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Both one-dimensional two-phase Stefan problem with the thermodynamic equili-
brium condition u(R(¢),t) =0 and with the kinetic rule u,(R.(¢),7) = eR.(¢) at the
moving boundary are considered. We prove, when ¢ approaches zero, R(f) converges
to R(¢) in C'+9/2[0, T for any finite 7> 0, 0<d<1. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Mathematical model of solidification that includes interface kinetics
effects have been considered for a long time (see [1-3]). This class of free
boundary problems, which arise in a number of physical situations, is that of
nonequilibrium problems, in which the phase change temperature is
dependent on the velocity of the front where the phase change occurs.
Here, we study a model problem with linear kinetic law at the interface in
the one-dimensional case. Specifically, let the curve x = R,(¢) with R,(0) =
b, (0<b,<1) be defined as the interface that separates the liquid and solid
phases. With u, denoting the temperature, we write the following
dimensionless form of the Stefan problem with the kinetic condition:

Ostty = Ot in 07, v 07, (1.1)
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where O = {(x,1):0<x<1, 0<t<T}, 07, = {(x,0): £ (x — Ry(1))<0, 0
<x<1,0<t<T}, subject to the initial and boundary conditions

u,(x,0) = up.(x), O<x<l, (1.2)
u(0,7) = f1(2), 0<t<T, (1.3)
u(1,¢t) = fo(1), 0<t<T, (1.4)

and the free boundary conditions

u(R:(1) + 0, 1) = u(R.(¢) — 0,1) = eR.(1), (1.5)
Oxtt(Ry(1) + 0, 1) — Byu(R,(1) — 0,1) = R(2), (1.6)
R.(0) = b,. (1.7)

In problem (1.1)—(1.7), u.(x,t) and R.(f) are unknown. Condition (1.5) is
called kinetic condition in which ¢ is a positive constant representing Kinetic
coefficient. If e = 0 in (1.5), problem (1.1)—(1.7) becomes the Stefan problem.
For the sake of simplicity, we call problem (1.1)—(1.7) as problem (P;) and
call problem (1.1)—~(1.7) with ¢ = 0 as problem (Py).

In this paper we study the property for the limit ¢ — 0. Firstly, we do
some review on this aspect. Visintin has proved the existence of the weak
solution for problem (P,) with Neumann boundary conditions, he also
proved, when ¢ — 0, possibly taking subsequences, that

u; > u  weakly star in L0, T;L*(0, 1)) n L*(0, T; H'(0,1)), (1.8)

R.(t) > R(®) weakly star in BV (0,7), (1.9)

where (u, R) is the weak solution of problem (Py) (see [4]). Xie proved the
classical solvability for problem (P,) globally in time. Under the assumption
of the monotonicity of the free boundary R.(¢), he proved that u,(x, ) and
R.(¢) coverage to u(x,t) and R(z) in the sense of uniform topology (see [5]).
Gotz and Zaltzman obtained (1.8) and (1.9) for problem (P;), they called
(u, R), which resulted from the limit procedure (1.8) and (1.9), the regular
solution. They found that if there is the same supercooling in the initial time
for each problem (P,), &> 0, then R(#) may not be continuous (see [6]).

If there is no supercooling in initial time for Stefan problem (Py), we prove
that R,(f) — R(f) in C'+%/2]0, T, possibly taking subsequences, for any finite
T>0, 0<d<a<1, without the assumptions of the monotonicity for the
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free boundaries R.(¢f). The important step is to consider the parabolic
problems

Ostty = Oxylly, x>0, 0<t<T, (1.10)

&0yu, — Uy = f(1), x=0, O0<t<T, (1.11)
u(x,0) =0, x>0, (1.12)
XETOC u(x, ) =0, 0<t<T, (1.13)

we will prove, using parabolic scaling technique, that
[ (x, t)|c1-x.(1+x>/2(QT) < C|ﬁ:(f)|c<l+1)/2[0,r]: (1.14)

where C is independent of ¢. Qr = {(x,#):0<x< 4+ 00, 0<t<T}, T can be
finite or 4o0.

In the next section, we present some preliminary results concerning the
existence, uniqueness of solution and the maximum principle. In Section 3,
we prove estimate (1.14). Section 4 is devoted to the convergence results for
R.(¢) and u,(x, ?).

2. PRELIMINARY RESULTS

LEMMA 2.1.  Let the functions fi(t), i = 1,2, ug.(x) satisfy the smoothness
assumptions

fit) e CHRY n L(RY), i=1,2, (2.1)
uge(x) € C'[0,b,] n C'[bg, 1] ~ C[O, 1],

uo(x) € C'[0,b] N C'[b, 1] n C[0, 1], (2.2)
and consistency conditions
S100) = u0.(0) = up(0),  /2(0) = uo(1) = up(1), (2.3)

then there exists a unique solution of problem (P,) for every &> 0, for some
T, > 0:

R()eC'0,T,),  u,eC(Qr,) nC>(0F,), (2.4)
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duu; € C(Qy M ix = 0,1,

either T, = +00 or min{R.(T;),1 — R.(T;)} = 0. (2.5)
Lemma 2.1 is proved in [5]. The following two lemmas are proved in [6].

LEMMA 2.2 (Maximum Principle). Under the assumptions of Lemma 2.1,

sup [u,| <max{sup [uol, sup | fi(Dl}, (2.6)
Or .1 1€(0,T),i=1,2
sup Jul Smax{sup uol, sup £}, (2.7)
0; (0,1) 1€(0,7),i=1,2

where u, and u are the solutions of problems (P;) and (Py), respectively.

In the following, we suppose

max {sup [u;|, sup [uol, sup | i)} < Mo, (2.8)
©,1) ©,1) 16(0,+00),i=1,2

where M is independent of .
LEMMA 2.3.  Suppose that the strict inequality
fil) >y, HLO< —y for t =0, for some y >0 (2.9)

hold under the assumptions of Lemma 2.1. Then there exist global solutions of
problems (P,) and (Py), i.e. T = T, = +00. Moreover,

n<R,(),R()<1 — 17 fort =0, for some n > 0. (2.10)

LEmMA 2.4 (Corollary 1, p. 705 of Gotz and Zaltzman [6]). Under the
assumptions of Lemma 2.3, assume

up(x)=0 in [0, 8], up(x) <0 in [b,1], (2.11)
then the solution (u, R) of problem (Py) is classical, i.e.

R(t)eC(0,T), ueC(Qr)nC>(0F),

e C(Q; )\ {x = 0,1},

where QF = {(x,): + (x — R(t))<0,0<x<1,0<t<T}.
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We denote C'+#(149/2 with o = 1 by C'*10+! This means the function has
bounded derivatives of first order with respect to ¢ and second order with
respect to x. The following results of existence, uniqueness and regularity for

Stefan problem is from [7].

LEMMA 2.5.  Under assumptions (2.1), (2.9) and (2.11), assume

uo(x) € C*[0,b] N C*[b, 1] N C[0, 1], O<a<l, (2.12)

/1(0) = up(0), /2(0) = uo(1), (2.13)
then problem (Py) has a unique global solution

R(t) € C'*12[0, T ~ C(0, T],

_ -4 —_
u(x, 1) € C(Qr) 0 C*1(QF) N C 4 (Qr) ~ CTHTY(Q))
with the estimate
|R(t)|cl+l/2[0,7‘] <M, (2.14)
[uaCx, f)|cl+|,o+1(Q;) + fu(x, t)|c1+1,o+l(Q;) <M, (2.15)

where MI,M2 dé’pend on |uolcl[0’b], |1/l()|Cz[b’1] and |fi|C1[0,T]’ i= 1,2

3. UNIFORM ESTIMATE FOR PARABOLIC EQUATIONS

In this section, we consider the following parabolic problems:

Oty = Oxxly + ge» x>0, O0<r<T, 3.1
e0yUy — Uy = fo, x=0, 0<r<T, (3.2)
us(x,0) = up:(x), x>0, (3.3)

lim  wu,(x,7) =0, 0<rt<T. 3.4)

X—+00
Denoting Q7 = {(x,#): x>0, 0<¢<T}, suppose that
gelx, 1) € L™(Qr), (3.5)
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Sty e CI2[0, 7], (3.6)
ug,(x) € C'**[0, +00) (3.7)
and consistency conditions
liIJ}l uge(x) = 0, (3.8)
1:(0) = 214, (0) — 105(0). (3.9)

THEOREM 3.1. Under assumptions (3.5)—(3.9), we assume that u. is the
solution of problem (3.1)—~(3.4). Then

|”é:|cl+x,(1+«)/2(fzr) < C(|gs:|L°°(QT) + |fs:|C(1+x>/2[0,T] + |”0::|C1+1[0,+o¢)), (3-10)
where C is independent of €. T can be finite or +00.

Proof. 1t is convenient to construct an auxiliary function v, which
satisfies

00; = Oul; + g, x>0, 0<t<T, (3.11)

00, = i (0), x=0, 0<i<T, (3.12)

vs(x, 0) = ugs(x), x>0, (3.13)

lim o,(x,7) = 0, 0<i<T, (3.14)

X——+00

Problem (3.11)—(3.14) satisfies the consistency condition and has a unique
solution v, € C!T*(0+9/2(Q;) (see [8]); moreover,

|Us|cl+z,(l+1>/2(()r) < C(|gs|L“(QT) + |u0£|C‘+“[O,+rx>))7 (3.15)

where C is independent of e.
Setting w, = u, — v,, we obtain

O Wy = O Wy, x>0, 0<t<T, (3.16)
oW, —w, = F, x=0, 0<t<T, (3.17)

we(x,0) = 0, x>0, (3.18)
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lim wy(x,f) =0, 0<t<T, (3.19)
X—+00

where
Fi(t) = fu(0) — &, (0) + 00, 1)
which satisfies, by (3.9) and (3.13),
F.(0)=0 (3.20)
and, by (3.15),
[F(Dlcasoro.r < CU felcornrnpo,ry + 19elio@p) + Mol oo 400))s  (3:21)

where C is independent of .
Taking a parabolic scaling in system (3.16)—(3.19), we define

X =¢&y, t=¢t
and
0:(y,7) = we(x, 1),
then

Owe(x,t) = s’zarﬁg(y, 1),
6xwél(x7 [) = 8718y9;;(y, T),

axxwe:(x’ t) = Sizayyes(y, I-)-
It follows that, from (3.16)—(3.19),

8.0, = 0,,0,, y>0, O0<t<T,=¢?°T, (3.22)

8,0, — 0, = F(*), y=0, 0<t<T, (3.23)
0,(»,0) =0, y>0, (3.24)
lim 6.(y,7)=0, 0<t<T,. (3.25)

y—>+00
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First, by the maximum principle, we have
10.(3, D~ < Ci P20~ po.1 (3.26)

where C; is independent of ¢ and 7. Then using the standard parabolic
estimate we obtain (see [9, p. 273, estimate (2.3)])

0.0 DIE T < GRS, (3.27)
where C, is independent of ¢, T and

016, =075, + 10g,"”.

(01207 =[0:015%, + [8,01%%, + [8,,017%,.

1+0/2) o/2 1+2)/2) o/2
6100 =[6:01%2 + 10,016 + 6,017,

7,Qr
|6(y15 T) B 9(}’2, ‘C)|

[0]%7 - (yl,r),s(lylzlj)r)efzr = peost
O, = sup @ Z0@mA
(T (12)eQr It — 72
A simple calculation shows that
[FEON 7 = e R 7, (3.28)
[0, D)1, = & Twal, 0, (3.29)

From (3.28), (3.29) and estimates (3.26), (3.27) we have the estimates

[We(x, DI~y < CLlF(Dl 0,75

Dwo(r, 01, < IR,

where C;, C, are independent of & and 7. Thus, we established a uniform
estimate

[ws(x, [)|C1+M1H)/2(QT) CIE(Dlcasnrpo,rps (3.30)

where C is independent of ¢ and T.
Combining estimates (3.30), (3.15) and (3.21), we complete the proof of
the uniform estimate (3.10). 1
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4. CONVERGENCE RESULTS

It is convenient to substitute (1.6) into (1.5) and we rewrite problem (P,;)
as follows:

Optty = Dyt in 0, U 07, (4.1)
us(x,0) = ugo(x),  0<x<l, (4.2)
u(0,1) = £1(2), 0<i<T, (4.3)
us(1,1) = fo(0), 0<i<T, (4.4)

u(R(1) +0,8) = uy(R(1) — 0,7)

= g[Ouu:(R:(1) + 0,1) — Oxup(R(2) — 0,1)], 4.5)
Bty (Ry(1) + 0, 1) — yus(Ry(6) — 0,1) = R.(1), (4.6)
R,(0) = b,. (4.7)

LEMMA 4.1.  For given R,(t) € C'[0, T] with R,(0) = b,, n <R ()< 1 — 1 for
some 1 >0 and IR; (t)|cl|[0 <G, where G is independent of &. u.x,t)e
C”“(”“)/z(Q ) N Clrel +“)/2(Q ) is the solution of the diffraction problem
(4.1)~(4.5). Then

|zl 1~ 0,y < Mo, (4.8)

|”::|C1+«,<1+1)/2(Q;1,) + |”8|C‘“-““’/2(Q;_,-,)

=2
<C <|MOE|C‘+1[0,b;,] + |toel creogp, 1) + Z |ﬁ|C‘[0,T]>s (4.9)

i=1
where My is defined in (2.8), C depends on G and n, but is independent of ¢.

Proof. The function u, may have local extremes inside the domain only
on the curve x = R,(¢). Therefore, (4.8) follows immediately from condition
(4.5) with positive constant e.

In the following, we establish estimate (4.9). According to the para-
bolic theory, we only need to prove the estimate near the boundary R.(¢). In
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order to do this, making a transformation of variables
y=x—R,(1), t=t,
and setting
e, 1) = u(x, 1) = us(y + Re(0), 1),
we find that (4.1), (4.2) and (4.5) become

Oivg = Oy, + R.0,v,, —R. ()<y<1—Ry(2),
y#0, 0<t<T,

Uz:(ya 0) - qu:(y + bz;)a *bz: <y< 1 - blI’

Us(+09 t) = US(_Oa t) = S[ayl)s(—f—o, t) - ayvﬁ(_oa t)]
Define

Uil)(y, 1) = v(—y,1), 0<y<R,(),

ng)(y’ t) = Us(ya t)a 0 <y< 1 - Rﬁ(t),
then v{V and v? satisfy, by (4.10)—(4.12), that

o) =a,, o) —RouD,  0<y<R.(t), 0<t<T,
o =0, + Ro,u?,  0<y<l—R(t), 0<t<T,
(3,0 = uo(~y +b),  0<y<b,
V3 (3,0) = uge(y + by), 0<y<l—b,

v(0,7) = v12(0, 1) = [0,012(0, 1) + 0,v11(0, £)].
Since for some # > 0,
R.(t)=n, 1 —R()=n for 0<t<T,
then we can define functions

w0 = O, 0+ 2,0,  0<y<ny, 0<<T,

(4.10)

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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w0 = oV, = vP(,0,  0<y<n, 0<i<T,
then w(l)(y,7) and w?(y, 1) satisfy, by (4.13)—(4.17), that

ow) = a,,wl) — Rla,w?, 0<y<py, 0<t<T,
ow? =a,w? +Raowl,  0<y<py, 0<t<T,
w(3,0) = uo(—y + be) + uoe(y + b),  0<y<n,
w@(,0) = uo(—y + by) — uos(y + b)), 0<y<n,
20,w1(0, 1) — w(0,1) = 0, 0<t<T,

w?(0,7) = 0, 0<t<T.

199

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

Let ¢(y) € C™[0,+00) be a cut-off function, such that ¢(y) =1, if 0<y<
n/3, ¢(y) =0, if y>25n/3. Multiplying (4.18)-(4.23) by ¢(y), denoting

0y, 1) = pW P (», 1), 02, 6) = P(PWD (1, 1), we have

80 = 3,00 + gDy, 0,  y>0, 0<t<T,
0(3,0) = Pluoc(—y +bo) + uoe(y + b)l,  y>0,
260,00(0,0) — 09(0,0) =0,  0<t<T,
809 =0,,0% + ¢P(y,0,  y>0, 0<t<T,
09(7,0) = Pluoc(—y +b) —uoe(y + b)), ¥>0,

020,00 =0, 0<t<T,
where

6,0 = 20w — ¢"w — R0, 07 + Rigw?,

97 (1) = =290, w — "W + R0,0,) — Rig'w(!.

(4.24)

(4.25)

(4.26)

4.27)

(4.28)

(4.29)
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Note that ¢' = 0 if 0< y<n/3 and y > 25/3, moreover |R,|<G, [w?|<M,,
i=1,2 by (4.8), so

2
198010 @r) < CUOW 13 < y<20/3) + 10,02~y + Mo),

1921~ 0, < C(|ayW,(,-2)|Lw(q/3<y<2n/3) + |ay91(:1)|L“(QT) + My),
where Q7 = {(y,1):0<y< + 00, 0<t<T},C depends on G and 7, but is
independent of e.
From the interior estimate up to the initial boundary for parabolic

equations (4.18) and (4.19) with the initial conditions (4.20) and (4.21), we
know that

|8ngi)|L’°(n/3<y<2;1/3) < C(lugylp 0.6,y + |tgglzm, 1) + Mo)s i=1,2,
where C depends on G and #, but is independent of &. From this we obtain

2
|g£1)|n(9,-) < C(|”63|LW(0,1;,,) + |“6;,|Lm(b,,,1) + |8y0£ )|L"<(Q»,~) + My), (4.30)

19712 < Clttgy 0. + sl ) + 10,0 |y + Mo). - (4.31)
Applying Theorem 3.1 to system (4.24)—(4.26) and using (4.30), we have
|0§;1)|C1+1v“7“)/2(§r) < C(|u0£:|C'+“[0,bh] + |u02:|C'+“[bh,1] + |6y0£2)|L”(Qr) + Mo) (432)

Note that system (4.27)—(4.29) is a Dirichlet initial boundary value problem,
using (4.31), we obtain

|05;2)|C1+“v“‘“>/2(§_2r) < C(|u08|C1+“[0,bH] + |u08|C1+“[bh,1] + |6y0§;1)|[1’“‘(9r) + MO) (433)
Summing up (4.32) and (4.33) and using interpolation inequalities

10,0210y OO crstonyyy + CONOP o)
<5|0£i)|cl+a,(l+a)/2(ﬁr) + C(0)M,, i=1,2,

for any 6 > 0, we arrive at

i=2
Z |3£l)|c1+«,<1+u>/z(g‘),) < C(|uoelcreego p,) + |toelcreapp, 1) + Mo)-
=1
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From the transformations of the functions, we obtain

[e (x, f)|c'+1,<1+1)/2(1e,;(t)7;1 <X<R,(1) + |ue(x, f)|c1+7~<'+7)/2(1e,.,(z)<x<R,;(z)+;1)
< C(|u()g|cl+a<[(),bg] + |I/l()g|cl+a[bm1] + M())

This completes the proof of Lemma 4.1. 1

In the following, we suppose that

ug, € C'2[0, b,] n C b, 1] ~ C[O, 1], (4.34)
l0e| 150,01 + 1t0el 1o, 17 < Mo + 1, (4.35)
b, — b, (4.36)

uge(bs) = elug,(+b;) — ug,(—b,)], (4.37)

where M, is defined in (2.15).

THEOREM 4.2 (Local Estimates). Under assumptions (2.1), (2.3), (2.9),
(2.11)—(2.13) and (4.34)—(4.37), (u.(x,t), R.(?)) is the solution of problem (P,).
Then there is a ¢ > 0, such that

[R:(D)|c1+2200,0) < Cs (4.38)

il erenaangy) + eloraniarg, )

i=2
<C<|uos|c'+1[o,bﬂ] + |”Oe|cl+r[b8,1] + Z |ﬁ|C'[0,0]t>9 (4.39)
i=1

where o and C depend on My, n, but they are independent of e.

Proof. In order to get the uniform estimates, we prove the existence
result again for problem (P,) using a new method from which we can get
existence and uniform estimates as well. To do this we define

7 = {Ry(t) € C'[0,0]; R(0) = be, Ri(0) = ug, (+.) — up,(=by), IR(DI<G},

where G =M, + 2, ag%Gn is determined later on. Since b,>n and
1 —b.2n, so R()#0,1, if t<%Gn. It is clear that & is a closed and
convex subset in C'[0, o].
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For given R.(t)e 2, let u.(x,t) e C(QU) be the unique solution of
diffraction problem (4.1)—(4.5) (see [10]). Moreover, by Lemma 4.1, we have

|t 1~ 0,) < Mo, (4.40)

elraeongr + el

i=2
< C<|M0s|cl+7[0,b,.,] + |uoel o, 1) + Z |ft|cl[0,a]>a (4.41)
—1

i=

where M, is defined in (2.8), C depends on G and #, but is independent of .
Following conditions (4.6) and (4.7), we define

R::(t) = bz; + /t[axuz:(Rf:(T) + 0» T) - a)cuz;(RJ:(ﬁl:) - 0: T)] dr.
0

From this definition and (4.41) we have

IR ()l coi0.07 = 105t(Ro(0) + 0,8) — Oxtty(Ro(1) — 0, 0)| g o1

i—2
< C<|u08|c1+z[o,bg] + |uoel crogp,1) + Z |ft|c'[0,a]>
pr)

= C(G), (4.42)

where C(G) represents a constant which depends on G.
Define a mapping % : 2 — C'[0,0] by

FR(D)] = Rs(t)~
Considering

IR (1) 110,07 < |R(8) — R (O)lp~po.07 + IR(0)]
= [R(1) — RA(0)| 0,01 + IRL(O)],

from (4.35) we know that |R.(0)| = |ug,(+b:) — up,(—bs)| <M> + 1, so

[R(0)] 10,07 < O-a/z'R;(t)'Cﬁﬁ[O,a] + M+ 1
<dPCG)+My+1  (by (4.42)).
1
Taking ¢%/2 = o we have
IR Ol <Mi+2 =G, (4.43)

so Z maps ¥ into itself.
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The proof of the continuity for the mapping & is standard, but needs a
long calculations, we omit the details.

Therefore, the Schauder fixed point theorem tells us that there is an R,(¢) €
9, such that

y[Rs(t)] = Rs(t)~

Finally, (4.38) follows by (4.42) and (4.39) follows by (4.41). We complete
the proof of Theorem 4.2. 1§

In the following, we devoted to get global estimates for R.(¢) and u.(x, t).
To do this, we suppose

Uoe <b2x) - up(x)  in C'*0, 5], (4.44)
1—-b  b-—0b, s
Uog (1 — ng + . b£> — up(x) in C' b, 1]. (4.45)

THEOREM 4.3 (Global Estimates and Convergence Results). Under the
assumptions of Theorem 4.2, we suppose (4.44) and (4.45), then for any finite
T >0, there exists gy > 0, such that if 0 <e< e,

|Rg(t)|C1+"//2[0’T] < C, 0< v <<a, (446)

|ug|C1+7,(1+~,,-)/2(Q;$ + |u8|C‘+?"“+7‘)/2(Q;,g)

i=2
<C<|u08|cl+"[0,bg] + ol creapp, 1 + Z |fi|cl[0,r]>, (4.47)

i=1

where C depends on M,,n and T, but is independent of ¢.
Moreover, possibly taking subsequences,

R.(t) = R(t) in C'"O12[0,T], 0<d<y, (4.48)

u(x,0) - u(x,t)  in C(Qy),

R _
U, (R_g((tt))x’ t) — u(x, ) in C”‘;’(H‘S)/z(Q;),
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" ( 1 —R() L RO = Ri(2)

N A48, (148) /20 A~
I—RM)" 1R ) ux,t) in CHON(Qy), (4.49)

where (u, R) is the solution of problem (P).

Proof. From the proof of Theorem 4.2, we find that the magnitude of
interval [0, ] for uniform estimates depends on four conditions: the positive
lower bounds of R.(¢) and 1 — R,(?); the magnitude of | fi|cio, 7}, i = 1,2; the
fact of b, — b; and the magnitude of |uo;|cixpp,) + [Uoelcroop, ;- When we
extend the estimates to ¢ > o, ¢ = o is the initial time. From Lemma 2.3, 5,
the positive lower bound of R.(¢) and 1 — R.(¢), is uniform with respect to &.
And | filcio, 7> i = 1,2, 1s also unchanged. Corresponding to b, — b, we have
R.(6) > R(s) by estimate (4.38). Can we control the magnitude of
[0 (x, @) o0 (o)) F [Ue(X, O)|croar,(5),1)7 We can make it if ¢ is small enough.
In fact, from (4.38) and (4.39) we have first, possibly taking subsequences,

R.(t) > R(?) in C'*P20,0], y<p<ao, (4.50)

u(x, 1) - u(x,t)  in C(Q,), 4.51)

where (u, R) is the solution of problem (Py) by (1.8), (1.9) and the uniqueness
of classical solution of Stefan problem (Py).
From (4.50) and (4.51), we have

Ry(0) = R(0), (4.52)

uy(x,0) = u(x,o) in C[0,1]. (4.53)
Moreover, by (4.50) and (4.39),

w(gegna) ~utna) in CHR@)L

", ( I~ R(@) . R(0) — Ry(0)

— 1 1+
1 —Rs(o)x 1 — R.(0) ’0> u(x, o) in C"*P[R(0), 1],

so there is ¢; > 0, such that if 0<e<g,

y <R(G) . G) (1 — R(0) N R(0) — R:(0) 0)
‘ R,;(G) ’ CHA[0,R()] ‘

1 - Rz;(a)x 1 - Rl:(a) ’
<ulx, o)1 riey + 1406 Ol gy + 1
<M, + 1,

+|u

CHF[R(a),1]
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considering R.(¢) — R(0), so when 0 <e<e <eg

[z (x, O crmp0,R, 0y T 1665 D crsir (00,11

(22,0) (ko ok )
‘ R.(0) ’ ‘

1
[~ Ri(o)  1-Ro)’ y
<M, + 2.

CHP[R(o),1]

+lu

X

C*F[0.R(0)]

In this way if we let u,(x, o) be initial value, then we can extend the uniform
estimates, except that o is replaced by f5, to the interval [o, 20]. Especially, we
have

IR:(Dl 14820500 < C, (4.54)
where C depends on M, and #. From (4.54) and Lemma 4.1, we obtain

|u3|C‘+/‘-“+/f)/2(Q:2r) + |ue|cl+/!.(l+/f)/2(Q;26)

i—2
< C<|u8(xa crispo.r, (o) T+ 1t (X O cresr,o).17 T Z |fi|C'[ri,2r;]>a (4.55)
=1

=

where Qai,zg ={(x,1): £ (x—R.(1)<0, o<t<2a}.

Combining (4.39) and (4.55), we obtain estimate (4.47) in the interval
[0,20] in which y is replaced by f. After finite steps, we arrive at estimate
(4.47) for any finite 7 >0, but C depends on T as well. Equation (4.46)
follows by (4.47) and Stefan condition (4.6). Equations (4.48) and (4.49) are
the consequences of uniform estimates (4.46) and (4.47).

We complete the Proof of Theorem 4.3. 1

Remark 1. Under the higher regularities and consistency conditions for
initial and boundary conditions, we can get uniform estimates

|Rg(t)|C2+',‘/2[0’T] < C, 0< v <a,

|uz:|C2+~,‘,1+;‘/Z(QJTr“) + |uz:|C2+7ul+:'/2(Q;ﬁ;)

=2
<C <|u08|c2+7[0,bu] + luoe|c2eapp, 1) + Z |fi|cl+1/2[0,7]>

i=1

and the corresponding convergence results.

Remark 2: If the linear kinetic law (1.5) is replaced by
B(u:(R:(2), 1)) = eR.(1),
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where f is a nonlinear function, then Visintin obtained weak convergence
results (1.8) and (1.9) as well (see [4]). We will consider its classical
convergence results in the future.

Remark 3. (Multi-dimensional Case). We want to generalize the method
and convergence result to the multi-dimensional case, at least locally in time.
But we find that it is impossible. Of course, Theorem 3.1 is also correct in
multi-dimensional case. Looking back at the proof of Theorem 4.2, it
depends on a very important fact, that is problems (P;) (i.e. (4.1)—(4.7)) and
(Po) (i.e. (4.1)—(4.7) with ¢ = 0) can be solved in the same framework as in
the one-dimensional case. In this case we have a possibility to get uniform
estimates (4.38) and (4.39).

Let us recall the methods of solving problems (P,) and (Py) in multi-
dimensional case. We denote the normal velocity of free boundary by 7.
Condition (1.5) in multi-dimensional case is

u =u; =¢el,. (4.56)

If free boundary has a graph representation y = g(x, 7), where x e R" !, m =
2,3, then

V= 0g/\/ 1+ Vgl

substituting it into (4.56), we obtain

609 = \/ 1+ VgPul (x,9(x, 1), )

or

6dig = \/ 1+ Vglu; (x,g(x, 1), 0);

it is a hyperbolic equation with respect to g(x, f) for known u* and u~. In the
case of fixed ¢ > 0, the pioneer work was done by Friedman and Hu [11], in
which a method of parabolic regularization was used. They proved that g
possesses the same spacial regularity as u and u,, and obtained the
corresponding estimate. It is clear that the estimate is not uniform with
respect to e.

As for problem (Pg), it was solved by Nash—Moser implicit function
theorem [12] or by Newton iteration method [13] or by introducing von
Mises variables [14]. So, in multi-dimensional case, the method of solving
problem (P;) is very different from the one of solving problem (Py). This
brings us a difficulty to get the uniform estimate with respect to &. We will
consider this open problem in the future.
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