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Glycoproteins are an important class of biomolecules involved in a number of biological recognition pro-
cesses. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms
that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a
result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for
detailed structural and functional studies. A number of elegant chemical and biological strategies have
been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biolog-
ical problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of
homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made,
glycan-defined glycoproteins for deciphering glycosylation functions.
It is well documented that protein glycosylation, as one of

the most prevalent posttranslational modifications (PTMs), can

profoundly affect a protein’s intrinsic properties such as folding,

stability, and intracellular trafficking (Helenius and Aebi, 2001;

Petrescu et al., 2006). Moreover, the glycans attached can

directly participate in a wide variety of biological recognition

processes: cell adhesion, signaling, development, host-path-

ogen interaction, and immune response, to name a few (Dube

and Bertozzi, 2005; Dwek, 1996; Haltiwanger and Lowe, 2004;

Hart and Copeland, 2010; Jefferis, 2009; Nimmerjahn and Rav-

etch, 2008b; Varki, 1993). In contrast to other posttranslational

modifications that involve only a simple functional group transfer

such as protein phosphorylation and methylation, protein glyco-

sylation in general is much more diverse and complex. More

than 40 different types of sugar-amino acid linkages have been

characterized, involving at least 13 different proximal monosac-

charides and 8 different amino acid residues (Spiro, 2002). In

fact, each single linkage type can represent a unique PTM with

defined functional consequence. As a result, protein glycosyla-

tion should not be collectively perceived simply as ‘‘another’’

PTM given the huge diversity in both the types of modification

and functions.

There are two major types of glycoproteins, namely, N-linked

and O-linked glycoproteins. In N-glycoproteins, the glycan is

attached to the amide side chain of an asparagine residue in a

consensus (Asn-Xaa-Ser/Thr) sequence; in a common O-glyco-

protein, the sugar is linked to the hydroxy group of a Ser or Thr

residue. While common N- and O-glycans frequently appear

and function at the cell surface, a special O-glycosylation, the

attachment of a simple monosaccharide (N-acetylglucosamine,

GlcNAc), appears as a common PTM of nuclear and cytoplasmic

proteins, which plays important roles in a number of physiolog-

ical processes and disease states (Hart et al., 2011; Zachara

and Hart, 2002). Except for O-GlcNAc glycosylation that involves

the transfer of only amonosaccharide, the biosynthesis of typical

N- and O-glycoproteins often involves multiple steps under

the actions of a large panel of enzymes (glycosyltransferases,
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glycosidases, and other carbohydrate modifying enzymes)

(Figure 1). N-glycoprotein biosynthesis, for example, starts with

the assembly of a dolichol-linked oligosaccharide precursor,

Glc3Man9GlcNAc2, in the ER and its subsequent transfer by a

multisubunit oligosaccharyltransferase (OST) to the amide side

chain of an asparagine (Asn) in a consensus sequence Asn-

X-Ser/Thr of a nascent polypeptide. The oligosaccharide pre-

cursor is then processed to the mono-glucosylated glycoform

(Glc1Man9GlcNAc2), which is the key intermediate for protein

folding in protein quality control mediated by the calnexin/

calreticulin chaperone. Once correctly folded, the precursor is

trimmed further to Man8GlcNAc2-protein, which is then translo-

cated to Golgi apparatus for further trimming and processing

to give different high-mannose and complex type glycoforms

(Figure 1A). In contrast to N-glycosylation that begins with the

assembly of a large precursor oligosaccharide, the common

O-glycosylation of proteins occurs in a stepwise fashion in the

Golgi apparatus, starting with the attachment of the first sugar,

N-acetylgalactosamine (GalNAc), to the hydroxy group of Ser

or Thr residue in an a-glycosidic linkage under the catalysis

of a polypeptide:GalNAc transferase (ppGalNAcT). Further

extension of the sugar chain is achieved by additions of sugar

residues one-by-one under respective glycosyltransferase to

form various O-glycan core structures (Figure 1B). These unique

biosynthetic pathways result in the generation of a large number

of diverse and complex glycoprotein glycoforms, which share

the same polypeptide backbone but differ in the structures of

the pendent glycans. The huge structural diversity lays the

molecular basis for diverse biological roles and functions. How-

ever, the structural heterogeneity in glycosylation also poses

tremendous challenges in elucidating the biological functions

of glycoproteins. Unfortunately controlling glycosylation to a

well-defined glycoform during protein expression is still a formi-

dable task to achieve, and current chromatographic techniques

are unable to isolate different glycoprotein glycoforms on a prac-

tical scale. The urgent need of structurally well-defined homo-

geneous glycoproteins for functional studies and biomedical
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Figure 1. Biosynthetic Pathways for
Glycoproteins
(A) The biosynthesis of typical N-linked glycopro-
teins.
(B) The biosynthesis of mucin type O-linked gly-
coproteins.
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applications has stimulated a great interest in developing

chemical and biochemical methods formaking full-size homoge-

neous glycoproteins. Many elegant synthetic strategies have

been explored and have been discussed in a number of excellent

reviews, which include total chemical synthesis (Buskas et al.,

2006; Gaidzik et al., 2013; Gamblin et al., 2009; Grogan et al.,

2002; Guo and Shao, 2005; Pratt and Bertozzi, 2005; Unverzagt

and Kajihara, 2013; Yuan et al., 2010), chemoselective ligation

(Chalker et al., 2011; Hang and Bertozzi, 2001), chemoenzymatic

synthesis (Rich and Withers, 2009; Schmaltz et al., 2011; Wang,

2008;Wang and Lomino, 2012), and glycosylation engineering of

glycan biosynthetic pathways (Castilho and Steinkellner, 2012;

Hamilton and Gerngross, 2007; Jacobs et al., 2009; Stanley,

1992; Wildt and Gerngross, 2005). Indeed, concurrent with

the sophistication of synthetic methodology, chemists are now

ready to take on the challenges of making extremely large and

complex biomolecules such as full-size glycoproteins in flask

(Lowary, 2013; Wang and Davis, 2013). The present review

intends to focus on recent advances in chemical and chemoen-

zymatic synthesis of homogeneous glycoproteins. Examples are

selected to showcase the applications of tailor-made, glycan-

defined glycoproteins for deciphering the roles and functions

of protein glycosylation.

Major Approaches for Glycoprotein Synthesis
Glycoproteins are the conjugates of sugars and proteins. From

the chemistry point of view, glycoproteins are a class of natural

products that belong to the most challenging synthetic targets

due to the very large size (typically over 15 kDa), the complex

branching structures of the oligosaccharide components, the
52 Chemistry & Biology 21, January 16, 2014 ª2014 Elsevier Ltd All rights reserved
heterogeneity of glycosylation, and the

multifunctionality from both the oligosac-

charide and polypeptide portions. The

conventional solid-phase peptide synthe-

sis (SPPS) protocol has been frequently

applied for making small to middle-size

N- and O-glycopeptides (Hojo and Naka-

hara, 2007; Seitz, 2000). The oligosac-

charide moiety is introduced either by

using glycosylated amino acids as build-

ing blocks during SPPS or by convergent

coupling between a glycosylamine and a

free aspartic acid residue in a protected

polypeptide. However, extension of this

approach to larger glycopeptides has

been problematic because of the low

efficiency of couplings, poor solubility of

protected polypeptides, and the suscep-

tibility of the O-glycosidic bonds to acidic

hydrolysis under strong acidic conditions

(e.g., TFA or HF treatment) required for
final global peptide deprotections. To address these issues,

several important synthetic strategies have been explored.

These strategies, including native chemical ligation, chemoenzy-

matic transformation, ‘‘tag andmodify’’ method, and direct enzy-

matic glycosylation (Figure 2), have now made it possible to

assemble free polypeptide/glycopeptide and oligosaccharide

fragments together in a well-controlled manner to provide full-

size homogeneous glycoproteins. It should be noted that, as

an essential component of glycoproteins, the synthesis of the

N- and O-glycans alone can be very tedious, complex, and chal-

lenging by itself, often requiring extensive protecting group

manipulations and careful selections of glycosylation methods

in order to achieve regio- and stereoselectivity in each step of

glycosidic bond formation. Fortunately, exciting progress has

beenmade in this area, including the development of convergent

chemical and chemoenzymatic methods for synthesizing highly

branched N-glycans (Eller et al., 2007; Koizumi et al., 2013; Shi-

vatare et al., 2013; Walczak and Danishefsky, 2012; Wang et al.,

2013b), the development of one-pot multiple enzyme systems

for constructing complex oligosaccharides (Muthana et al.,

2009), and the invention of the preactivation one-pot tandem

glycosylation strategy (Huang et al., 2004; Sun et al., 2008). In

addition, some complex N-glycans can be prepared from natural

sources in pure forms by isolation and purification. For example,

the biantennary complex type N-glycan can be readily isolated

from chicken egg yolks (Kajihara et al., 2004; Seko et al., 1997)

and high-mannose N-glycans including Man9GlcNAc2 can be

prepared from soybean flour by fractional precipitation, enzy-

matic digestion of the crude soybean agglutinin glycoprotein

fraction, and chromatographic purification of the released



Figure 2. Major Strategies for Synthesis of Homogeneous Glycoproteins
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glycans (Wang et al., 2004). It was also demonstrated that

Man9GlcNAc2 glycan could be obtained from chicken egg yolks

by pronase digestion and chromatographic separation (Maki-

mura et al., 2012). The accessibility of these well-defined glyco-

protein glycans has lifted a major roadblock toward in vitro

synthetic construction of homogeneous glycoproteins.

Total Chemical Synthesis of Glycoproteins via Native
Chemical Ligation
The invention of native chemical ligation (NCL) for total chemical

synthesis of proteins has revolutionized protein chemistry (Daw-

son and Kent, 2000; Dawson et al., 1994). Similarly, the applica-

tion of NCL and its modified versions for ligation of peptides and

glycopeptides has enabled the synthesis of large homogeneous

glycoproteins for deciphering functions (Figure 2A). The original

version of NCL relies on chemoselective reaction between two

partners, a peptide acid thioester and an N-terminal cysteine res-

idue of another peptide fragment, to form a native peptide amide

linkage. This ligation involves a reversible transthioesterification

between the thioester and the N-terminal cysteine residue to

generatea transient thioester intermediate,which thenundergoes

a rapid, irreversible intramolecular S/N acyl transfer to form a

native peptide bond at the junctionwithout the need of side-chain

protections on other amino acids, including those internal Cys

residues. Bertozzi and coworkers reported the first NCL-based
Chemistry & Biol
total chemical synthesis of an 82-amino acid glycoprotein car-

rying two O-GalNAc residues: a glycosylated form of the antimi-

crobial protein diptericin (Shin et al., 1999). Since the primary

sequence of diptericin did not contain Cys residues, a G25C

mutationwas introduced to enable a retrosynthetic disconnection

at the site. Notably, the authors devised an alkanesulfonamide

‘‘safety-catch’’ linker that enables the synthesis of glycopeptide

thioester via the Fmoc-based SPPS protocol. Unverzagt and co-

workers reported the first synthesis of a glycopeptide thioester

carrying a complex type N-glycan using the ‘‘safety-catch’’ linker

strategy and applied it for NCL to form larger N-glycopeptides

(Mezzato et al., 2005). The first total chemical synthesis of a full-

size glycoprotein carrying a complex type N-glycan, a glycoform

of the76-aminoacidchemokinemonocyte chemotacticprotein-3

(MCP-3), was achieved by Kajihara and coworkers, using two

consecutive native chemical ligations of three peptide/glycopep-

tide fragments followed by folding to provide the native glycopro-

tein (Yamamoto et al., 2008).

To circumvent the limitations of reliance on Cys residues for

ligation—many primary sequences may not have Cys residues

at strategically useful positions for NCL—various auxiliary-based

strategies have been developed to mimic the cysteine-based

NCL (Payne and Wong, 2010). Notably, an array of thiolated

amino acids as latent residues for Ala, Gln, Leu, Lys, Phe, Pro,

Val, and Thr has been devised and tested. After ligation, the thiol
ogy 21, January 16, 2014 ª2014 Elsevier Ltd All rights reserved 53
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group is selectively removed by radical desulfurization to restore

the respective native amino acid residues in the sequence. This

development has provided the flexibility to retrosynthetically

disconnect the glycoprotein sequence at appropriate junctions

and significantly expanded the scope of NCL for protein and

glycoprotein synthesis (Payne and Wong, 2010; Unverzagt and

Kajihara, 2013). The recent success in the chemical synthesis

of glycoprotein hormone a and b subunits (Aussedat et al.,

2012; Nagorny et al., 2012), glycosylated human interferon-b

(Sakamoto et al., 2012), and full-size erythropoietin (Murakami

et al., 2012; Wang et al., 2012) showcases the power of the

ligation methods for total glycoprotein synthesis. Moreover,

expressed protein ligation (EPL) has been successfully explored

for glycoprotein synthesis, in which a large intact protein thio-

ester or an N-terminal Cys-containing protein domain is recom-

binantly expressed and used as ligation partners (Muir, 2003;

Muir et al., 1998; Payne and Wong, 2010; Schwarzer and Cole,

2005). A very impressive early example, reported by Bertozzi

and coworkers, is the synthesis of GlyCAM-1, a heavily glycosy-

lated glycoprotein involved in leukocyte homing (Macmillan

and Bertozzi, 2004). The authors designed an elegant three-

piece ligation scheme in which the heavily glycosylated N- and

C-terminal glycopeptide domains were prepared by chemical

synthesis and the internal nonglycosylated protein domain

was expressed in E. coli. Two consecutive ligations provided

the full-length glycoprotein carrying multiple GalNAc residues.

More recently, EPL has been successfully applied for the

synthesis of full-length ribonuclease C (Piontek et al., 2009a,

2009b) and a glycoform of full-length erythropoietin carrying

two complex type N-glycans (Hirano et al., 2009). The combina-

tion of EPL and NCL has further overcome the size limitation in

traditional NCL.

Chemoenzymatic Glycosylation Remodeling of
Glycoproteins
Glycosylation remodeling of heterogeneous glycoproteins,

either from natural or from recombinant source, is emerging as

a very promising approach toward homogeneous glycoprotein

glycoforms (Wang and Lomino, 2012). This approach has been

particularly useful for N-glycoproteins and it involves two key

manipulations: enzymatic trimming to remove the heteroge-

neous N-glycans, leaving only the innermost GlcNAc residue at

the glycosylation site, and sugar chain elongation by glycosyl-

transferases or endoglycosidases (Figure 2B). As a classic

example, Wong and coworkers successfully converted ribonu-

clease B (RNase B), a glycoprotein carrying heterogeneous

high-mannose N-glycans at Asn-34, to a single homogeneous

glycoform carrying a sialyl Lewis X tetrasaccharide moiety (Witte

et al., 1997). After deglycosylation of RNase B by Endo-H, the

sialyl Lewis X moiety was built up at the Asn-linked GlcNAc in

the protein by stepwise additions of galactose, sialic acid, and

fucose using the respective glycosyltransferases. In contrast

to the stepwise addition of monosaccharides by glycosyltras-

ferases, a more appealing convergent remodeling approach is

the single-step transfer of a preassembled intact N-glycan en

bloc to the GlcNAc-protein via the endoglycoosidase-catalyzed

transglycosylation (Wang, 2008, 2011). This was enabled by two

major developments: the exploitation of synthetic sugar oxazo-

lines (the transition-state mimics) as donor substrates for trans-
54 Chemistry & Biology 21, January 16, 2014 ª2014 Elsevier Ltd All r
glycosylation (Fujita et al., 2001; Li et al., 2005a; Rising et al.,

2006) and the discovery of glycosynthases (novel glycosidase

mutants) that are devoid of product hydrolysis activity but are

capable of taking the highly active sugar oxazolines as sub-

strates for transglycosylation (Huang et al., 2009b; Umekawa

et al., 2008). Several bacterial and fungus endoglycosidases,

including Endo-A, Endo-M, Endo-D, Endo-S, and Endo-F3,

which possess distinct glycan and acceptor substrate speci-

ficity, have been converted into glycosynthases for synthetic

applications (Wang and Lomino, 2012). These enzymes have

been used for the synthesis of large and complex glycopeptides

including HIV-1 glycopeptide antigens (Amin et al., 2013; Huang

et al., 2009a, 2010b; Li et al., 2005a, 2005b); for glycosylation re-

modeling to produce homogeneous glycoproteins carrying nat-

ural and selectively modified (e.g., azide-tagged or fluorinated)

N-glycans (Amin et al., 2011; Huang et al., 2009b, 2010a; Li

et al., 2006; Ochiai et al., 2008; Orwenyo et al., 2013; Schwarz

et al., 2010; Umekawa et al., 2010); and for glycoengineering of

intact IgG antibodies (Fan et al., 2012; Huang et al., 2012; Wei

et al., 2008; Zou et al., 2011). This chemoenzymatic method

was also successfully combined with NCL for synthesizing full-

size glycosylated proteins (Asahina et al., 2013; Hojo et al.,

2012). A notable feature of this chemoenzymatic approach is

its convergence and its ability to reconstitute the N-glycans

maintaining the conserved native N-glycan core, which opens

an exciting new avenue to well-defined glycopeptides and

glycoproteins for deciphering biological functions (vide infra).

Chemoselective Ligation between Tagged Protein and
Glycan
Chemoselective glycosylation of recombinant proteins via

the so-called ‘‘tag and modify’’ strategy (Chalker et al., 2011)

provides another convergent approach to homogeneous glyco-

proteins. In this approach, specific tags are introduced at prede-

termined glycosylation sites by site-directed mutagenesis. After

expression, the tagged protein is conjugated with a functional-

ized glycan at the tagged site via bio-orthogonal chemoselective

ligation (Figure 2C). Among the natural amino acid residues,

cysteine (Cys) is particularly useful: it can be readily introduced

into a protein by site-directedmutagenesis, and the free Cys res-

idue can be selectively reacted with a range of cysteine-reactive

functional groups for site-specific modification including glyco-

sylation (Chalker et al., 2011). Early examples using the Cys-

tag method include site-specific glycosylation of erythropoietin

(EPO) (Hirano et al., 2009; Macmillan et al., 2001), site-specific

introduction of a glycan at the conserved Fc glycosylation site

to probe the glycosylation effects on antibody’s effector func-

tions (Watt et al., 2003), and synthesis of novel antibacterial gly-

codendriproteins (Rendle et al., 2004). In addition to Cys residue,

a series of functionalized unnatural amino acid residues

such as those containing bioorthogonally reactive tags (azide-,

aldehyde-, ketone, alkyne, alkene, etc.) can be now introduced

into proteins via novel genetic manipulations of the expression

system. For example, azido-homoalanine (Aha) and homo-

propargylglycine (Hpg) can be incorporated into proteins by

employing a Met (-) auxotrophic E. coli strain to express the

target protein using the corresponding unnatural amino acids

to replace methionine (Fernández-González et al., 2010; Wang

et al., 2008; Wiltschi et al., 2008); an aldehyde tag can be
ights reserved
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selectively introduced by inserting a CXPXR motif at the site fol-

lowed by in situ oxidation of the Cys residue in this sequence to a

formylglycine group by a coexpressed formylglycine generating

enzyme (Carrico et al., 2007; Wu et al., 2009). This approach was

successfully applied to site-specific glycosylation of a human

growth hormone via oxime formation with an aminooxy-function-

alized glycan (Hudak et al., 2011). As a remarkable example

showing the usefulness of the ‘‘tag and modify’’ technology,

Davis and coworkers reported the design and synthesis of a syn-

thetic glycoprotein to functionally mimic the P-selectin glycopro-

tein ligand-1 (PSGL-1) (van Kasteren et al., 2007). Based on the

fact that two posttranslational modifications, a sulfate group

at Tyr-48 and a sialylated glycan at the Ser-57 of PSGL-1, are

essential for the binding of PSGL-1 to P-selectin in the inflamma-

tory response, the authors sought to use the LacZ-type reporter

enzyme (a b-galactosidase) as the scaffold protein and to intro-

duce a sulfotyrosine at position 439 and a sialyl Lewis X oligosac-

charide at position 43 to mimic the global presentation of the

two functional groups in PSGL-1. This was achieved by introduc-

tion of two distinct and orthogonal tags (azide and cysteine) in

the scaffold followed by two chemoselective ligations to incor-

porate the respective functional groups. It was further demon-

strated that the synthetic glycoprotein, with the sulfotyrosine

and the sialyl Lewis X moiety being installed at the right sites,

could efficiently bind to P-selectin while the scaffold protein still

maintained the enzymatic activity. This property was success-

fully used to detect in vivo inflammatory brain lesions by its

specific recognition of P-selectin and subsequent enzymatic re-

actions for X-Gal tissue staining. In general, the ‘‘tag andmodify’’

technology is quite flexible and allows quick access to various

homogeneously glycosylated proteins for functional studies.

The only major drawback of this approach is the introduction

of unnatural sugar-amino acid linkage in the glycoprotein, which

might not perfectly mimic the natural counterparts. In addition,

the unnatural linkages might be immunogenic if used in humans.

Direct Enzymatic Glycosylation of Polypeptides and
Proteins
In N-glycoprotein biosynthesis, a key step is the enzymatic

transfer of a large oligosaccharide from a dolichol-phosphate

glycolipid to the Asn in a consensus NXS/T sequon of the

nascent protein by the oligosaccharyl transferases (OST) (Helen-

ius and Aebi, 2004). Naturally, it would be highly valuable if OST

can be employed for in vitro protein glycosylation (Figure 2D).

While it has been shown that OST does glycosylate polypeptides

(Dempski and Imperiali, 2002; Imperiali and Hendrickson, 1995;

Xu and Coward, 1997), a practical application of the OST for

in vitro glycoprotein synthesis remains to be fulfilled. Major hur-

dles include the instability of the enzyme, the huge complexity of

the membrane-bound enzyme that involves up to nine protein

subunits as a complex for activity, and the inability of the enzyme

to glycosylate folded proteins. In contrast, PglB, a single-subunit

oligosaccharyl transferase that was responsible for protein

N-glycosylation in Campylobacter jejuni was shown to be able

to glycosylate polypeptide (Chen et al., 2007; Glover et al.,

2005; Kowarik et al., 2006; Li et al., 2010; Weerapana and Impe-

riali, 2006). In addition, PglB has very relaxed substrate speci-

ficity on the extended oligosaccharide structures and is capable

of transferring even large bacterial polysaccharides to a protein
Chemistry & Biol
to form linkage-defined polysaccharide-protein conjugates,

which provides a very promising approach to making bacterial

glycoconjugate vaccines (Feldman et al., 2005; Terra et al.,

2012). Nevertheless, PglB requires an extended N-glycosylation

sequence (D/E-X-N-X-S/T) for recognition and it can transfer

oligosaccharides to the extended sequence only when it is

located in a flexible region, as the enzyme has no or only mar-

ginal activity on folded protein (Kowarik et al., 2006). In addition,

PglB cannot efficiently transfer mammalian N-glycan from the

corresponding glycolipid (Chen et al., 2007), and demonstrates

only a marginal activity to recognize the mammalian N-glycan

core for glycosylation (<1% yield) in an engineered E. coli system

(Valderrama-Rincon et al., 2012). Rational protein engineering on

the basis of the crystal structure (Lizak et al., 2011) and directed

evolution may help broaden the substrate specificity of PglB.

Recently, a special cytoplasmic N-glycosyltransferase (NGT)

from a pathogenic bacterium was characterized (Schwarz

et al., 2011). This NGT is able to transfer a glucose monosac-

charide at the NXS/T consensus sequence in a polypeptide,

but uses nucleotide-activated monosaccharide (UDP-Glc)

instead of glycolipids as the donor substrate. Wang and

coworkers successfully combined the NGT glycosylation with

endoglycosidase-catalyzed transglycosylation to directly glyco-

sylate polypeptides with complex glycans (Lomino et al., 2013).

On the other hand, the polypeptide:N-acetylgalactosamine

transferases (ppGalNAcTs) has been efficiently used to glycosy-

late polypeptides to make O-glycopeptides. A notable example

is the efficient chemoenzymatic synthesis of the MUC1 tandem

glycopeptide repeats for cancer vaccines (Sørensen et al.,

2006) (vide infra). Direct enzymatic glycosylation of recombinant

proteins in vitro could become a very attractive and promising

approach to making homogeneous glycoproteins when more

efficient enzymeswith relaxed substrate specificity are available.

Total Chemical Synthesis of EPO
EPO is a therapeutic glycoprotein that boosts the production of

red blood cells and is widely used for the treatment of anemia

after cancer chemotherapy. Natural EPO is a glycoprotein that

consists of 166 amino acid residues carrying a conserved

O-glycan at Ser-126 and three N-glycans at the Asn-24, Asn-

38, and Asn-83 conserved N-glycosylation sites, respectively.

It is well established that appropriate glycosylation, particularly

the terminal sialylation of the N-glycans, is critically important

for the serum’s half-life and thus in vivo biological activity of

EPO. The relatively large size and complex glycosylation pattern

of EPO make it an attractive and challenging synthetic target for

chemists to test new synthetic strategies (Wilson et al., 2013).

Kajihara and coworkers recently reported a total chemical syn-

thesis of a full-length EPO glycoform that carries a sialylated

biantennary complex N-glycan at the Asn-83 site (Murakami

et al., 2012). Instead of using the existing 4 Cys residues

for NCL, which are unfavorably positioned close to the N or

C terminus of EPO, the authors decided to disconnect the EPO

sequence at five appropriate Ala sites to provide five peptide

fragments and one glycopeptide (aa 79–97) fragment, which

can be readily synthesized by SPPS (Figure 3A). In this strategy,

the identified N-terminal Ala residues were replaced with free

Cys or thiazolidine-protected Cys in the fragments to facilitate

NCL, and the four native Cys residues were ‘‘permanently’’
ogy 21, January 16, 2014 ª2014 Elsevier Ltd All rights reserved 55



Figure 3. Total Chemical Synthesis of Glycoprotein EPO
(A) Chemical synthesis of an EPO glycoform carrying a single N-glycan.
(B) Chemical synthesis of a full-length native EPO glycoform carrying glycans at all four conserved glycosylation sites.
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masked via Acm-protection during ligations. To make the glyco-

peptide fragment (aa 79–97) via Boc-chemistry, the sialic acid

residues were protected as phenacyl esters, which are stable
56 Chemistry & Biology 21, January 16, 2014 ª2014 Elsevier Ltd All r
during the acid treatment and thiolysis required to release the

corresponding glycopeptide thioester. The full-length polypep-

tide was constituted through tandem ligations of the fragments,
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and the Cys residues generated after NCL were readily con-

verted into the native Ala residues via radical desulfurization.

Finally, deprotection of the Acm-Cys and oxidative refolding

provided a synthetic version of EPO that contains two mutations

(E21A and Q78A to facilitate ligation) and carries a sialylated

biantennary N-glycan at Asn-83 (Figure 3A). Because the site,

number, and sialylation of glycans attached are closely corre-

lated to EPO’s in vivo hematopoietic activity (Higuchi et al.,

1992), this synthetic approach should be quite flexible for

producing selectively glycosylated EPO glycoforms to study

the effects of individual N-glycans or their combinations on the

in vivo biological activity of EPO.

In another study, Danishefsky and coworkers described a total

chemical synthesis of a full-length EPO with completely native

amino acid sequence that carries an O-glycan at Ser-126 and

three truncated N-glycans (the chitobiose cores) at the Asn-24,

Asn-38, and Asn-83 conserved N-glycosylation sites, respec-

tively (Wang et al., 2012). This remarkable total synthesis is on

top of a series of previous painstaking studies from the Danishef-

sky laboratory, which have addressed a number of challenging

problems on the road toward the total synthesis (Wilson et al.,

2013). In the retrosynthetic design, the authors disconnected

EPO into four glycopeptide fragments (I–IV), which allows itera-

tive alanine- and cysteine-based ligations to reconstitute the

full-lengthEPO (Figure 3B). In this strategy, theAla-79 in fragment

III and the Ala-125 in fragment IV were temporarily replaced with

Cys residue to facilitate NCL. The N-glycopeptides were synthe-

sized by a convergent coupling between a chitobiosyl amine and

the respective protected polypeptide carrying a free Asp at the

glycosylation sites. The sialylated O-glycopeptide (IV) was pre-

pared using a glycosylated Ser as the building block in SPPS.

Native ligation between III and IV gave the polypeptide (79–

166), which was then ligated with fragment II. The resulting liga-

tion product was subjected to global metal free radical desulfur-

ization to convert the free Cys residues to the native Ala residues

to provide polypeptide (29–166) after deprotection of the Acm-

protected native Cys residues. Finally, native chemical ligation

between the polypeptide (29–166) and glycopeptide thioester

(I), with in situ deprotection of the Acm-protected Cys residues,

gave a full-length, glycosylated EPO after correct folding. More

recently, an ultimate total chemical synthesis of full-length native

EPO carrying full-size natural glycans at all four conserved glyco-

sylation sites (three sialylated complex type N-glycans and one

O-glycan) was accomplished by Danishefsky and coworkers

(Wang et al., 2013a). To achieve this remarkable synthesis, the

authors had to redesign the synthetic route by moving the retro-

synthetic junction sites away from the conserved N-glycan sites,

as the presence of the bulky complex type N-glycans adjacent to

the ligation sites prevents efficient native chemical ligation. The

synthetic version of glycosylated EPO showed comparable

erythropoietic activity as the recombinant EPO in both a cell pro-

liferation assay and in mice, while the nonglycosylated version of

EPO turned to aggregate and showedmuch lower erythropoietic

activity (Wang et al., 2012, 2013a). These results clearly demon-

strate the importance of appropriate glycosylation for the stability

and in vivo biological activity of erythropoietin. The total chemical

synthesis of full-length native EPO carrying all full-size glycans

represents a milestone achievement in chemical synthesis of

complex natural products.
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Synthesis of Glycan-Defined Glycoprotein Probes for
Deciphering the Molecular Mechanism of
Lectin-Mediated Protein Quality Control
It is well known that N-glycosylation plays an important role in the

lectin-mediated protein quality control (Aebi et al., 2010; Helen-

ius and Aebi, 2001; Spiro, 2000). In this process, the lectin-like

molecular chaperones calnexin (CNX) and calreticulin (CRT)

recognize the monoglucosylated N-glycan in a protein and

recruit other molecular chaperones such as protein disulfide

isomerase-like protein ERp57 to form a complex for appropriate

folding. Once the last Glc residue is removed by a-glucosidase II

(G-II), the resulting Man9GlcNAc2-protein will be released

from the CNX/CRT folding cycle. At this point, an ER-residing

UDP-glucose:glycoprotein glucosyltransferase (UGGT) can

serve as a ‘‘folding sensor’’ to detect and reglucosylate the

misfolded protein to generate the monoglucosylated glyco-

form, which enters into the CNX/CRT cycle again for refolding

(Figure 2). Despite tremendous efforts in this field, the molecular

mechanism of the protein quality control process is still not fully

understood. A major obstacle is the difficulty in obtaining homo-

geneous, structurally well-defined glucosylated N-glycoproteins

for detailed mechanistic and functional studies (Zapun et al.,

1997). To address the issues, Ito and coworkers have synthe-

sized a number of monoglucosylated N-glycans and their deriv-

atives and used them to probe molecular recognitions mediated

by the lectin-like chaperones and UGGT (Ito et al., 2005; Iwa-

moto et al., 2013; Takeda et al., 2009). Despite these impressive

contributions, homogeneous natural glycoproteins with defined

glycosylation and folding/misfolding states are still urgently

required for deciphering the detailed molecular mechanism of

the protein quality control system. Two recent synthetic studies

have shed light in this direction (Figure 4). In one study, Wang

and coworkers applied a chemoenzymatic method for the

synthesis of selectively glucosylated Man9GlcNAc2 glycoprotein

glycoforms using RNase B as the model glycoprotein (Amin

et al., 2011). The synthetic construction of the target glycopro-

teins includes a total chemical synthesis of a galactose-masked

Glc1Man9GlcNAc glycan oxazoline and its enzymatic transfer

to the deglycosylated RNase B (Figure 4A). Selective removal

of the terminal galactose by a b-galactosidase gave the

Glc1Man9GlcNAc2-RNase glycoform in excellent yield. In addi-

tion, a Man9GlcNAc2 glycoform was synthesized separately

by transglycosylation with the Man9GlcNAc oxazoline. CD and

RNA-hydrolyzing analysis revealed that these synthetic RNase

glycoforms maintained essentially the same global conforma-

tions and were fully active as the natural bovine RNase B.

SPR-binding studies revealed that the Glc1Man9GlcNAc2-

RNase had high affinity to lectin CRT, while the synthetic

Man9GlcNAc2-RNase glycoform and natural RNase B that lack

the glucose moiety did not show any CRT-binding activity. Inter-

estingly, partially denatured Glc1Man9GlcNAc2-RNase could be

efficiently recognized by lectin CRT. These results confirmed the

essential role of the glucose moiety in the molecular recognition

by the lectin-like chaperone of misfolded proteins.

In another study, Kajihara and coworkers carried out a chem-

ical synthesis of intentionally misfolded homogeneous glyco-

propteins and used them to study the recognition by enzyme

UGGT, the protein folding sensor (Izumi et al., 2012). Intereleu-

kin-8 was chosen as themodel glycoprotein and aMan9GlcNAc2
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Figure 4. Synthesis of Glycoprotein Probes for Deciphering the Molecular Mechanism of Lectin-Mediated Protein Quality Control
(A) A chemoenzymatic synthesis of several homogeneous glycoforms of ribonuclease B.
(B) A chemical synthesis of intentionally misfolded homogeneous glycoforms of interleukin-8.
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was artificially installed at Asn-36 in the sequence. The synthesis

started with the native chemical ligation between a peptide frag-

ment (aa 1–33) and a glycopeptide fragment (aa 34–72), and

the free full-length polypeptide was subject to oxidative folding

to provide correctly folded glycoprotein and several misfolded

intermediates with disulfide shuffling (Figure 4B). Notably, the

authors were able to isolate the folded and misfolded glycopro-

teins by RP-HPLC and fully characterized their folding status.

Enzymatic assays indicated that UGGT could efficiently recog-

nize the misfolded monomer and dimer to introduce a glucose

tag in the glycan of the misfolded proteins, but it showed

only very low activity on the correctly folded glycoprotein. This

remarkable study provides unambiguous evidence on the role

of enzyme UGGT as the folding sensor to recruit and tag themis-

folded glycoproteins. The resulting monoglucosylated misfolded

glycoproteins are then recruited by the CNX/CRT chaperones to

enter the refolding cycle that also involves other chaperone pro-

teins. Taken together, these synthetic homogeneous glycopro-

tein probes should be highly valuable for a detailed mechanistic

study on how those molecular chaperones work in concert to

distinguish between misfolded and folded glycoproteins in the

protein quality control system.

Glycoengineering of IgG Antibodies for Deciphering
Functions
Monoclonal antibodies (mAbs) are an important class of thera-

peutic proteins that are used for treatment of cancer and auto-

immune and infectious diseases (Adams and Weiner, 2005;
58 Chemistry & Biology 21, January 16, 2014 ª2014 Elsevier Ltd All r
Aggarwal, 2011; Jefferis, 2009). It has been demonstrated that

different structures of the N-glycans attached at the conserved

N-glycosylation site (Asn-297) of the Fc domain can profoundly

impact the effector functions of antibodies, including the anti-

body-dependent cellular cytotoxicity (ADCC) (Jefferis, 2009;

Nimmerjahn and Ravetch, 2008a). For example, the lack of

the core fucose, as well as the attachment of a bisecting

GlcNAc moiety, significantly enhances the affinity of antibody

for the FcgIIIa receptor (FcgRIIIa), which is responsible for

ADCC (Ferrara et al., 2011; Shields et al., 2002). On the other

hand, the terminal a-2,6-sialylated Fc glycoform, a minor spe-

cies in the intravenous immunoglobulin (IVIG), was recently iden-

tified as the active species for the anti-inflammatory activity of

IVIG, as evaluated in a mouse model of rheumatoid arthritis

(RA) (Anthony et al., 2008a, 2008b; Kaneko et al., 2006). The

importance of Fc glycosylation on the biological functions and

therapeutic outcome of IgG antibodies has stimulated tremen-

dous interest in developing methods to control antibody’s Fc

glycosylation. Among several biochemical and cell-based

methods, Wang and coworkers have developed a chemoenzy-

matic glycoengineering approach that is particularly useful

for site-specific Fc glycosylation remodeling to provide various

pure antibody glycoforms (Fan et al., 2012; Huang et al., 2012;

Wei et al., 2008; Zou et al., 2011). Following the initial success

in glycosylation remodeling of recombinant Fc domains ob-

tained from yeast and CHO cell expression (Fan et al., 2012;

Wei et al., 2008; Zou et al., 2011), the authors have successfully

extended the approach to glycoengineering of intact IgG
ights reserved



Figure 5. A Chemoenzymatic Approach to Glycoengineering of IgG Antibodies
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monoclonal antibodies (Huang et al., 2012). This endeavor was

enabled by the remarkable Fc deglycosylation activity of EndoS,

an endo-b-N-acetylglucosaminidase (ENGase) from Strepto-

coccus pyogenes (Allhorn et al., 2008; Collin and Olsén, 2001;

Goodfellow et al., 2012), and the highly efficient transglycosyla-

tion by the novel EndoS-based glycosynthases (EndoS-D233A

and EndoS-D233Q) that are devoid of product hydrolysis activity

(Huang et al., 2012). This approach was demonstrated by glyco-

engineering of rituximab, a therapeutic monoclonal antibody

(Figure 5). Deglycosylation by EndoS efficiently removed the

heterogeneous Fc N-glycans (mainly the G0F, G2F, and G2F

glycoforms, where G0–2 indicates the number of terminal galac-

tose in the glycan and F means core fucosylated). The resulting

homogenous GlcNAc-IgG was then used as the acceptor for

the glycosynthase-catalyzed transglycosylation using respec-

tive glycan oxazolines as the donor substrates. Both natural

and selectively modified N-glycans could be attached to form

homogeneous IgG glycoforms. The nonfucosylated G2 glyco-

form was achieved by deglycosylation with both EndoS and

an a-fucosidase, followed by transglycosylation with a desialy-

lated complex type glycan oxazoline. It should be noted that

all the enzymatic transformations were carried out under mild

conditions (aqueous buffer [pH 7.0–7.4], ambient temperature)

without the need of denaturing the proteins. The transglycosyla-

tion was driven to completion by using an excess molar equiva-

lent of glycan oxazolines, which were recovered as free glycan

form after reaction and could be readily converted back to oxa-

zoline in a single step. SPR binding analysis with FcgRIIIa-F158

showed that the affinity of the homogeneous G2 glycoform for

the FcgIIIa receptor was 20-fold higher than that of the commer-

cial rituximab. On the other hand, the fully sialylated Fc glyco-

form (S2G2 form) may gain anti-inflammatory activity (Anthony

et al., 2008a). This chemoenzymatic approach enables quick

access to various well-defined IgG glycoforms that were hitherto

difficult to obtain by other methods for functional studies. In
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addition, the method also holds promise for development of

more effective antibody-based therapeutics.

Synthesis of Mucin Glycopeptides as Anticancer
Vaccines
Aberrant glycosylation in glycolipids and glycoproteins is

often associated with cancer progression and metastasis. The

tumor-associated carbohydrate antigens are thus emerging

as novel biomarkers for diagnosis and as attractive targets for

cancer vaccines (Gaidzik et al., 2013; Wilson and Danishefsky,

2013). For example, MUC1, the type 1 mucin glycoproteins,

are present on most epithelial cells, which are often overex-

pressed in cancer cells and appended with truncated O-

linked glycans (with only GalNAc, Galb1,3GalNAc, or sialylated

GalNAc) instead of the more extended large O-glycans found in

normal cells. The extracellular domain of MUC1 contains tandem

repeats of the 20 amino acid sequence, HGVTSAPDTRPAPG

STAPPA, which has up to five potential O-glycosylation sites

(Thr-4, Ser-5, Thr-9, Ser-15, and Thr-16). Tremendous studies

have been carried out to develop vaccines targeting these

unique antigenic structures. Synthesis has played an essential

role in understanding how the glycosylation patterns affect

the antigenicity and immunogenicity of MUC1 glycopeptides. A

common approach to the synthesis of MUC1 glycopeptides

is to use preassembled glycosylated amino acids as building

blocks in SPPS, which permits the installation of different trun-

cated O-glycans at predetermined sites. As a typical example,

Li, Kunz, and coworkers performed microwave-supported

solid-phase synthesis of the MUC1 glycopeptides containing

the STn or 2,6-ST antigen at Ser-15, and the Tn or T antigen at

the Thr-9 site (Cai et al., 2012) (Figure 6A). A triethylene glycol

spacer with a free terminal amino group was introduced at the

N terminus to facilitate its coupling with BSA via the squaric

acid ester method to provide the MUC1 glycopeptide-BSA con-

jugate. It should be noted that, in O-glycopeptide synthesis,
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Figure 6. Synthesis of Mucin Glycopeptides as Anticancer Vaccines
(A) A chemical synthesis of MUC1 glycopeptides carrying T and ST glycans at defined glycosylation sites.
(B) A chemoenzymatic synthesis of large MUC1 glycopeptides carrying multiple Tn, T, and STn glycans.
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particular care should be taken to avoid the base-catalyzed

b-elimination of glycans during sugar deprotection. Immuniza-

tion in BALB/c mice showed that the glycoconjugate was able

to induce strong IgG type antibody responses and the antibodies

demonstrated high-affinity binding to breast cancer cells of the

MCF-7 cell line. The present study, together with previous inves-

tigations, has revealed that attachment of the Tn and STn

antigens at the immunodominant Thr-9 and Ser-15 regions is

important for stimulating strong antibody responses. In another

study, Clausen and coworkers reported a remarkable chemo-

enzymatic synthesis of large MUC1 glycopeptides carrying

multimeric Tn, T, and STn motifs (Sørensen et al., 2006). In

this approach, a MUC1 60-mer polypeptide consisting of

three copies of the tandem 20-mer repeat was synthesized by

SPPS. It was then enzymatically glycosylated using the site-se-

lective recombinant polypeptide GalNAc transferases (GalNAc-

T2, -T4, and -T11) to introduce different numbers of Tn antigens

(2, 3, and 5 Tn per tandem repeat), taking advantage of the sub-

strate specificity of the GalNAc transferases. Extension of the

sugar chains via glycosylations with the recombinant core 1

b3Gal transferase (C1Gal-T1) and the recombinant murine sialyl-

transferase (ST6GalNAc-I) resulted in the incorporation of T and

STn antigens, respectively (Figure 6B). Notably, MUC1 glyco-

peptides fully glycosylated at all five potential glycosylation sites

in each 20-mer repeat were achieved by a combined use of these

glycosyltransferases, and the products were characterized by

MALDI-TOF MS analysis and antibody binding study. The syn-
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thetic MUC1 glycopeptides with different glycosylation patterns

were conjugated to KLH and the resulting glycoconjugates were

usedas immunogens to evaluate the effects of different Tn/T/STn

glycosylation patterns and density on the immunogenicity. It was

shown that MUC1 glycopeptides with complete glycan occu-

pancy (five sites per repeat) elicited the strongest antibody

response against MUC1 expressed in breast cancer cell lines in

both BALB/c andMUC1-trangenic mice. The elicited antibodies

showed high specificity for cancer cells. This study suggests that

a higher density presentation of Tn and STn antigens in the

context of the MUC1 polypeptide may provide a more efficient

anticancer vaccine candidate.

Synthetic HIV-1 Glycopeptides for Characterizing the
Glycan Specificity of HIV-Neutralizing Antibodies
Recent discovery of a new class of glycan-dependent broadly

neutralizing antibodies (bnAbs) represented by PG9, PG16,

PGT121, PGT128 and PGT135 has provided new templates for

HIV vaccine design (Bonsignori et al., 2011; Doores and Burton,

2010; Walker et al., 2009, 2010, 2011). These bnAbs appear to

target conserved glycopeptide epitopes located at the variable

(V1/V2 or V3) regions of HIV-1 gp120. Remarkable studies on

the crystal structures of PG9, PG16, PGT128, PGT121, and

PGT135 and their complexes with gp120 outer domains have re-

vealed novel modes of glycopeptide antigen recognition, which

provides important templates for designing glycopeptide immu-

nogens (Burton et al., 2012; Wang, 2013). However, further
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Figure 7. Synthetic HIV V1V2 Glycopeptides for Characterizing the Glycan Specificity of HIV-Neutralizing Antibodies
(A) A chemoenzymatic synthesis of V1V2 glycopeptide antigens carrying two distinct N-glycans at the conserved glycosylation sites.
(B) A chemical synthesis of V1V2 glycopeptide antigens carrying the same N-glycans at the two conserved N-glycosylation sites.

Chemistry & Biology 21, January 16, 2014 ª2014 Elsevier Ltd All rights reserved 61

Chemistry & Biology

Review



Chemistry & Biology

Review
characterization of the glycan specificity of these neutralizing

antibodies was complicated by the heterogeneity in glycosyla-

tion of gp120 and recombinant scaffolded gp120 domains,

because of the difficulties in controlling the structures of individ-

ual N-glycans at distinct glycosylation sites. To further charac-

terize the glycan specificity with a goal of reconstituting the

minimal glycopeptide epitopes of PG9 and PG16 for vaccine

design, Wang and coworkers (Amin et al., 2013) designed cyclic

V1V2 glycopeptides derived from two HIV-1 strains (CAP45 and

ZM109), in which a disulfide bond was engineered to constrain

the b sheet conformations as observed in the crystal structure

of the PG9 Fab in complex with the scaffolded V1V2 domain

(McLellan et al., 2011). The synthesis was achieved by a chemo-

enzymatic approach, as demonstrated for the preparation of

three typical ZM109 V1V2 glycopeptides (Figure 7A). Installation

of two Man5GlcNAc2 glycans at the Asn-160 and Asn-173 sites

were efficiently achieved by the simultaneous transfer of two

Man5GlcNAc moieties from the corresponding glycan oxazoline

substrate to the GlcNAcmoieties of the cyclic peptide precursor.

To install different glycans at the Asn-160 and Asn-173 sites,

the first transglycosylation with Man5GlcNAc-oxazoline was

controlled to give two monoglycosylated intermediates, which

were separated by HPLC. The isolated isomers were then sepa-

rately glycosylated with a sialylated N-glycan at the remaining

GlcNAc moiety under the catalysis of EndoM-N175A mutant to

provide glycopeptides carrying two distinct N-glycans. By this

synthetic approach, more than 25 homogeneous cyclic V1V2

glycopeptides from HIV-1 CAP45 and ZM109 strains were

constructed and the overall synthetic yields for most of the

glycopeptides were excellent. SPR and ELISA binding analysis

indicated that both the nature and the location of the N-glycans

in the context of the V1V2 sequence are important for antibody

recognition, as indicated by the fact that free N-glycans and

peptide alone aswell as the glycopeptideswithmisplacedN-gly-

cans showed no or only marginal binding activities under the

same conditions. These studies confirmed the essence of a

Man5GlcNAc2 glycan at Asn-160 for recognition by antibody

PG9 and PG16, and further revealed a critical role of a sialylated

N-glycan at the secondary glycosylation site (Asn-156 or Asn-

173) for high affinity binding, which was not revealed by the

original PG9 structural study (McLellan et al., 2011). The best gly-

copeptides showed a micromolar affinity for the PG9 Fab in SPR

analysis. But they were able to detect PG9 and PG16 antibodies

at 50 pM to 1.5 nM concentrations in an ELISA format (due to the

high avidity). In another study, Danishefsky and coworkers syn-

thesized several V1V2 glycopeptides derived from HIV-1 strain

A244 by a convergent chemical assembly approach (Aussedat

et al., 2013) (Figure 7B). Notably, the native chemical ligation

between two fragments carrying bulky N-glycans proximal to

the ligation junction gave an impressive 55% yield. Initial binding

with PG9 whole IgG antibody indicated that the glycopeptide

carrying two Man5GlcNAc2 glycans (at Asn-156 and Asn-160)

exhibited high affinity (KD = 300 nM) for PG9. Surprisingly, the

glycopeptide carrying two truncated Man3GlcNAc2 glycans

also showed comparable affinity for PG9 in the SPR analysis.

Later analysis suggested that the high-affinity binding was attrib-

uted to the dimerization of the synthetic glycopeptides that

contain a free cysteine residue under the assay conditions

(Alam et al., 2013). This result is consistent with the finding that
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PG9 preferably recognizes gp120 trimer and an additional

Man5GlcNAc2 glycan at Asn-160 of a neighboring gp120 mole-

cule also contributes to binding (Julien et al., 2013). Taken

together, these studies suggest that an oligomeric form of the

V1V2 glycopeptides may be better mimics for the neutralizing

epitopes of PG9 and PG16.

Conclusions
Synthesis of full-length natural glycoproteins, given their

extremely large size and enormously complex structures from

the glycan portions, was once viewed as only a remote dream

for synthetic chemists. The concerted efforts from different

research laboratories worldwide and, in particular, the devel-

opment of sophisticated chemical and biochemical ligation

methods have nowmade it possible to assemble various natural

and tailor-made glycoproteins involving diverse glycosylation

patterns. Despite this tremendous progress, it should be pointed

out that the synthetic technologies for constructing glycopro-

teins are still far from maturation. Theoretically, the application

of iterative native chemical ligation and other auxiliary-based

ligations provides an opportunity to assemble glycoproteins

of unlimited size and to install distinct glycans at different sites

in the sequence. In reality, however, each target glycoprotein

may pose special challenges that require a careful choice of liga-

tion strategy and an innovative design of ligation components.

Novel enzymes are required to permit site-specific glycosylation

of polypeptides and folded recombinant proteins. Novel con-

cepts remain to be explored that would allow site-specific alter-

ation of glycans at predetermined sites in a multiply glycosylated

glycoprotein, similar to site-directed mutagenesis of amino

acids in recombinant DNA technology. With continuous efforts

in improving existing methods and in exploring new synthetic

concepts, it is expected that a number of homogeneous

glycoproteinswith increasing complexitywill bemade to address

important structural andbiological problems thatwould beother-

wisedifficult to tackle in the lackof appropriatemolecular probes.

Moreover, the ability to constructwell-defined tailor-made glyco-

proteins will certainly facilitate the development ofmore effective

glycoprotein-based therapeutics in the future.
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