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The first integral method is an efficient method for obtaining exact solutions of some
nonlinear partial differential equations. This method can be applied to nonintegrable
equations as well as to integrable ones. In this paper, the first integral method is used
to construct exact solutions of the nonlinear Schrödinger equation.
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1. Introduction

It is well known that nonlinear complex physics phenomena are related to nonlinear partial differential equations
(NLPDEs) which are involved in many fields from physics to biology, chemistry, mechanics, etc. As mathematical models
of the phenomena, the investigation of exact solutions of NLPDEs will help us to understand these phenomena better.
Many effective methods for obtaining exact solutions of NLPDEs have been presented, such as tanh–sech method [1–4], ex-
tended tanh method [5–8], hyperbolic function method [9], sine–cosine method [10–12], Jacobi elliptic function expansion
method [13], F -expansion method [14], and the transformed rational function method [15].

The first integral method was first proposed by Feng [16] in solving Burgers–KdV equation which is based on the ring
theory of commutative algebra. Recently, this useful method is widely used by many such as in [18,19] and by the reference
therein.

In [20], Ma and Chen is used Direct search method to obtain exact solutions of the nonlinear Schrödinger equation.
The nonlinear Schrödinger equation [21] is in the following form:

iut + puxx + q|u|2u = 0,

where p, q are non-zero real constants and u = u(x, t) is a complex-valued function of two real variables x, t. When
p = 1, q = μ, we have the nonlinear Schrödinger equation [20]. The aim of this paper is to find exact soliton solutions of
the nonlinear Schrödinger equation [20,21] by the first integral method.

2. The first integral method

Consider the nonlinear partial differential equation in the form

F (u, ux, ut, uxx, uxt, . . .) = 0, (1)
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where u = u(x, t) is the solution of nonlinear partial differential equation (1). We use the transformations,

u(x, t) = f (ξ), (2)

where ξ = x + λt. This enables us to use the following changes:

∂

∂t
(.) = λ

∂

∂ξ
(.),

∂

∂x
(.) = ∂

∂ξ
(.),

∂2

∂x2
(.) = ∂2

∂ξ2
(.), . . . . (3)

Using Eq. (3) to transfer the nonlinear partial differential equation (1) to nonlinear ordinary differential equation

G

(
f (ξ),

∂ f (ξ)

∂ξ
,
∂2 f (ξ)

∂ξ2
, . . .

)
= 0. (4)

Next, we introduce a new independent variable

X(ξ) = f (ξ), Y = ∂ f (ξ)

∂ξ
, (5)

which leads a system of nonlinear ordinary differential equations

∂ X(ξ)

∂ξ
= Y (ξ),

∂Y (ξ)

∂ξ
= F1

(
X(ξ), Y (ξ)

)
. (6)

By the qualitative theory of ordinary differential equations [17], if we can find the integrals to Eq. (6) under the same
conditions, then the general solutions to Eq. (6) can be solved directly. However, in general, it is really difficult for us to
realize this even for one first integral, because for a given plane autonomous system, there is no systematic theory that can
tell us how to find its first integrals, nor is there a logical way for telling us what these first integrals are. We will apply the
Division Theorem to obtain one first integral to Eq. (6) which reduces Eq. (4) to a first order integrable ordinary differential
equation. An exact solution to Eq. (1) is then obtained by solving this equation. Now, let us recall the Division Theorem:

Division Theorem. Suppose that P (w, z) and Q (w, z) are polynomials in C[w, z]; and P (w, z) is irreducible in C[w, z]. If Q (w, z)
vanishes at all zero points of P (w, z), then there exists a polynomial G(w, z) in C[w, z] such that

Q (w, z) = P (w, z)G(w, z).

3. Nonlinear Schrödinger equation

In this section we study the nonlinear Schrödinger equation [20,21]

iut + puxx + q|u|2u = 0. (7)

We use the transformation

u(x, t) = eiθ f (ξ), θ = αx + βt, ξ = x − 2pαt, (8)

where α and β are constants and f (ξ) is real function.
Substituting (8) into (7), we obtain ordinary differential equation:

−(
β + pα2) f (ξ) + p

∂2 f (ξ)

∂ξ2
+ q

(
f (ξ)

)3 = 0. (9)

Using (5) we get

Ẋ(ξ) = Y (ξ), (10)

Ẏ (ξ) =
(

β + pα2

p

)
X(ξ) − q

p

(
X(ξ)

)3
. (11)

According to the first integral method, we suppose the X(ξ) and Y (ξ) are nontrivial solutions of (10) and (11), and

Q (X, Y ) =
m∑

ai(X)Y i = 0

i=0
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is an irreducible polynomial in the complex domain C[X, Y ] such that

Q
(

X(ξ), Y (ξ)
) =

m∑
i=0

ai
(

X(ξ)
)
Y i(ξ) = 0, (12)

where ai(X) (i = 0,1, . . . ,m), are polynomials of X and am(X) �= 0. Eq. (12) is called the first integral to (10), (11). Due to
the Division Theorem, there exists a polynomial g(X) + h(X)Y , in the complex domain C[X, Y ] such that

dQ

dξ
= dQ

dX

dX

dξ
+ dQ

dY

dY

dξ
= (

g(X) + h(X)Y
) m∑

i=0

ai(X)Y i . (13)

In this example, we take two different cases, assuming that m = 1 and m = 2 in (12).

Case A: Suppose that m = 1, by comparing with the coefficients of Y i (i = 2,1,0) on both sides of (13), we have

ȧ1(X) = h(X)a1(X), (14)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (15)

a1(X)

[(
β + pα2

p

)
X(ξ) − q

p

(
X(ξ)

)3
]

= g(X)a0(X). (16)

Since ai(X) (i = 0,1) are polynomials, then from (14) we deduce that a1(X) is constant and h(X) = 0. For simplicity, take
a1(X) = 1. Balancing the degrees of g(X) and a0(X), we conclude that deg(g(X)) = 1 only. Suppose that g(X) = A1 X + B0,

then we find a0(X).

a0(X) = A0 + B0 X + 1

2
A1 X2, (17)

where A0 is arbitrary integration constant.
Substituting a0(X) and g(X) into (16) and setting all the coefficients of powers X to be zero, then we obtain a system

of nonlinear algebraic equations and by solving it, we obtain

B0 = 0, A1 =
√−2pq

p
, β = −pα2 + A0

√−2pq, (18)

B0 = 0, A1 = −
√−2pq

p
, β = −pα2 − A0

√−2pq, (19)

where A0 and α are arbitrary constants.
Using the conditions (18) in (12), we obtain

Y (ξ) = −A0 −
√−2pq

2p
X2(ξ). (20)

Combining (20) with (10), we obtain the exact solution to (10), (11) and the exact solution to nonlinear Schrödinger
equation can be written as

u(x, t) = −
√

− A0
√−2pq

q
ei(αx−(pα2−A0

√−2pq )t) tan

(√
A0

√−2pq

2p
(x − 2αpt + ξ0)

)
, (21)

where ξ0 is an arbitrary constant.
Similarly, in the case of (19), from (12), we obtain

Y (ξ) = −A0 +
√−2pq

2p
X2(ξ), (22)

and then the exact solution of the nonlinear Schrödinger equation can be written as

u(x, t) = −
√

− A0
√−2pq

q
ei(αx−(pα2+A0

√−2pq )t) tanh

(√
A0

√−2pq

2p
(x − 2αpt + ξ0)

)
, (23)

where ξ0 is an arbitrary constant.
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Case B: Suppose that m = 2, by equating the coefficients of Y i (i = 3,2,1,0) on both sides of (13), we have

ȧ2(X) = h(X)a2(X), (24)

ȧ1(X) = g(X)a2(X) + h(X)a1(X), (25)

ȧ0(X) = −2a2(X)

[(
β + pα2

p

)
X(ξ) − q

p

(
X(ξ)

)3
]

+ g(X)a1(X) + h(X)a0(X), (26)

a1(X)

[(
β + pα2

p

)
X(ξ) − q

p

(
X(ξ)

)3
]

= g(X)a0(X). (27)

Since ai(X) (i = 0,1,2) are polynomials, then from (24) we deduce that a2(X) is constant and h(X) = 0. For simplicity,
take a2(X) = 1. Balancing the degrees of g(X), a1(X) and a2(X), we conclude that deg(g(X)) = 1 only. Suppose that g(X) =
A1 X + B0, then we find a1(X) and a0(X) as follows

a1(X) = A0 + B0 X + 1

2
A1 X2, (28)

a0(X) = d + B0 A0 X + 1

2

(
−2β

p
− 2α2 + B2

0 + A0 A1

)
X2 + 1

2
A1 B0 X3 + 1

4

(
2q

p
+ 1

2
A2

1

)
X4. (29)

Substituting a0(X), a1(X) and g(X) in the last equation in (27) and setting all the coefficients of powers X to be zero, then
we obtain a system of nonlinear algebraic equations and by solving it with aid Maple, we obtain

B0 = 0, A0 = −
√−2pq(β + α2 p)

pq
, A1 = 2

√−2pq

p
, d = −1

2

β2 + 2βα2 p + α4 p2

pq
, (30)

B0 = 0, A0 =
√−2pq(β + α2 p)

pq
, A1 = −2

√−2pq

p
, d = −1

2

β2 + 2βα2 p + α4 p2

pq
, (31)

where α and β are arbitrary constants.
Using the conditions (30) and (31) into (12), we get

Y (ξ) = ±
√−2pq(qX2(ξ) − β − α2 p)

2pq
. (32)

Combining (32) with (10), we obtain the exact solution to (10), (11) and the exact solution to the nonlinear Schrödinger
equation can be written as

u(x, t) = ±
√

β + α2 p

q
ei(αx+βt) tanh

[√
−β + α2 p

2p
(x − 2αpt + ξ0)

]
, (33)

where ξ0 is an arbitrary constant.

4. Conclusion

In this paper, the first integral method was applied successfully for solving the nonlinear Schrödinger equation. Thus, we
conclude that the proposed method can be extended to solve the nonlinear problems which arise in the theory of solitons
and other areas.
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