∈N, |x|�R

gn(x) � f ∗∗. (2.6)

Moreover, let P1 be the projection associated with (−∞, a2), P2 associated with [a2, b2] and
P3 associated with (b2,∞). Then P1P = P1, P1Q = 0, P3P = 0 and P3Q = P3. Moreover,
since vn ⇀ 0 in H and the projection P2 has finite range, we have P2Pvn → 0 and P2Qvn → 0.
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Consequently,

o(1) = Φ ′(un)[Qvn − Pvn] = ‖un‖ −
∫

RN

f (x,un)[Qvn − Pvn]dx

= ‖un‖
(

1 −
∫

RN

gnvn[Qvn − Pvn]dx

)

= ‖un‖
(

1 −
∫

RN

gn

[
(Qvn)

2 − (P vn)
2]dx

)

= ‖un‖
(

1 −
∫

RN

gn

[
(P3vn)

2 − (P1vn)
2]dx + o(1)

)

� ‖un‖
(

1 − f ∗∗
∫

RN

(P3vn)
2 dx + f∗∗

∫
RN

(P1vn)
2 dx + o(1)

)
.

In the last step we used (2.6) and the fact that P1vn,P3vn ⇀ 0 in H . Since furthermore

1 = ‖vn‖2 = ‖Pvn‖2 + ‖Qvn‖2 = o(1) + ‖P1vn‖2 + ‖P3vn‖2, (2.7)

we obtain

o(1) �
[
‖P3vn‖2 − f ∗∗

∫
RN

(P3vn)
2
]

+
[
‖P1vn‖2 + f∗∗

∫
RN

(P1vn)
2
]

�
(

1 − max

{
0,

f ∗∗

b2

})
‖P3vn‖2 +

(
1 − max

{
0,

f∗∗
a2

})
‖P1vn‖2.

Hence P3vn → 0 and P1vn → 0. This contradicts (2.7), and thus we conclude that un is
bounded in H . Passing again to a subsequence, we may assume that un ⇀ u. We show that
wn := un − u → 0 strongly in H . Let Q, P , P1, P2, P3 be the projections as above. Then
(Q − P)wn ⇀ 0, and P2wn → 0, P2Pwn → 0, P2Qwn → 0, since P2 has finite range. For
ϕ ∈ C∞

0 (RN) we have

∫
RN

gn

[
(Q − P)wn

]
ϕ dx �

( ∫
suppϕ

(
(Q − P)wn

)2
dx

) 1
2 |gnϕ|2 → 0

as n → ∞, hence gn[(Q − P)wn] ⇀ 0 in L2(RN). Consequently,

o(1) = Φ ′(un)
[
(Q − P)wn

] = o(1) + ‖wn‖2 −
∫

RN

f (x,un)
[
(Q − P)wn

]
dx

= o(1) + ‖wn‖2 −
∫
N

gnun

[
(Q − P)wn

]
dx
R
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= o(1) + ‖wn‖2 −
∫

RN

gn(un − u)
[
(Q − P)wn

]
dx

= o(1) + ‖wn‖2 −
∫

RN

gn

[
(Qwn)

2 − (Pwn)
2]dx

= o(1) +
[
‖P3wn‖2 −

∫
RN

gn(P3wn)
2
]

+
[
‖P1wn‖2 +

∫
RN

gn(P1wn)
2
]

� o(1) +
[
‖P3wn‖2 − f ∗∗

∫
RN

(P3wn)
2
]

+
[
‖P1wn‖2 + f∗∗

∫
RN

(P1wn)
2
]

�
(

1 − max

{
0,

f ∗∗

b2

})
‖P3wn‖2 +

(
1 − max

{
0,

f∗∗
a2

})
‖P1wn‖2.

Here we used again (2.6) and the fact that P1wn,P3wn ⇀ 0. We deduce that P3wn → 0 and
P1wn → 0, hence wn = P1wn + P2wn + P3wn → 0. We conclude that un → u strongly in H ,
and this finishes the proof. �
2.2. The resonant case

Here we prove compactness of Cerami sequences in the case where assumption (A3) is re-
placed by (A5).

Proof of Theorem 1.2. Assume that {un} is a Cerami sequence of Φ , that is, (1 + ‖un‖) ×
Φ ′(un) → 0 as n → 0 and {Φ(un)} is bounded. To prove that {un} has a convergent subsequence,
we need only to prove that {un} is bounded, in accordance with the proof of Theorem 1.1. As-
sume, by contradiction, ‖un‖ → ∞ as n → ∞. Define vn = un‖un‖ and assume, without loss of

generality, vn ⇀ v in H and vn(x) → v(x) for almost all x ∈ R
N . Then v is a weak solution of

the equation

−�v + V (x)v = g(x)v,

where, after passing to a subsequence, g is the weak∗ limit of gn defined in (2.5). According
to the proof of Theorem 1.1 again, we need only to rule out the possibility of v �≡ 0, in or-
der to prove {un} is bounded. Now assume v �≡ 0. Applying unique continuation results as in
the proof of Theorem 1.1, we infer that v(x) �= 0 almost everywhere on R

N . Thus |un(x)| =
‖un‖|vn(x)| → ∞ as n → ∞ for almost all x ∈ R

N . In the case of (a) of (A5), Fatou’s lemma
implies

lim inf
n→∞

∫
RN

[
unf (x,un) − 2F(x,un)

]

�
∫

RN

lim inf
n→∞

[
unf (x,un) − 2F(x,un) − β(x)

] +
∫

RN

β(x)

�
∫

lim inf
n→∞

[
unf (x,un) − 2F(x,un) − β(x)

] − |β|1 = +∞.
ω
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On the other hand, for some constant C > 0 and n large enough,

∫
RN

[
unf (x,un) − 2F(x,un)

]
�

∫
RN

[
unf (x,un) − 2F(x,un)

] − 2Φ(un) + C

= −(
Φ ′(un), un

) + C � 2C,

a contradiction. A contradiction can also be obtained in the case of (b) of (A5). Thus v ≡ 0. �
3. An application of the main theorems

In this last section, we briefly describe an application of Theorems 1.1 and 1.2 to existence of
solutions of Eq. (1.1). We only consider a simple case and for this we define, for every open set
Ω ⊂ R

N the nondecreasing sequence of values

λk(Ω) = inf
V ∈Vk

sup
u∈V \{0}

∫
Ω

|∇u|2 + V (x)u2 dx∫
Ω

u2 dx
, k ∈ N,

where Vk is the set of k-dimensional subspaces of C∞
0 (Ω). We note that λk(Ω) � λk := λk(R

N)

for every open set Ω ⊂ R
N , that λ∞ := limk→∞ λk = infσess(S) and that λk ∈ σpp(S) whenever

λk < λ∞. We now assume that

(A6) lim sup|x|→∞ supu∈R, u �=0
f (x,u)

u
< λ∞;

(A7) lim supu→0 supx∈RN
f (x,u)

u
< λ1;

(A8) lim inf|u|→∞ infx∈Ω
2F(x,u)

u2 > λ2(Ω) for some open set Ω ⊂ R
N .

Theorem 3.1. Assume that (A1), (A2), (A6)–(A8) and either (A3) or (A5) hold. Then Eq. (1) has
a positive solution, a negative solution, and a sign-changing solution.

Remark 3.2. We give two examples for nonlinearities satisfying the assumptions of Theorem 3.1.
For this let g : R → R be a bounded and continuous function such that g∞ := lim|u|→∞ g(u)

exists.

(a) If g(0) < λ1, supu∈R g(u) < λ∞ and λk < g∞ < λk+1 for some k � 2, then the assumptions
of Theorem 3.1 are satisfied for the nonlinearity f (x,u) = g(u)u. Here (A8) is satisfied with
Ω = R

N .
(b) Suppose that f (x,u) = (λ + β(x)g(u))u, where λ < λ1, g(0) = 0,

lim|u|→∞
(
g∞ − g(u)

)|u|α = c �= 0 for some α ∈ (0,2),

β ∈ C
(
R

N
) ∩ L1(

R
N

)
with β(x) → 0 as |x| → ∞, β � 0 on R

N , and β > 1 in some open subset Ω ⊂ R
N for which

g∞ > λ2(Ω) − λ. Then the assumptions of Theorem 3.1 are satisfied for the nonlinearity f .
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Proof of Theorem 3.1. By assumptions (A1) and (A2), we may fix m > − infσ(S) such that
u[f (x,u) + mu] > 0 for all u �= 0 and a.e. x ∈ R

N . In the following, everything is understood
with respect to the norm ‖ · ‖m as defined in (1.2). Note that, with respect to the corresponding
scalar product 〈·,·〉, the gradient of Φ has the form ∇Φ = Id−A, where A :H → H is given by

〈
A(u), v

〉 = ∫
RN

[
f (x,u) + mu

]
v dx for all u,v ∈ H. (3.1)

Hence critical points of Φ are precisely the fixed points of A. As a consequence of (A7), there is
δ > 0, K > 0 and p > 2 with p � 2N

N−2 for N � 3 such that

∣∣f (x,u) + mu
∣∣ � (m + λ1 − δ)|u| + K|u|p−1 for u ∈ R, x ∈ R

N. (3.2)

From this and Sobolev embeddings it is easy to deduce that 0 ∈ H is a strict local minimizer
of Φ . Define P = {u ∈ H : u � 0} and the convex open subset Pε = {u ∈ H : dist(u,P ) < ε}
of H for ε > 0. We claim that

A
(
∂(±Pε)

) ⊂ ±Pε for ε > 0 small enough. (3.3)

Indeed, if u ∈ H and v = A(u), v+ = max{v,0}, then

dist(v,−P)
∥∥v+∥∥

m
�

∥∥v+∥∥2
m

= 〈
v, v+〉

=
∫

RN

[
f (x,u) + mu

]
v+ dx �

∫
RN

[
f

(
x,u+) + mu+]

v+ dx

� (m + λ1 − δ)
∣∣u+∣∣

2

∣∣v+∣∣
2 + K

∣∣u+∣∣p−1
p

∣∣v+∣∣
p

= (m + λ1 − δ) inf
w∈−P

|u − w|2
∣∣v+∣∣

2 + K inf
w∈−P

|u − w|p−1
∣∣v+∣∣

p

� m + λ1 − δ

m + λ1
inf

w∈−P
‖u − w‖m

∥∥v+∥∥
m

+ K̃ inf
w∈−P

‖u − w‖p−1
m

∥∥v+∥∥
m

=
(

m + λ1 − δ

m + λ1
dist(u,−P) + K̃ dist(u,−P)p−1

)∥∥v+∥∥
m

and therefore

dist
(
A(u),−P

)
� m + λ1 − δ

m + λ1
dist(u,−P) + K̃ dist(u,−P)p−1.

This shows that A(∂(−Pε)) ⊂ −Pε for ε > 0 small enough, and a similar argument works for
the + sign. Now fix ε > 0 such that (3.3) holds for ε′ � ε. We then deduce that every critical
point in Pε (respectively −Pε) is nonnegative (respectively nonpositive). Moreover, according to
[14, Lemma 3.2], there exists a pseudogradient vector field V such that if ϕ(t, u) is the solution of

d
ϕ(t, u) = −V

(
ϕ(t, u)

)
, t � 0; ϕ(0, u) = u (3.4)
dt
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with maximal interval [0, T (u)) of existence, then

ϕ(t, u) ∈ ±Pε for all u ∈ ±Pε, 0 � t < T (u).

Consider

O± = {
u ∈ H : ϕ(t, u) ∈ ±Pε for some t ∈ (

0, T (u)
)}

, O = O+ ∩O−.

Then O is an open neighborhood of 0, O+ an open neighborhood of P , and O− an open neigh-
borhood of −P . As in [1,14], (A8) implies that

∂O ∩ P �= ∅, ∂O ∩ (−P) �= ∅, ∂O \ (O+ ∪O−) �= ∅,

and then it is standard to find a Cerami sequence in ∂O ∩O+, a Cerami sequence in ∂O ∩O−,
and a Cerami sequence in ∂O \ (O+ ∪ O−), which are also Palais–Smale sequences. If (A3)
holds, then by Theorem 1.1 every Palais–Smale sequence of Φ is compact. Thus one can find
a critical point in ∂O ∩ O+ which is a positive solution, a critical point in ∂O ∩ O− which is
a negative solution, and a critical point in ∂O \ (O+ ∪ O−) which is a sign-changing solution
of (1.1). If (A5) holds, then we get the same conclusion via Theorem 1.2. �
Remark 3.3.

(a) For a boundary value problem on a bounded domain, similar results as Theorem 3.1 are well
known. For Eq. (1.1) with a superlinear term, a similar result was obtained in [1].

(b) If assumption (A8) is replaced by lim inf|u|→∞ infx∈Ω
2F(x,u)

u2 > λk(Ω) for some open set

Ω ⊂ R
N , k � 2, and f is assumed to be odd in u, then an argument based on Ljusternik–

Schnirelman theory yields k −1 pairs of sign changing solutions in addition to a positive and
a negative solution. In fact, one can proceed similarly as in the superlinear case (cf. [1]), using
the compactness of Palais–Smale sequences (respectively Cerami sequences) established in
our main theorems.

(c) For a quite large class of Schrödinger operators S = −� + V , eigenvalues may also ap-
pear in gaps of the essential spectrum σess(S); see, for instance, [3,7]. In such a situation,
Theorem 1.1 provides compactness of Palais–Smale sequences provided that there exist
a, b ∈ σess(S) such that a < f∗∗ � f ∗∗ < b, σ(S) ∩ (a, b) = {λ1, . . . , λk} ⊂ σpp(S) and
λl < f∗ � f ∗ < λl+1 for some l ∈ {1,2, . . . , k − 1}.
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