WWW.MATHEMATICSWEB.ORG
 powered by science @direct.

Yournal of
MATHEMATICAL

Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups

Alexander M. Krägeloh
Viersenerstr. 3, 50733 Köln, Germany
Received 19 March 2002
Submitted by W.L. Wendland

Abstract

Two families of functions on $(0, \infty)$ are related to the theory of fractional powers of generators of strongly continuous semigroups-namely the family $\left(\sigma_{\alpha}(\cdot, t)\right)_{t>0}$ of density functions of the one-sided stable semigroup of order $\alpha \in(0,1)$, and a family $\left(e_{\alpha}(\cdot, \mu)\right)_{\mu>0}$ of Mittag-Leffler type functions. For the latter family we make this relation visible. We collect some important properties of these functions, and we improve a known result on the Laplace transform of the functions $e_{\alpha}(\cdot, \mu)$ and their derivatives in the sense that we enlarge the domains of the Laplace variable. We furthermore find an expression for the Laplace transform of the functions $t \mapsto \sigma_{\alpha}(x, t), x>0$, in terms of the derivative $e_{\alpha}^{\prime}(\cdot, \mu)$. © 2003 Elsevier Inc. All rights reserved.

Keywords: Fractional power of operators; Subordination; One-sided stable semigroup; Mittag-Leffler type functions

1. Introduction

Throughout this text let $\alpha \in(0,1)$. The functions $\sigma_{\alpha}(\cdot, t), t>0$, are defined on $(0, \infty)$ via the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-z x} \sigma_{\alpha}(x, t) d x=e^{-t z^{\alpha}}, \quad t>0, \operatorname{Re} z \geqslant 0 \tag{1}
\end{equation*}
$$

[^0]These functions are sometimes called Lévy stable density functions (e.g., in [5]), and they are the density functions of the one-sided stable semigroup of order $\alpha \in(0,1)$. From the theory of subordination it is known that the family of measures $\left(\eta_{t}^{(\alpha)}\right)_{t>0}$ with support $[0, \infty)$ defined by

$$
\eta_{t}^{(\alpha)}(d x)=\sigma_{\alpha}(x, t) d x, \quad t>0
$$

is a vaguely continuous convolution semigroup of probability measures, i.e., it has the properties $\eta_{t}^{(\alpha)}([0, \infty))=1, \eta_{t_{1}}^{(\alpha)} * \eta_{t_{2}}^{(\alpha)}=\eta_{t_{1}+t_{2}}^{(\alpha)}$ for $t_{1}, t_{2}>0$, and $\lim _{t \rightarrow 0^{+}} \eta_{t}^{(\alpha)}([\delta, \infty))=0$ for any $\delta>0$. It follows that the functions $\sigma_{\alpha}(\cdot, t), t>0$, are nonnegative and integrable on $(0, \infty)$ with

$$
\begin{equation*}
\int_{0}^{\infty} \sigma_{\alpha}(x, t) d x=1, \quad t>0 \tag{2}
\end{equation*}
$$

and they satisfy

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \int_{\delta}^{\infty} \sigma_{\alpha}(x, t) d x=0 \quad \text { for each } \delta>0 \tag{3}
\end{equation*}
$$

Some further properties can be found in $[3,5,20]$.
Given a strongly continuous semigroup $\left(T_{t}\right)_{t \geqslant 0}$ of bounded operators on a Banach space $\left(\mathcal{B},\|\cdot\|_{\mathcal{B}}\right)$ one can define a family $\left(T_{t}^{\alpha}\right)_{t \geqslant 0}$ by $T_{0}^{\alpha}=\operatorname{id}_{\mathcal{B}}$ and

$$
T_{t}^{\alpha} f=\int_{0}^{\infty}\left(T_{s} f\right) \sigma_{\alpha}(s, t) d s, \quad f \in \mathcal{B}, t>0
$$

The family $\left(T_{t}^{\alpha}\right)_{t \geqslant 0}$ forms a strongly continuous semigroup of bounded operators, the socalled semigroup subordinated to $\left(T_{t}\right)_{t \geqslant 0}$ with respect to $\left(\eta_{t}^{(\alpha)}\right)_{t>0}$. We refer to $[4,6,10]$ for more details on the theory of subordination.

If we let $(A, \mathcal{D}(A))$ be the infinitesimal generator of the semigroup $\left(T_{t}\right)_{t \geqslant 0}$ then the generator $\left(A_{\alpha}, \mathcal{D}\left(A_{\alpha}\right)\right)$ of $\left(T_{t}^{\alpha}\right)_{t \geqslant 0}$ is the fractional power of A of order α. On $\mathcal{D}(A) \subset$ $\mathcal{D}\left(A_{\alpha}\right)$ this operator can be expressed in terms of $\left(T_{t}\right)_{t \geqslant 0}$ by

$$
A_{\alpha} f=\frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{T_{t} f-f}{t^{1+\alpha}} d t, \quad f \in \mathcal{D}(A)
$$

e.g., see [20, p. 260]. For a detailed account we also refer to [1,11,12] where one finds in particular an expression for the resolvent operators of A_{α}, that is,

$$
\begin{equation*}
\left(\mu-A_{\alpha}\right)^{-1} f=\int_{0}^{\infty} \frac{\lambda}{\mu} K_{\alpha}(\lambda, \mu)(\lambda-A)^{-1} f d \lambda, \quad f \in \mathcal{B}, \mu>0 \tag{4}
\end{equation*}
$$

with kernel

$$
\begin{equation*}
K_{\alpha}(\lambda, \mu):=\frac{\sin (\alpha \pi)}{\pi} \frac{\mu \lambda^{\alpha-1}}{\mu^{2}+2 \mu \lambda^{\alpha} \cos (\alpha \pi)+\lambda^{2 \alpha}}, \quad \lambda, \mu>0 \tag{5}
\end{equation*}
$$

An expression for the resolvent of A_{α} in terms of the semigroup $\left(T_{t}\right)_{t \geqslant 0}$ is given in [14], that is,

$$
\begin{equation*}
\left(\mu-A_{\alpha}\right)^{-1} f=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\lambda y} \frac{\lambda}{\mu} K_{\alpha}(\lambda, \mu) d \lambda\left(T_{t} f\right) d t, \quad f \in \mathcal{B}, \mu>0 \tag{6}
\end{equation*}
$$

The family of Mittag-Leffler type functions $\left(e_{\alpha}(\cdot, \mu)\right)_{\mu>0}$ are defined by

$$
\begin{equation*}
e_{\alpha}(x, \mu):=E_{\alpha, 1}\left(-\mu x^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{(-\mu)^{k} x^{\alpha k}}{\Gamma(\alpha k+1)}, \quad x \geqslant 0 \tag{7}
\end{equation*}
$$

where $E_{\beta_{1}, \beta_{2}}$ denotes the two-parameter Mittag-Leffler functions

$$
E_{\beta_{1}, \beta_{2}}: z \mapsto \sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma\left(\beta_{1} k+\beta_{2}\right)}, \quad z \in \mathbb{C}, \beta_{1}, \beta_{2}>0
$$

see, e.g., [7]. (The notation is adopted from [8].)
The connection between the theory of fractional powers of operators and the family $\left(e_{\alpha}(\cdot, \mu)\right)_{\mu>0}$ is given via the kernel K_{α}. In particular, in [8, p. 268] it is shown that

$$
\begin{equation*}
e_{\alpha}(x, \mu)=\int_{0}^{\infty} e^{-\lambda x} K_{\alpha}(\lambda, \mu) d \lambda, \quad x>0, \mu>0 \tag{8}
\end{equation*}
$$

The functions $e_{\alpha}(\cdot, \mu), \mu>0$, and especially their derivatives $e_{\alpha}^{\prime}(\cdot, \mu)$ in the first variable, occur in many works on fractional calculus, see, e.g., $[2,8,13,14,17,18]$.

2. Some properties of the Mittag-Leffler functions

In order to study the functions $\left(e_{\alpha}(\cdot, \mu)\right)_{\mu>0}$ we need to investigate the kernel K_{α}.

Proposition 1. Let $\mu>0$.

(i) The function $K_{\alpha}(\cdot, \mu)$ is a positive, continuous, and integrable function on $(0, \infty)$.
(ii) For each $z \in \mathbb{C} \backslash(-\infty, 0)$ there holds

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\lambda}{\lambda+z} K_{\alpha}(\lambda, \mu) d \lambda=\frac{\mu}{\mu+z} \tag{9}
\end{equation*}
$$

so that in particular

$$
\begin{equation*}
\int_{0}^{\infty} K_{\alpha}(\lambda, \mu) d \lambda=1 \tag{10}
\end{equation*}
$$

The integral in (9) is the Stieltjes transform $\lambda \mapsto \lambda K_{\alpha}(\lambda, \mu)$ of the function λ.
Proof. (i) We observe that

$$
\begin{equation*}
K_{\alpha}(\lambda, \mu)=\frac{\sin (\alpha \pi)}{\pi} \frac{\mu \lambda^{\alpha-1}}{\left(\mu+\lambda^{\alpha} \cos (\alpha \pi)\right)^{2}+\lambda^{2 \alpha} \sin ^{2}(\alpha \pi)} \quad \text { for } \lambda>0, \tag{11}
\end{equation*}
$$

which implies the asserted properties.
(ii) By (11) the integral in (9) exists for all $z \in \mathbb{C} \backslash(-\infty, 0)$. Applying the inversion formula of the Stieltjes transform (see [19, p. 340]) to the function $\varphi: z \mapsto \mu /(\mu+z)$ on $(0, \infty)$ we find after some elementary calculations that

$$
\lim _{\tau \rightarrow 0+} \frac{1}{2 \pi i}(\varphi(-\lambda-i \tau)-\varphi(-\lambda+i \tau))=\lambda K_{\alpha}(\lambda, \mu), \quad \lambda>0,
$$

which yields (9) for $z \in \mathbb{C} \backslash(-\infty, 0]$. Now, since

$$
\lim _{n \rightarrow \infty} \frac{\lambda}{\lambda+(1 / n)} K_{\alpha}(\lambda, \mu)=K_{\alpha}(\lambda, \mu)
$$

converges monotonically for all $\lambda>0$, and since $K_{\alpha}(\cdot, \mu)$ is integrable by (i), the Lebesgue theorem on dominated convergence implies (10).

Directly from definition (7) the relation

$$
\begin{equation*}
e_{\alpha}(0, \mu)=1 \quad \text { for all } \mu>0 \tag{12}
\end{equation*}
$$

follows, and since the functions $e_{\alpha}(\cdot, \mu)$ for $\mu>0$ are Laplace transforms of positive and integrable functions (cf. (8)), they are positive and continuous on $[0, \infty)$.

From the fact that for each $0<\beta_{1}<2$ and $\beta_{2}>0$ there exists a constant $c>0$ so that

$$
\begin{equation*}
\left|E_{\beta_{1}, \beta_{2}}(z)\right| \leqslant \frac{c}{1+|z|} \quad \text { for all } z<0 \tag{13}
\end{equation*}
$$

(see [18]), it follows that

$$
\left|e_{\alpha}(x, \mu)\right| \leqslant \frac{c}{1+\mu x^{\alpha}}, \quad x \geqslant 0 .
$$

Hence $e_{\alpha}(\cdot, \mu) \in L_{2}(0, \infty)$ for $1 / 2<\alpha<1$. Moreover, the functions $e_{\alpha}(\cdot, \mu)$ are bounded for every $\alpha \in(0,1)$ with

$$
\begin{equation*}
\lim _{x \rightarrow \infty} e_{\alpha}(x, \mu)=0 \tag{14}
\end{equation*}
$$

Differentiating term by term in (7)—which is possible—one obtains for the derivatives $e_{\alpha}^{\prime}(\cdot, \mu)$ with respect to the first variable

$$
\begin{equation*}
e_{\alpha}^{\prime}(x, \mu)=-\mu x^{\alpha-1} E_{\alpha, \alpha}\left(-\mu x^{\alpha}\right), \quad x>0, \mu>0 \tag{15}
\end{equation*}
$$

We summarize some properties of these functions as follows.
Proposition 2. Let $\mu>0$.
(i) The function $e_{\alpha}^{\prime}(\cdot, \mu)$ is a negative and continuous function on $(0, \infty)$ with

$$
\begin{equation*}
e_{\alpha}^{\prime}(x, \mu)=-\int_{0}^{\infty} e^{-x \lambda} \lambda K_{\alpha}(\lambda, \mu) d \lambda \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|e_{\alpha}^{\prime}(x, \mu)\right| \leqslant c \frac{\mu x^{\alpha-1}}{1+\mu x^{\alpha}} \leqslant c \mu x^{\alpha-1} \tag{17}
\end{equation*}
$$

for all $x>0$ and with some constant $c>0$.
(ii) There holds

$$
\begin{equation*}
\lim _{x \rightarrow 0+} e_{\alpha}^{\prime}(x, \mu)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} e_{\alpha}^{\prime}(x, \mu)=0 \tag{18}
\end{equation*}
$$

and $e_{\alpha}^{\prime}(\cdot, \mu) \in L_{1}(0, \infty)$ with

$$
\begin{equation*}
\left\|e_{\alpha}^{\prime}(\cdot, \mu)\right\|_{L_{1}(0, \infty)}=-\int_{0}^{\infty} e_{\alpha}^{\prime}(x, \mu) d x=1 \tag{19}
\end{equation*}
$$

For $1 / 2<\alpha<1$, we also have $e_{\alpha}^{\prime}(\cdot, \mu) \in L_{2}(0, \infty)$.
Proof. (i) Since $K_{\alpha}(\cdot, \mu)$ is integrable on ($0, \infty$) we can differentiate (8) and obtain (16) for $x>0$, which implies that $e_{\alpha}^{\prime}(\cdot, \mu)$ is negative and continuous on $(0, \infty)$. The estimate (17) follows from (15) and (13).
(ii) The first limit in (18) is implied by (16) because the function $\lambda \mapsto \lambda K_{\alpha}(\lambda, \mu)$ is not integrable, cf. (11). The second limit follows from estimate (17), which also yields that $e_{\alpha}^{\prime}(\cdot, \mu) \in L_{2}(0, \infty)$ for $1 / 2<\alpha<1$. For $\alpha \in(0,1)$ we find

$$
\int_{0}^{N}\left|e_{\alpha}^{\prime}(x, \mu)\right| d x<\infty \quad \text { for every } N>0
$$

Since

$$
\int_{0}^{N}\left|e_{\alpha}^{\prime}(x, \mu)\right| d x=-\int_{0}^{N} e_{\alpha}^{\prime}(x, \mu) d x=e_{\alpha}(0, \mu)-e_{\alpha}(N, \mu),
$$

Eqs. (12) and (14) imply

$$
\int_{0}^{\infty}\left|e_{\alpha}^{\prime}(x, \mu)\right| d x=\lim _{N \rightarrow \infty}\left(e_{\alpha}(0, \mu)-e_{\alpha}(N, \mu)\right)=1
$$

Remark 3. From (8) it follows that the functions $e_{\alpha}(\cdot, \mu)$, for $\mu>0$, are completely monotone.

Some numerical calculations for the functions $e_{\alpha}(\cdot, \mu)$ are performed in [9].

In [8, p. 267] and [18, p. 21], the identity

$$
\int_{0}^{\infty} e^{-x} x^{\beta_{2}-1} E_{\beta_{1}, \beta_{2}}\left(z x^{\beta_{1}}\right) d x=\frac{1}{1-z}, \quad|z|<1
$$

is used to find the expressions for the Laplace transforms $\mathrm{L}\left[e_{\alpha}(\cdot, \mu)\right]$ and $\mathrm{L}\left[e_{\alpha}^{\prime}(\cdot, \mu)\right]$ in the first variable. There the expressions are formulated on the sets $\left\{\operatorname{Re} z>\mu^{1 / \alpha}\right\}$, but with the above properties we can extend the existence domains of the Laplace transform.

Theorem 4. Let $\mu>0$. The Laplace transform of the function $e_{\alpha}(\cdot, \mu)$ exists on the set $\{\operatorname{Re} z>0\}$ with

$$
\begin{equation*}
\mathrm{L}\left[e_{\alpha}(\cdot, \mu)\right](z)=\frac{z^{\alpha-1}}{\mu+z^{\alpha}} \quad \text { for } \operatorname{Re} z>0 \tag{20}
\end{equation*}
$$

and the Laplace transform of the function $e_{\alpha}^{\prime}(\cdot, \mu)$ exists on the set $\{\operatorname{Re} z \geqslant 0\}$, where it is given by

$$
\begin{equation*}
\mathrm{L}\left[e_{\alpha}^{\prime}(\cdot, \mu)\right](z)=\frac{-\mu}{\mu+z^{\alpha}} \quad \text { for all } z \text { with } \operatorname{Re} z \geqslant 0 \tag{21}
\end{equation*}
$$

Proof. Since $e_{\alpha}(\cdot, \mu)$ is bounded on $[0, \infty)$ and $e_{\alpha}^{\prime}(\cdot, \mu)$ is integrable on $(0, \infty)$, the Laplace transforms of both functions exist on the set $\{\operatorname{Re} z>0\}$, and the latter exists for $\operatorname{Re} z=0$ as well.

Also, the Stieltjes transform $\lambda \mapsto \lambda K_{\alpha}(\lambda, \mu)$ of the function λ exists (cf. (9)), and since it can be regarded as an iterated Laplace transform (cf. [19, p. 334]), we get

$$
\frac{\mu}{\mu+z}=\int_{0}^{\infty} e^{-z x} \int_{0}^{\infty} e^{-x \lambda} \lambda K_{\alpha}(\lambda, \mu) d \lambda d x \quad \text { for } \operatorname{Re} z>0
$$

so that we obtain (21) via (16). Because of (19) identity (21) is also valid for $\operatorname{Re} z=0$.
For the function $e_{\alpha}(\cdot, \mu)$ we get, for $\operatorname{Re} z>0$, by the identity for the Laplace transform of the derivative of a function

$$
\mathrm{L}\left[e_{\alpha}^{\prime}(\cdot, \mu)\right](z)=z \mathrm{~L}\left[e_{\alpha}(\cdot, \mu)\right](z)-e_{\alpha}(0, \mu)
$$

and this implies (20) via (21) and $e_{\alpha}(0, \mu)=1$.
Remark 5. Considering (16) we observe that identity (6) for the resolvent of the generator A_{α} of the semigroup $\left(T_{t}^{\alpha}\right)_{t \geqslant 0}$ subordinated to the semigroup $\left(T_{t}\right)_{t \geqslant 0}$ actually is

$$
\left(\mu-A_{\alpha}\right)^{-1} f=\int_{0}^{\infty} \frac{e_{\alpha}^{\prime}(t, \mu)}{-\mu}\left(T_{t} f\right) d t, \quad f \in \mathcal{B}
$$

Now we come back to the family $\left(\sigma_{\alpha}(\cdot, t)\right)_{t>0}$.

Proposition 6. Let $t>0$. The function $\sigma_{\alpha}(\cdot, t)$ is an element of $C^{\infty}(0, \infty)$ with

$$
\lim _{x \rightarrow 0+} \sigma_{\alpha}^{(l)}(x, t)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \sigma_{\alpha}^{(l)}(x, t)=0
$$

for all $l \in \mathbb{N}_{0}$, where $\sigma_{\alpha}^{(l)}(\cdot, t)$ denotes the lth derivative in the first variable.
Proof. We regard $\sigma_{\alpha}(\cdot, t)$ as a function on \mathbb{R} by setting $\sigma_{\alpha}(x, t)=0$ for $x \leqslant 0$. Since $\sigma_{\alpha}(\cdot, t) \in L_{1}(\mathbb{R})$ (cf. (2)), the Fourier transform $\mathrm{F}_{\mathbb{R}}\left[\sigma_{\alpha}(\cdot, t)\right]$ exists, and by the defining identity (1) it is

$$
\begin{equation*}
\mathrm{F}_{\mathbb{R}}\left[\sigma_{\alpha}(\cdot, t)\right](\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i x \xi} \sigma_{\alpha}(x, t) d x=\frac{1}{\sqrt{2 \pi}} e^{-t(i \xi)^{\alpha}}, \quad \xi \in \mathbb{R} \tag{22}
\end{equation*}
$$

where

$$
(i \xi)^{\alpha}=|\xi|^{\alpha}\left(\cos \left(\alpha \frac{\pi}{2}\right)+i \operatorname{sgn}(\xi) \sin \left(\alpha \frac{\pi}{2}\right)\right)
$$

Let us denote with $H^{l}(\mathbb{R}), l \in \mathbb{N}_{0}$, the classical Sobolev spaces of functions $f \in L_{2}(\mathbb{R})$ with finite norm

$$
\|f\|_{H^{l}(\mathbb{R})}:=\left(\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{l}\left|\mathrm{~F}_{\mathbb{R}}[f](\xi)\right|^{2} d \xi\right)^{1 / 2}
$$

From (22) it follows that for each $l \in \mathbb{N}_{0}$ it is

$$
\left\|\sigma_{\alpha}(\cdot, t)\right\|_{H^{l}(\mathbb{R})}^{2} \leqslant \int_{-\infty}^{\infty}\left(1+|\eta|^{2}\right)^{l}\left(e^{-t|\xi|^{\alpha} \cos (\alpha(\pi / 2))}\right)^{2} d \xi<\infty
$$

so that $\sigma_{\alpha}(\cdot, t) \in H^{l}(\mathbb{R})$ for all $l \in \mathbb{N}_{0}$. The assertion of the theorem now follows from the embedding theorems together with the fact that the support of the function $\sigma_{\alpha}(\cdot, t)$ is a subset of $[0, \infty)$, cf. [16].

In the following theorem we establish the connection between the two families $\left(\sigma_{\alpha}(\cdot, t)\right)_{t>0}$ and $\left(e_{\alpha}(\cdot, \mu)\right)_{\mu>0}$.

Theorem 7. Let $x>0$. The Laplace transforms of the function $\sigma_{\alpha}(x, \cdot)$ on $(0, \infty)$ exists on the set $\{\operatorname{Re} \mu>0\}$, and for every $\mu>0$ there holds

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu t} \sigma_{\alpha}(x, t) d t=\frac{e_{\alpha}^{\prime}(x, \mu)}{-\mu}, \quad x>0 \tag{23}
\end{equation*}
$$

Proof. In [5, p. 144] and [20, p. 263], one can find the representation

$$
\begin{align*}
\sigma_{\alpha}(x, t)=\frac{1}{\pi} \int_{0}^{\infty} & {\left[\sin \left(x \lambda \sin (\vartheta)-t \lambda^{\alpha} \sin (\alpha \vartheta)+\vartheta\right)\right.} \\
& \left.\times \exp \left(x \lambda \cos (\vartheta)-t \lambda^{\alpha} \cos (\alpha \vartheta)\right)\right] d \lambda \tag{24}
\end{align*}
$$

which is valid for any $\vartheta \in[\pi / 2, \pi]$ and $x, t>0$. If we choose $\pi / 2<\vartheta<\min (\pi, \pi /(2 \alpha))$ then $\cos (\vartheta)<0$ and $\cos (\alpha \vartheta)>0$, so that in (24),

$$
\left|\sigma_{\alpha}(x, t)\right| \leqslant \frac{1}{\pi} \int_{0}^{\infty} e^{-x \lambda|\cos (\vartheta)|} d \lambda=\frac{1}{\pi} \frac{1}{x|\cos (\vartheta)|}
$$

Hence, $\sigma_{\alpha}(x, \cdot)$ is a bounded function on $(0, \infty)$, and in particular its Laplace transform exists on the set $\{\operatorname{Re} \mu>0\}$. By the inversion formula for the Laplace transform, cf. [19, p. 67], we find for $\mu>0$ and $\omega>0$ that

$$
\begin{align*}
\int_{0}^{\infty} e^{-\mu t} \sigma_{\alpha}(x, t) d t & =\frac{1}{2 \pi i} \int_{0}^{\infty} e^{-\mu t} \lim _{N \rightarrow \infty} \int_{-N}^{N} e^{x(\omega+i \eta)} e^{-t(\omega+i \eta)^{\alpha}} d \eta d t \\
& =\frac{1}{2 \pi i} \lim _{N \rightarrow \infty} \int_{-N}^{N} e^{x(\omega+i \eta)} \frac{1}{\mu+(\omega+i \eta)^{\alpha}} d \eta \tag{25}
\end{align*}
$$

Now (23) follows from (25) via (21).
Remark 8. For $\alpha=1 / 2$ the following explicit expressions are known:

$$
\sigma_{1 / 2}(x, t)=\frac{1}{2 \sqrt{\pi}} x^{-3 / 2} t \exp \left(-\frac{t^{2}}{4 x}\right), \quad x, t>0
$$

see [4, p. 71], and

$$
e_{1 / 2}(x, \mu)=\frac{2}{\sqrt{\pi}} e^{\mu^{2} x} \int_{\mu \sqrt{x}}^{\infty} e^{-y^{2}} d y, \quad x, \mu>0
$$

see [18, p. 18], so that for the derivative $e_{\alpha}^{\prime}(\cdot, \mu)$ we get

$$
\frac{1}{-\mu} e_{1 / 2}^{\prime}(x, \mu)=\frac{1}{\sqrt{\pi}}\left(x^{-(1 / 2)}-2 \mu e^{\mu^{2} x} \int_{\mu \sqrt{x}}^{\infty} e^{-y^{2}} d y\right), \quad x>0
$$

Now, one can verify directly the relation

$$
\int_{0}^{\infty} e^{-\mu t} \sigma_{1 / 2}(x, t) d t=\frac{1}{-\mu} e_{1 / 2}^{\prime}(x, \mu), \quad x, \mu>0
$$

These results have been obtained in the author's Doctoral dissertation [15].

References

[1] A.V. Balakrishnan, Fractional powers of closed operators and the semigroup generated by them, Pacific J. Math. 10 (1960) 419-437.
[2] J.H. Barrett, Differential equations of non-integer order, Canad. J. Math. 6 (1954) 529-541.
[3] A.D. Bendikov, Symmetric stable semigroups on the infinite dimensional torus, Exposition. Math. 13 (1995) 39-80.
[4] Ch. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, in: Ergebnisse der Mathematik und Ihrer Grenzgebiete, Vol. 87, Springer, 1975.
[5] P.L. Butzer, H. Berens, Semi-groups of Operators and Approximation, in: Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 145, Springer, 1967.
[6] E.B. Davies, One-Parameter Semi-groups, in: London Math. Soc. Monographs, Academic Press, 1980.
[7] A. Erdélyi (Ed.), Higher Transcendental Functions, McGraw-Hill, 1955.
[8] R. Gorenflo, F. Mainardi, Fractional calculus, integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, in: CISM Courses and Lectures, Vol. 378, Springer, 1997, pp. 223-276.
[9] R. Gorenflo, I. Loutchko, Y. Luchko, Numerische Berechnung der Mittag-Leffler-Funktion $E_{\alpha, \beta}(z)$ und Ihre Ableitung, 1999, available at http://www.math.fu-berlin.de/publ/index.html.
[10] N. Jacob, Pseudo-Differential Operators and Markov Processes, in: Mathematical Research, Vol. 94, Akademie Verlag, 1996.
[11] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960) 94-96.
[12] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961) 246-274.
[13] A.N. Kochubei, Fractional-order diffusion, Differential Equations 26 (1990) 485-492.
[14] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966) 285-346.
[15] A.M. Krägeloh, Feller semigroups generated by fractional derivatives and pseudo-differential operators, Dissertation, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany, 2001.
[16] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, in: Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 181, Springer, 1972.
[17] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
[18] I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, Vol. 198, Academic Press, 1999.
[19] D.V. Widder, The Laplace Transform, in: Princeton Mathematical Series, Princeton Univ. Press, 1972.
[20] K. Yosida, Functional Analysis, in: Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 123, Springer, 1965.

[^0]: E-mail address: alexander_kraegeloh@hotmail.com.
 0022-247X/03/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
 doi:10.1016/S0022-247X(03)00269-5

