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Revising the use of potassium (K) in the source apportionment of PM2.5 

Jorge E. Pachon 1,3, Rodney J. Weber 2, Xiaolu Zhang 2, James A. Mulholland 3, Armistead G. Russell 3

1 Universidad de La Salle, Programa de Ingeniería Ambiental, Bogota, Colombia
2 Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA, USA
3 Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA, USA

ABSTRACT
Elemental potassium has been extensively used as an indicator of biomass burning in the source apportionment of
PM2.5. We present a method to estimate the fraction of potassium associated with biomass burning (Kb) based on a
linear regression with iron that can be applied at any site where PM2.5 chemical speciation is available. The estimated
fraction has a significantly greater correlation with levoglucosan (R2=0.63), an organic tracer of biomass burning, than
total potassium (R2=0.39). We explore temporal and spatial variability of Kb over a period of six years in the Atlanta
area. Kb is larger in spring when biomass burning activity is more prevalent and during weekends due to the use of
fireplaces in winter and outdoor charcoal cooking in summer. Kb is the predominate form of potassium for the rural
site in this study. The use of Kb in a receptor model results in a lower fraction of PM2.5 apportioned to biomass burning
and a greater fraction to mobile sources when compared to the use of total K. Results suggest that Kb is a good
indicator of biomass burning.
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1. Introduction

Receptor models solve the mass balance equation with or
without the use of source profiles to estimate source impacts at a
receptor site. When source profiles are available, specific species
are often identified as indicator of sources, alone or in concert with
other species. For example, the elemental carbon (EC) to organic
carbon (OC) ratio is used to differentiate combustion sources (e.g.
gasoline and diesel vehicles, biomass burning) and potassium (K)
has been used to further differentiate the impact of biomass
burning (Lee et al., 2008; Pio et al., 2008; Watson et al., 2008).
When source profiles are not available, the same species can be
used to associate factors with emissions sources. Potassium, for
example, has been extensively used to apportion PM2.5 to biomass
burning in EPA–PMF model applications (Kim et al., 2003; Kim et
al., 2004; Liu et al., 2005; Marmur et al., 2005; Liu et al., 2006;
Marmur et al., 2006; Lee et al., 2009).

One disadvantage of using potassium in source apportionment
modeling by factor analysis is that this element has multiple
emission sources (e.g., wood smoke, soil dust, sea salt, coal fire,
industry and meat cooking) (Andreae, 1983; Watson and Chow,
2001; Watson et al., 2001). Zhang et al. (2010) indicated that
soluble potassium (K+) concentrations do not exhibit the seasonal
trends expected if it is dominantly from biomass burning. They also
found a low correlation of K+ with fire counts from satellite data.
Several studies have proposed that organic tracers, such as
levoglucosan and retene, can be used as a biomass tracer instead
of K (Lewis et al., 1988; Simoneit et al., 1999; Jordan et al., 2006;
Puxbaum et al., 2007). Levoglucosan was found highly correlated

with satellite fire counts when biomass burning emissions are
expected to be mainly from outdoor burning (Zhang et al., 2010)
and retene concentrations were found greater in March and
December when prescribed fires and residential wood burning are
more intense than other months (Li et al., 2009). Unfortunately,
measurements of these organic compounds are not as widely
available as potassium.

Attempts to estimate the fraction of potassium from biomass
burning have used relationships between K and other metals.
Andreae (1983) defined excess potassium as the portion not
attributable to sea salt or soil dust in aerosol samples collected on
a cruise in the Atlantic Ocean. The excess potassium was estimated
as K’=K–0.75xCa. The K/Ca ratio of 0.75 was the best fit in the
coarse fraction (Dp>2 μm). In that study Ca was selected for its
abundance in sea salt. The K’ fraction showed a similar temporal
trend to soot and was attributed to biomass burning emissions
from land (fire wood, waste incineration, agricultural burning).
Lewis et al. (1988) estimated a soil–corrected potassium as
K’=K–0.45xFe. The K/Fe ratio of 0.45 was the average of samples in
the coarse fraction taken in a residential area in Albuquerque, NM.
The K’ fraction had a maximum value at night because of
residential wood burning. Miranda et al. (1994) used a similar
approach defining non–soil K (NSK)=K–0.52xFe, then applying K/Fe
ratio of coarse soil. Using ratios of K/Ca and K/Na, Pio et al. (2008)
estimated potassium not associated with sea salt and soil particles
as Kbb=K–0.036xNa–0.12(Canss–Cabb) and is proposed to be related
with biomass combustion. In this expression, Canss refers to non
sea–salt calcium and Cabb refers to Ca emitted in biomass burning.
The use of Si in the identification of K from biomass burning was
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used by Lewis et al. (2003) who defined potassium tracer for wood
burning as Kw=K–0.15xSi assuming a potassium soil source
contribution equivalent to 0.15 times elemental silicon. The
application of Kw in a source apportionment exercise resulted in
good agreement between two independent receptor models.

Though these methods have been successfully employed to
estimate K in biomass burning emissions, they have not directly
compared the use of K and the fraction of K from biomass burning
in the source apportionment of PM2.5 in urban regions where
biomass burning can greatly impact air quality. In the Atlanta area,
for example, biomass burning was estimated to contribute
between 1.72 and 3.68 μg/m3 to PM2.5 (6–22% of total PM2.5 mass)
(Kim et al., 2003; Kim et al., 2004; Liu et al., 2005; Liu et al., 2006;
Lee et al., 2008). Biomass burning also emits carbonaceous
material (EC and OC) that can be difficult to apportion in heavily
traffic impacted areas without the use of accurate source profiles.
The OC/EC ratio has been used to confirm the profiles of biomass
burning and mobile sources, since biomass burning usually has
higher OC/EC ratios (7–15) (Lee et al., 2005; Pio et al., 2008) than
gasoline (3.0–4.0) or diesel vehicles (<1.0) (Lee and Russell, 2007;
Zheng et al., 2007).

The objective of this study is to estimate the fraction of
potassium associated with biomass burning (here called Kb) in the
PM2.5, using a relationship between K and a species (M) that shares
similar sources with K except biomass burning. From previous
studies, Fe or Ca can be used for M. We examine temporal and
spatial variability of Kb and compare Kb concentrations with
levoglucosan concentrations. Finally, we assess the changes in
source apportionment of PM2.5 when PMF is implemented with Kb
instead of total K.

2. Methods

This work follows six steps to estimate the Kb fraction as an
indicator of biomass burning activity: (i) site description and air
quality data collection, (ii) estimation of the Kb fraction, (iii)
assessment of temporal and spatial variability of the Kb fraction,
(iv) evaluation of the relationship between Kb and organic tracer
levoglucosan, (v) assessment of changes in source apportionment
and (vi) comparison with similar studies.

2.1. Site description and air quality data collection

PM2.5 speciation data was obtained at the Jefferson Street
(JST) site in downtown Atlanta from 1999–2007. JST is part of the
SEARCH project and description of the network is found elsewhere
(Hansen et al., 2003; Edgerton et al., 2005). Data treatment of
missing data and values below method detection limits (MDL) was
performed as suggested by Hansen et al. (2003). Briefly, for data
below MDL, the concentrations were replaced with the value
MDL/2 and the uncertainty was set as (5/6)xMDL. For missing data,
concentrations were replaced by the geometric mean and the
respective uncertainty was set at four times that of this mean
concentrations. The PM2.5 species considered in the analysis are:
NO3

–, SO4
2–, EC, OC, Al, Si, K, Fe, Ca, Br, Se and Zn. For NO3

–, SO4
2–,

EC and OC, no values were below MDL; for Si, K, Fe and Zn the
values below MDL were less than 1%, for Ca (5%), Br (8%), Al (8%)
and Se (40%). A total of 2 586 samples were available with
concentrations above MDL in the period 1999–2007. Water soluble
ions (SO4

2–, NO3
–) were measured using ion chromatography (IC)

using a Dionex ion chromatography system (DX–500).
Carbonaceous species (EC and OC) are measured on 24–hr PM2.5
samples using quartz filters from a particle composition monitor
(PCM) and analyzed by the thermal–optical reflectance (TOR)
method at the Desert Research Institute (DRI) following the
Interagency Monitoring of Protected Visual Environments
(IMPROVE) protocol (Chow et al., 1993). Trace elements were
measured via X–ray fluorescence (Al, Si, K, Fe, Ca, Br, Se, Zn).

Two additional monitoring sites in the area are considered in
this study: South DeKalb (SD) and Yorkville (YKV). SD is part of the
Speciation Trends Network (EPA–STN) and is located 15 km
southeast from JST. SD is 200 m away from a major interstate with
significant heavy–duty traffic. YKV is a site operated by the SEARCH
project located 60 km west of JST and classified as a rural site. Air
quality sampling at SD was conducted every three days and at YKV
was conducted daily from 1999–2003 and every three days from
2004–2007. After applying a similar treatment for missing data and
values below MDL, a total of 783 samples were available for SD in
the period 1999–2007 and 1 247 samples at YKV.

2.2. Estimation of the Kb fraction in association with an exclusive
non–biomass burning source indicator species (M)

Factor analysis is used to examine the variability in PM2.5 data
and identify species (M) that share similar sources with K but are
not emitted by biomass burning. The statistical package R
(R Development Core Team, 2011) is used. The number of factors is
selected based on the number of eigenvalues greater than one and
the overall statistical fit of the analysis. The association of factors
with PM2.5 emissions sources is conducted based on the analysis of
factor loadings (i.e., correlations between factor scores and the
original species).

After an associated species (M) is identified, linear regression
between total K and M, based on the 2 586 samples, is used to
estimate the fraction of potassium from common factors and
excess potassium [intercept in Equation (1)]. Daily estimates of Kb
can then be obtained using the regression results and total
potassium [Equation (2)].

Ki = a + bxMi (1)

(Kb)i = Ki – bxMi (2)

where the i subscript is used for the ith sample. One condition that
this estimate should satisfy is that (Kb)i>0 in all cases. If (Kb)i<0 for a
particular day, (Kb)i is set to zero. The error in the Kb variable can
be estimated by propagating the errors from Equation (2).

(3)

where k and M are the measurement uncertainties in the K and
M species respectively, and b is the uncertainty in the regression
slope. To evaluate b we have implemented a bootstrapping
technique in which we evaluate the slopes and intercepts of 10 000
bootstrap samples and compute b as the standard deviation.

2.3. Assessment of temporal and spatial variability of Kb

Daily and seasonal trends of K and Kb are examined at the JST
site. Air quality data from SD and YKV were included for the
assessment of spatial variability. To explore the variability in
combustion source impacts between sites, we apply factor analysis
again, but this time including only the following species: EC, OC, K
and Fe, measured at JST, YKV and SD. Kb at YKV and SD was also
estimated similarly to Kb at JST [Equations (1) and (2)], but using
site–specific values of the slope “b”. Kb was also included in the
inter–site variability analysis. In addition, correlation between K
and Kb for each pair of sites is assessed as part of the spatial
variability analysis.

2.4. Evaluation of the relationship between Kb and organic tracer
levoglucosan

Levoglucosan is often used as a tracer for biomass burning.
Levoglucosan concentrations were available during 2007 from
PM2.5 filters collected from the EPA–STN monitoring sites in the
Southeastern US (Zhang et al., 2010). Because JST is not an EPA–
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STN site, surrogate data from the SD site was used. Similar
emission sources at JST and SD and the relatively short distance
between sites supports the use of SD levoglucosan as a surrogate
for JST levoglucosan. These concentrations were compared with
the estimated Kb fraction at JST. Ratios between levoglucosan and
potassium (K and Kb) are estimated and compared with ratios from
biomass burning samples.

2.5. Assessment of changes in source apportionment using Kb

Changes in source apportionment of PM2.5 are assessed when
Kb is used instead of K in EPA–PMF v.3.0 (Norris and Vedantham,
2008). SO4

2–, NO3
–, NH4

+, EC, temperature–resolved OC1 through
OC4, Al, Si, Ca, Br, Mn, and Zn were selected as strong species,
while Cu, Pb, and Se were selected as weak species. Two cases
were compared: the first included K as a strong species, while the
second considered Kb as a strong species. Since K constitutes less
than 1% of the PM2.5 mass, it is expected that changes in the PM2.5
if any are a result of the redistribution of major species associated
with combustion. PMF was run from 1999–2004 only to better
compare PMF results with local studies conducted mainly from
1998 to 2002.

2.6. Comparison with similar studies

Comparing source apportionment results from PMF with
previous studies is challenging. First, differences in source impacts
from different time periods may be influenced by the
implementation of controls or economic considerations. Secondly,
data treatment (e.g. methods by which the missing days and
samples below the detection limit are treated and uncertainty is
estimated) vary considerably, resulting in different factor impacts
in PMF. Third, the association of factors in PMF with emission
sources is subjective; thus, species used as indicators of a
particular source may change with time. Reff et al. (2007) offers a
more complete review of methodological details in PMF. Here,
local studies with similar conditions were compared to our PMF
results using K (PMF–K) and Kb (PMF–Kb) to examine whether using
Kb can improve source apportionment results.

3. Results

3.1. Development of a method to estimate K from biomass
burning

The application of factor analysis to the JST data resolved four
factors with eigenvalues greater than one leading to a good
statistical fit (p–value<0.01), explaining 67% of the total variance.
The interpretation of the factors was conducted based on the most
significant species in each factor (highlighted in bold in Table 1a,
base case): soil dust factor (F1) has high correlations with Al and Si,
traffic factor (F2) with EC and OC, biomass burning factor (F3) with
K and Br, and secondary sulfate factor (F4) with SO4

2–. It is worth to
note that these factors are a combination of various different
sources and should not be interpreted as the actual emission
sources. Nevertheless, K has the strongest correlation with F3, but
significant correlations with F1 and F2 as well, suggesting multiple
sources of potassium.

Fe and Ca have significant loadings on F1, since they are
crustal elements. In addition, these elements are also observed in
F2, likely due to the presence of Fe and Ca in mobile source
emissions (e.g. from brake dust, tire wear, road dust and engine
oil) (Majestic et al., 2009). The correlations between Fe and Ca
with F3, however, are poor, suggesting that Fe and Ca are not
significant constituents of biomass burning emissions. This result is
consistent with the chemical composition of PM2.5 from prescribed
burning emissions, where Ca and Fe are typically found in low
percentages in the PM2.5 mass (<0.1%) compared to K (0.57%) (Lee
et al., 2005). Based on this result, Fe or Ca can be used to identify
the fraction of potassium largely associated with traffic and soil
dust rather than biomass burning [i.e., Fe or Ca serves as the M
species in the linear regression in Equation (1)]. These results
support the use of Fe and Ca in PM2.5 for source attribution to
improve the use of K as biomass burning tracer as previously
proposed in the coarse fraction by several studies (Andreae, 1983;
Lewis et al., 1988). However, in coastal areas, Ca should be
included to subtract the influence of sea–salt as shown by Pio et al.
(2008).

Table 1. Factor loadings using K and Kb (factors denoted with prime) for the 4 factor solution at JST. Most influential
species are highlighted in bold

(a) Factors using regular K (Base Case) a (b) Factors using Kb
a

Species F1 F2 F3 F4 F1’ F2’ F3’ F4’

NO3 0.16 0.08 0.45 0.09 0.16 0.18 0.36 0.11

SO4 0.08 0.08 0.08 0.99 0.08 0.08 0.05 0.99

EC 0.10 0.88 0.26 0.17 0.10 0.90 0.13 0.16

OC 0.12 0.71 0.46 0.24 0.12 0.78 0.35 0.22

Al 0.95 0.03 0.05 0.04 0.95 0.03 0.04 0.04

Si 0.99 0.09 0.02 0.01 0.99 0.08 0.02 0.01

Fe 0.67 0.65 0.11 0.13 0.66 0.69 0.05 0.11

Ca 0.58 0.43 0.01 0.09 0.58 0.43 0.07 0.09

K 0.41 0.35 0.67 0.13

Kb 0.02 0.07 0.87 0.05

Br 0.01 0.27 0.60 0.14 0.00 0.40 0.46 0.11

Se 0.02 0.16 0.10 0.39 0.01 0.19 0.04 0.38

Zn 0.07 0.54 0.30 0.11 0.06 0.59 0.19 0.10

Variance 0.24 0.20 0.12 0.11 0.23 0.22 0.11 0.10

Cumulative 0.24 0.44 0.56 0.67 0.23 0.45 0.56 0.66
a F1 and F1’ represent soil dust; F2 and F2’ represent mobile sources; F3 and F3’ represent biomass burning;
F4 and F4’ represent secondary sulfate.
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The linear regression of K with Fe and Ca for all data (1999–
2007) gives the following results:

K = 30.2 (±0.98) + 0.37 (±0.01)xFe R2=0.35 (4)

K = 40.6 (±1.69) + 0.41 (±0.04)xCa R2=0.15 (5)

where K, Fe and Ca are expressed in ng/m3 and the uncertainties
are the standard deviation of the slope and the intercept
calculated over 10 000 bootstrapped samples. A more significant
correlation (lower standard error of the regression coefficients and
higher R2) with K is observed for Fe rather than Ca. Furthermore,
the use of Ca to estimate Kb resulted in more cases of Kb<0 (23% of
the days vs. 4% using Fe). For this reason, our analysis was based
on the separation of K with Fe as Kb=K–0.37xFe with a R2=0.35
(p–value<0.01). The apparently low strength of the correlation is
explained given that a large fraction of the K comes from other
sources that do not emit Fe and is used in this work to separate
potassium from different sources. The goodness of fit of the model
in Equation (4) was evaluated using a Chi–squared test. The results
were X2=6 914 with 2 584 degrees of freedom and a p–value<0.01,
which demonstrate a good statistical fit. The intercept of Equation
(4) (30.2 ng/m3) represents the average amount of potassium from
factors other than traffic and soil dust, e.g. biomass burning. The
slope (K/Fe) of 0.37, exclusive for this site, is slightly lower than
those reported in previous studies (0.45–0.52) in the coarse
fraction (Lewis et al., 1988; Miranda et al., 1994) which is explained
by lower potassium concentrations in the PM2.5 fraction or
differences in soil composition.

The estimated Kb is used instead of K in a new application of
factor analysis. The number of factors and their association with
emissions sources is similar to the base case (F1’–soil dust, F2’–
traffic, F3’–biomass burning, F4’–secondary sulfate in Table 1b),
but some important changes are highlighted. The correlation of Kb
with F3’ (R2=0.87) is larger than the corresponding correlation of K
with F3 (R2=0.67), denoting a better separation of the biomass
burning factor. Kb is not correlated with F1’ or F2’ which suggests
little to no influence of soil and traffic dust on Kb. The total
variance (approximately 67%) explained by the four factors is
maintained in both cases.

3.2. Assessment of temporal variability of K and Kb

Daily estimates of Kb at JST in Atlanta were obtained from
1999 through 2007. Approximately half of the PM2.5 potassium
loading is from biomass burning (Table 2) which implies that the
other half is associated with soil and traffic dust. These results are
in agreement with local source profiles where potassium is
associated with multiple sources (Marmur et al., 2007).

K concentrations are similar during weekdays and weekends,
whereas Kb concentrations are larger during weekends, possibly
due to the use of fireplaces during winter and more intense yard
waste and charcoal cooking during summer. K is largest in fall and
winter, while Kb is largest in winter and spring. During spring, and
particularly in March and April, prescribed burning activities
around Georgia are more intense (Li et al., 2009). In summer,
biomass burning is expected to be less pronounced (Tian et al.,
2008; Zhang et al., 2010) and Kb is lowest during this season. The
spring/summer ratio is higher for Kb than K, which is more
consistent with observed biomass burning activity.

Table 2. Temporal trends of K and Kb at JST

K Kb

Average 1999 2007 (ng/m3) 57.6 30.4
Standard deviation (ng/m3) 33.2 26.7

Weekend/weekday ratio 0.97 1.23

Seasonal
averages
(ng/m3)

Winter (December February) 62.4 35.8
Spring (March May) 58.6 32.3
Summer (July September) 45.5 18.4
Fall (October December) 64.0 29.9

Spring/Summer ratio 1.3 1.8

3.3. Assessment of spatial variability of K and Kb

The regression of K with Fe for the JST site is compared to
results for the SD and YKV sites (Table 3). The correlation between
K and Fe is significantly lower at YKV, yet statistically significant
(R2=0.18, p–value<0.01) compared to JST and SD, and suggests that
only 18% of the variability of K is explained by common sources
with Fe. Although the K/Fe ratio is location–specific, the slope is
approximately the same for JST and SD and larger for YKV due to
relatively large concentrations of K with respect to Fe at this rural
site.

The fraction of Kb to K is the largest at YKV, confirming that a
significant amount of potassium is associated with biomass burning
at this rural site. This fraction explains the low correlation
coefficient between K and Fe, the latter species more associated
with soil and traffic dust. At the three sites, Kb/K ratios are greater
in winter than summer in concordance with more intense biomass
burning in winter. The 82% of the K being estimated as Kb for YKV
suggests that separation of potassium at rural sites is not as critical
as in urban sites.

The application of factor analysis using only EC, OC, Fe and K
species at the three sites resulted in four factors explaining a
variance between 75% and 78% when Kb or K were considered
respectively (Table 4). This cumulative variance is larger than
applying factor analysis with all species at three sites with a total
variance of 57% when four factors are considered (Table S1 in the
Supporting Material, SM). Although the interpretation of the
results with 36 variables is more complicated and vary with respect
to application with four species, results were comparable to Table
4. Analyses of inter–site variability suggest that carbonaceous
species (EC, OC) are more similar between JST and SD (higher
loadings in F1) than YKV and is explained by a significant influence
of traffic at the urban sites, while EC and OC at YKV have an
independent source (higher loadings in F3) attributed to biomass
burning. F2 explains the shared variability between K at the three
sites with similar correlations that denotes a low spatial variability
of total potassium.

When Kb is included in the analysis instead of K, a similar
interpretation of F1’ and F3’ factors is observed, this is, F1’ explains
the variability of traffic impacts at JST and SD, whereas F3’ explains
the influence of biomass burning impacts at YKV. However, Kb has a
higher correlation with F2’ at JST than YKV and SD, denoting a
greater spatial variability of Kb compared to K. Kb has a stronger
association between JST and YKV (R2=0.60) while correlations of Kb
between JST–SD (R2=0.45) and YKV–SD (R2=0.36) are lower.

Table 3. Results of regression K=a+bxFe for the three sites

Slope “b”± std error Intercept “a” ± std error (ng/m3) R2 K (ng/m3) Kb/K (summer winter)
JST 0.37 ± 0.01 30.2 ± 0.98 0.35 57.6 0.46 – 0.58
YKV 0.45 ± 0.04 33.3 ± 1.17 0.18 45.0 0.61 – 0.79
SD 0.32 ± 0.02 31.8 ± 1.78 0.32 59.0 0.34 – 0.49
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Table 4. Factor loadings using K and Kb (factors denoted with prime) for three sites in the Atlanta area. Most influential
species are highlighted in bold

(a) Factors using regular K a (b) Factors using Kb
a

F1 F2 F3 F4 F1’ F2’ F3’ F4’
JST EC 0.89 0.14 0.21 0.00 0.95 0.03 0.22 0.04

OC 0.75 0.32 0.37 0.02 0.77 0.24 0.35 0.09
Fe 0.71 0.17 0.08 0.56 0.72 0.12 0.12 0.49
K 0.45 0.78 0.19 0.18
Kb 0.14 0.91 0.11 0.09

YKV EC 0.19 0.14 0.62 0.02 0.23 0.14 0.63 0.03
OC 0.21 0.22 0.93 0.18 0.23 0.19 0.92 0.24
Fe 0.01 0.27 0.05 0.81 0.06 0.03 0.08 0.69
K 0.12 0.79 0.28 0.31
Kb 0.26 0.77 0.25 0.03

SD EC 0.74 0.24 0.16 0.16 0.76 0.12 0.14 0.25
OC 0.59 0.41 0.45 0.03 0.60 0.34 0.42 0.22
Fe 0.60 0.29 0.10 0.62 0.62 0.01 0.07 0.78
K 0.29 0.79 0.16 0.22
Kb 0.09 0.76 0.09 0.17

Variance 0.29 0.21 0.15 0.13 0.29 0.19 0.14 0.13
Cumulative 0.29 0.50 0.65 0.78 0.29 0.48 0.62 0.75

a F1 and F1’ represent mobile sources at JST and SD; F2 and F2’ represent biomass burning at the three sites; F3 and F3’
represent combustion sources at YKV; F4 and F4’ represent a source associated with Fe.

3.4. Inclusion of K into source apportionment using PMF

PMF was run using the available species to find seven, eight
and nine factors, evaluating at each run the value of the
optimization parameters Qrobust and Qtrue, the correlation between
predicted and observed species, as well as the different values of
factor profile rotation FPEAK parameters (–1.0, –0.5, 0.1, 0.5, 1.0).
The seven–factor solution lacked of a secondary ammonium factor
and the correlation between predicted and observed NH4

+ had an
R2=0.76. With an eight–factor solution, the secondary ammonium
factor was resolved and the correlation between predicted and
observed NH4

+ increased to R2=0.97, similar to that found for
nitrate and sulfate. The nine–factor solution created one factor
with only OC1 species with no physical interpretation. For the
previous reasons, the eight–factor run was selected and secondary
sulfate and secondary ammonium were added into one SULF factor
for comparison with other studies where sometimes more than
one secondary sulfate source is identified.

PMF–K and PMF–Kb were run independently at JST solving for
eight factors in each case. Resolved factor profiles are included in
the SM (Figure S1). In both cases, the correlation between PM2.5
estimated and predicted was R2=0.88. Factors were associated
with secondary sulfate (SULF), secondary ammonium (add it to the
secondary sulfate), secondary nitrate (NITR), soil dust (SOIL),
gasoline vehicles (GV), diesel vehicles (DV), biomass burning
(BURN) and industrial source (IND). The distinction between GV
and DV loadings is conducted based on the following findings: the
OC/EC ratio is higher for GV (3.8) than DV (0.90); GV source
impacts had a larger correlation with carbon monoxide (R2=0.92)
than DV (R2=0.59); GV has larger concentrations of OC2, OC3, and
OC4, commonly identified with light duty gasoline vehicles
emissions (Kim et al., 2004; Cao et al., 2006).

Gasoline and diesel vehicles were grouped into a mobile factor
(MOB) since major species (EC, OC) are present in both GV and DV
factor profiles and we found that separation of factor impacts
using the thermal fractions of OC is problematic. The lumped
mobile factor also facilitates comparison with other studies. Kb is
almost exclusively apportioned to the biomass burning factor,
compared to K which is apportioned to multiple sources (Figure 1),
supporting the use of Kb as a better indicator of biomass burning
impacts. The lack of K–contribution from the combined MOB factor
can be explained by potassium apportioned to the soil dust factor
which can include re–suspended dust from mobile sources. This
can be supported by the low amounts of soil–derived elements

such as Al, Si, Ca, and Fe in the factor profiles of GV and DV (see
the SM, Figures S1a and S1b).

The major difference between PMF–K and PMF–Kb is in the
apportionment of PM2.5 to biomass burning and mobile factors
(Figure 2). The biomass burning impact decreases from 2.67 μg/m3

in PMF–K to 1.40 μg/m3 in PMF–Kb (reduction of 47%) while the
mobile source impact increases from 3.23 μg/m3 in PMF–K to
4.55 μg/m3 in PMF–Kb (increase of 41%). Soil factor also increases
in 23%.

Figure 1. Distribution of potassium (K) and estimated potassium from
biomass burning (Kb) among emission sources at JST.
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Figure 2. PM2.5 apportionment using K and Kb as indicator species for
biomass burning.

Since K constitutes less than 1% of the PM2.5 mass, the
changes in the PM2.5 apportionment are attributed to the re–
distribution of major species in the factors. EC, and especially OC,
had the largest changes when PMF is implemented with Kb
(Figure 3). EC from BURN is apportioned to GV while OC from
BURN and SOIL is redistributed to GV and DV. This re–distribution
is explained by the change in correlations between major species
used to resolve the factors. The correlation between OC and K
(R2=0.31) decreases with Kb (R

2=0.10) resulting in a transfer of OC
from BURN to MOB where the correlation between OC and EC is
higher (R2=0.66). Similar changes in correlations are observed
between factor contributions and major species (see the SM,
Table S1) supporting the previous analysis. The OC/EC ratio for
biomass burning increases from 4.1 in PMF–K to 5.1 in PMF–Kb
more consistent with OC/EC ratios found in biomass burning
emissions (Lee et al., 2005).

Figure 3. Changes in carbonaceous species (EC and OC) estimated as the
contribution in PMF K minus the contribution in PMF–Kb.

PMF was also applied to a set of data at SD and YKV to assess
the influence of Kb at other locations. At SD, the inclusion of Kb in
PMF resulted in an increase of 3% of the PM2.5 apportioned to
mobile sources. There was little change in PM2.5 from biomass
burning, but Kb was apportioned almost exclusively (90%) to the
biomass burning factor in comparison of the apportionment of K to
the same factor (50%). At YKV, the inclusion of Kb resulted in an
increase of 4% of the PM2.5 mass apportioned to biomass burning,
and a decrease in 3% of the PM2.5 mass in the mobile factor.
Similarly to SD and JST, Kb is apportioned almost exclusively to the
biomass burning factor (83%).

3.5. Evaluation of the correlation with levoglucosan

Levoglucosan was more strongly correlated with the
estimated Kb fraction (R2=0.63) than the total potassium (R2=0.39)
during winter of 2007. The intercept of the regression between
levoglucosan and Kb (18.5 ng/m3) is half of the value of the
intercept with K (41.5 ng/m3). The low intercept suggests that the
influence of non–biomass burning sources is greatly reduced. The

regression not passing through zero is consistent with levoglucosan
loss processes in the atmosphere and variation in the fraction of
levoglucosan in biomass burning emissions. The regression slopes
of K and Kb with levoglucosan were both about 0.15. These slopes
are similar to the K/levoglucosan ratio of 0.1 found in samples
taken during biomass burning campaigns in Georgia (Lee et al.,
2005). Puxbaum et al. (2007) report that K/levoglucosan ratios <0.2
are associated with domestic heating with wood in the US. It is
expected then both prescribed fires and wood smoke from
fireplaces impact the receptor at JST, supporting the greater
weekend/weekday ratio for Kb due to the use of fireplaces
observed during the winter.

We also used levoglucosan in a multivariate linear regression
between K as independent variable and Fe and levoglucosan as
dependent variables, for the days in which levoglucosan and Fe
were available at the same time (30 days in 2007). The multilinear
regression resulted in a R2=0.80 (p<0.01) showing a strong
correlation and suggesting that 80% of the variability of K can be
explained by factors associated with soil dust, traffic and biomass
burning.

3.6. Comparison with similar studies

The use of Kb in PMF at JST resulted in 9% of the PM2.5 mass
apportioned to biomass burning versus 16% using total K from
1999–2004 at JST (Table 5). Both estimates are within the range
found in other studies (7–22%). Our estimate of the mobile source
impact (28%) is larger than previous studies (17–22%) which may
be more realistic for a source that is ubiquitous in Atlanta. Analysis
of emission inventories shows that 92% of EC emissions in the
metro area are from mobile sources and approximately 50% of the
primary PM2.5 is emitted by vehicles (Georgia–DNR., 2007). Such
large emissions explain the large impact of vehicles to ambient
PM2.5. The application of CMB in Atlanta, using specific source
profiles for mobile and biomass burning sources, found that mobile
sources contribute approximately 4.0 μg/m3 (22%) to total PM2.5
mass and biomass burning contributed 1.2 μg/m3 (6.7%) (Lee et al.,
2008), similar to here. The same study also points out the
overestimation of biomass burning impacts and underestimation
of mobile source contributions by PMF.

4. Implications

This study finds that a simple transformation of ambient
potassium leads to an indicator that is more strongly associated
with biomass burning activities and produces significant changes in
the source apportionment of PM2.5. This is a site–specific result,
but the Kb fraction can be estimated at any monitoring site where K
and Fe concentrations are available, for example, any of the EPA–
STN sites throughout the US, not impacted by sea–salt (a simple
extension can treat sea salt as well). Future studies of source
apportionment may benefit from the use of Kb instead of K. In
areas where measurement of levoglucosan and water–soluble
potassium are not available, Kb constitutes a good indicator of
biomass burning.

Health studies can also benefit from the use of Kb.PM2.5 from
mobile sources and biomass burning has been associated with
cardiovascular diseases (CVD) and EC and OC have been found to
have somewhat stronger associations with CVD outcomes than
other species (Sarnat et al., 2008; Peng et al., 2009). However,
similar characteristics of traffic and vegetative burning sources
profiles do not permit precisely delineating between the health
impacts of these sources and it is suggested that mobile sources
might have influenced the association of biomass burning with CVD
(Sarnat et al., 2008). Our results suggest that Kb can help to
differentiate the health impact of these sources, since the use of Kb
in source apportionment produces a redistribution of EC and OC
from biomass burning to mobile sources. The evaluation of PMF–Kb
in epidemiological analysis may elucidate whether this is the case.
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Table 5. Comparison of factor impacts (μg/m3) from PMF in similar studies

Study SULF NITR MOB BURN IND SOIL MIX a UND a Reference
Atlanta (1998 2000) 8.85

(56%)
1.15
(7%)

3.53
(22%)

1.72
(11%)

0.08
(0.5%)

0.18
(1%)

0.36
(2%)

(Kim et al., 2003)

Atlanta (1998 2000) 56% 9% 17% 7% 3% 2% 7% (Kim et al., 2004)
Atlanta (2000 2002) 37% 8% 17% 13% 9% 2% 3% 11% (Liu et al., 2005)
Atlanta (2000 2002) 4.93

(30%)
1.53
(9%)

2.83
(17%)

3.68
(22%)

1.0
(6%)

0.52
(3%)

0.42
(2%)

1.81
(11%)

(Liu et al., 2006)

Atlanta (1999 2004) 8.08
(45%)

1.53
(9%)

3.23
(20%)

2.67
(16%)

0.1
(1%)

0.6
(4%)

0.5
(3%)

PMF K

Atlanta (1999 2004) 7.95
(49%)

1.41
(9%)

4.55
(28%)

1.40
(9%)

0.1
(1%)

0.73
(5%)

0.5
(3%)

PMF Kb

a MIX: mixed source, UND: unidentified

5. Conclusions

We apply a method to estimate the fraction of potassium
attributable to biomass burning and demonstrated that Kb is a
more robust indicator of this source than total potassium for our
site. The analysis of temporal variability shows a larger
concentration of Kb during spring when biomass burning is more
intense and has greater correlation with levoglucosan, an organic
compound found to be a good tracer of biomass burning. The
examination of spatial variability suggests that Kb is an important
fraction in urban areas not impacted by sea–salt where K has
multiple sources, but not as important in rural areas where most of
the K is from biomass burning. The application of PMF with total
potassium appears to overestimate the contribution of biomass
burning in urban sites and underestimate the impact of other
sources such as traffic. This limitation is avoided when PMF is
implemented with Kb, resulting in a modified allocation of PM2.5
mass as a result of the re–distribution of the carbonaceous species
within factors.
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