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Abstract

Two families of functions on(0,∞) are related to the theory of fractional powers of gene
tors of strongly continuous semigroups—namely the family(σα(·, t))t>0 of density functions of the
one-sided stable semigroup of orderα ∈ (0,1), and a family(eα(·,µ))µ>0 of Mittag–Leffler type
functions. For the latter family we make this relation visible. We collect some important prop
of these functions, and we improve a known result on the Laplace transform of the functionseα(·,µ)
and their derivatives in the sense that we enlarge the domains of the Laplace variable. We
more find an expression for the Laplace transform of the functionst �→ σα(x, t), x > 0, in terms of
the derivativee′α(·,µ).
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this text letα ∈ (0,1). The functionsσα(·, t), t > 0, are defined on(0,∞)

via the identity

∞∫
0

e−zxσα(x, t) dx = e−tzα , t > 0, Rez� 0. (1)

E-mail address:alexander_kraegeloh@hotmail.com.
0022-247X/03/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00269-5

https://core.ac.uk/display/82439893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


460 A.M. Krägeloh / J. Math. Anal. Appl. 283 (2003) 459–467

prop-

on

ace

e so-

nds in
These functions are sometimes calledLévy stable density functions(e.g., in [5]), and
they are the density functions of theone-sided stable semigroup of orderα ∈ (0,1). From
the theory of subordination it is known that the family of measures(η

(α)
t )t>0 with support

[0,∞) defined by

η
(α)
t (dx)= σα(x, t) dx, t > 0,

is a vaguely continuous convolution semigroup of probability measures, i.e., it has the
ertiesη(α)t ([0,∞))= 1,η(α)t1

∗η(α)t2
= η

(α)
t1+t2

for t1, t2 > 0, and limt→0+ η(α)t ([δ,∞))= 0 for
any δ > 0. It follows that the functionsσα(·, t), t > 0, are nonnegative and integrable
(0,∞) with

∞∫
0

σα(x, t) dx = 1, t > 0, (2)

and they satisfy

lim
t→0+

∞∫
δ

σα(x, t) dx = 0 for eachδ > 0. (3)

Some further properties can be found in [3,5,20].
Given a strongly continuous semigroup(Tt )t�0 of bounded operators on a Banach sp

(B,‖ · ‖B) one can define a family(T α
t )t�0 by T α

0 = idB and

T α
t f =

∞∫
0

(Tsf )σα(s, t) ds, f ∈ B, t > 0.

The family(T α
t )t�0 forms a strongly continuous semigroup of bounded operators, th

called semigroupsubordinatedto (Tt )t�0 with respect to(η(α)t )t>0. We refer to [4,6,10]
for more details on the theory of subordination.

If we let (A,D(A)) be the infinitesimal generator of the semigroup(Tt )t�0 then the
generator(Aα,D(Aα)) of (T α

t )t�0 is the fractional power ofA of orderα. OnD(A) ⊂
D(Aα) this operator can be expressed in terms of(Tt )t�0 by

Aαf = α

Γ (1− α)

∞∫
0

Ttf − f

t1+α
dt, f ∈ D(A),

e.g., see [20, p. 260]. For a detailed account we also refer to [1,11,12] where one fi
particular an expression for the resolvent operators ofAα , that is,

(µ−Aα)
−1f =

∞∫
0

λ

µ
Kα(λ,µ)(λ−A)−1f dλ, f ∈ B, µ > 0, (4)

with kernel



A.M. Krägeloh / J. Math. Anal. Appl. 283 (2003) 459–467 461

family
Kα(λ,µ) := sin(απ)

π

µλα−1

µ2 + 2µλα cos(απ)+ λ2α
, λ,µ > 0. (5)

An expression for the resolvent ofAα in terms of the semigroup(Tt )t�0 is given in [14],
that is,

(µ−Aα)
−1f =

∞∫
0

∞∫
0

e−λy λ

µ
Kα(λ,µ) dλ (Ttf ) dt, f ∈ B, µ > 0. (6)

The family of Mittag–Leffler type functions(eα(·,µ))µ>0 are defined by

eα(x,µ) :=Eα,1(−µxα)=
∞∑
k=0

(−µ)kxαk

Γ (αk + 1)
, x � 0, (7)

whereEβ1,β2 denotes the two-parameter Mittag–Leffler functions

Eβ1,β2 : z �→
∞∑
k=0

zk

Γ (β1k + β2)
, z ∈ C, β1, β2 > 0,

see, e.g., [7]. (The notation is adopted from [8].)
The connection between the theory of fractional powers of operators and the

(eα(·,µ))µ>0 is given via the kernelKα . In particular, in [8, p. 268] it is shown that

eα(x,µ)=
∞∫

0

e−λxKα(λ,µ) dλ, x > 0,µ > 0. (8)

The functionseα(·,µ), µ> 0, and especially their derivativese′
α(·,µ) in the first variable,

occur in many works on fractional calculus, see, e.g., [2,8,13,14,17,18].

2. Some properties of the Mittag–Leffler functions

In order to study the functions(eα(·,µ))µ>0 we need to investigate the kernelKα .

Proposition 1.Letµ> 0.

(i) The functionKα(·,µ) is a positive, continuous, and integrable function on(0,∞).
(ii) For eachz ∈ C\(−∞,0) there holds

∞∫
0

λ

λ+ z
Kα(λ,µ) dλ= µ

µ+ z
, (9)

so that in particular

∞∫
0

Kα(λ,µ) dλ= 1. (10)
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The integral in (9) is the Stieltjes transformλ �→ λKα(λ,µ) of the functionλ.

Proof. (i) We observe that

Kα(λ,µ)= sin(απ)

π

µλα−1

(µ+ λα cos(απ))2 + λ2α sin2(απ)
for λ > 0, (11)

which implies the asserted properties.
(ii) By (11) the integral in (9) exists for allz ∈ C\(−∞,0). Applying the inversion

formula of the Stieltjes transform (see [19, p. 340]) to the functionϕ : z �→ µ/(µ+ z) on
(0,∞) we find after some elementary calculations that

lim
τ→0+

1

2πi

(
ϕ(−λ− iτ )− ϕ(−λ+ iτ )

)= λKα(λ,µ), λ > 0,

which yields (9) forz ∈ C\(−∞,0]. Now, since

lim
n→∞

λ

λ+ (1/n)
Kα(λ,µ)=Kα(λ,µ)

converges monotonically for allλ > 0, and sinceKα(·,µ) is integrable by (i), the Lebesgu
theorem on dominated convergence implies (10).✷

Directly from definition (7) the relation

eα(0,µ)= 1 for allµ> 0 (12)

follows, and since the functionseα(·,µ) for µ> 0 are Laplace transforms of positive a
integrable functions (cf. (8)), they are positive and continuous on[0,∞).

From the fact that for each 0< β1 < 2 andβ2 > 0 there exists a constantc > 0 so that∣∣Eβ1,β2(z)
∣∣� c

1+ |z| for all z < 0, (13)

(see [18]), it follows that∣∣eα(x,µ)∣∣� c

1+µxα
, x � 0.

Henceeα(·,µ) ∈L2(0,∞) for 1/2< α < 1. Moreover, the functionseα(·,µ) are bounded
for everyα ∈ (0,1) with

lim
x→∞ eα(x,µ)= 0. (14)

Differentiating term by term in (7)—which is possible—one obtains for the deriva
e′
α(·,µ) with respect to the first variable

e′
α(x,µ)= −µxα−1Eα,α(−µxα), x > 0, µ > 0. (15)

We summarize some properties of these functions as follows.

Proposition 2.Letµ> 0.

(i) The functione′
α(·,µ) is a negative and continuous function on(0,∞) with
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6)

that
e′
α(x,µ)= −

∞∫
0

e−xλλKα(λ,µ) dλ (16)

and

∣∣e′
α(x,µ)

∣∣� c
µxα−1

1+µxα
� cµxα−1 (17)

for all x > 0 and with some constantc > 0.
(ii) There holds

lim
x→0+e

′
α(x,µ)= −∞ and lim

x→∞ e′
α(x,µ)= 0, (18)

ande′
α(·,µ) ∈L1(0,∞) with

∥∥e′
α(·,µ)

∥∥
L1(0,∞)

= −
∞∫

0

e′
α(x,µ) dx = 1. (19)

For 1/2< α < 1, we also havee′
α(·,µ) ∈L2(0,∞).

Proof. (i) SinceKα(·,µ) is integrable on(0,∞) we can differentiate (8) and obtain (1
for x > 0, which implies thate′

α(·,µ) is negative and continuous on(0,∞). The esti-
mate (17) follows from (15) and (13).

(ii) The first limit in (18) is implied by (16) because the functionλ �→ λKα(λ,µ) is not
integrable, cf. (11). The second limit follows from estimate (17), which also yields
e′
α(·,µ) ∈L2(0,∞) for 1/2< α < 1. Forα ∈ (0,1) we find

N∫
0

∣∣e′
α(x,µ)

∣∣dx <∞ for everyN > 0.

Since

N∫
0

∣∣e′
α(x,µ)

∣∣dx = −
N∫

0

e′
α(x,µ) dx = eα(0,µ)− eα(N,µ),

Eqs. (12) and (14) imply

∞∫
0

∣∣e′
α(x,µ)

∣∣dx = lim
N→∞

(
eα(0,µ)− eα(N,µ)

)= 1. ✷

Remark 3. From (8) it follows that the functionseα(·,µ), for µ > 0, are completely
monotone.

Some numerical calculations for the functionseα(·,µ) are performed in [9].
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In [8, p. 267] and [18, p. 21], the identity

∞∫
0

e−xxβ2−1Eβ1,β2(zx
β1) dx = 1

1− z
, |z|< 1,

is used to find the expressions for the Laplace transforms L[eα(·,µ)] and L[e′
α(·,µ)] in the

first variable. There the expressions are formulated on the sets{Rez > µ1/α}, but with the
above properties we can extend the existence domains of the Laplace transform.

Theorem 4. Let µ > 0. The Laplace transform of the functioneα(·,µ) exists on the se
{Rez > 0} with

L
[
eα(·,µ)

]
(z)= zα−1

µ+ zα
for Rez > 0, (20)

and the Laplace transform of the functione′
α(·,µ) exists on the set{Rez � 0}, where it is

given by

L
[
e′
α(·,µ)

]
(z)= −µ

µ+ zα
for all z with Rez� 0. (21)

Proof. Since eα(·,µ) is bounded on[0,∞) and e′
α(·,µ) is integrable on(0,∞), the

Laplace transforms of both functions exist on the set{Rez > 0}, and the latter exists fo
Rez= 0 as well.

Also, the Stieltjes transformλ �→ λKα(λ,µ) of the functionλ exists (cf. (9)), and sinc
it can be regarded as an iterated Laplace transform (cf. [19, p. 334]), we get

µ

µ+ z
=

∞∫
0

e−zx

∞∫
0

e−xλλKα(λ,µ) dλdx for Rez > 0,

so that we obtain (21) via (16). Because of (19) identity (21) is also valid for Rez= 0.
For the functioneα(·,µ) we get, for Rez > 0, by the identity for the Laplace transfor

of the derivative of a function

L
[
e′
α(·,µ)

]
(z)= zL

[
eα(·,µ)

]
(z)− eα(0,µ),

and this implies (20) via (21) andeα(0,µ)= 1. ✷
Remark 5. Considering (16) we observe that identity (6) for the resolvent of the gene
Aα of the semigroup(T α

t )t�0 subordinated to the semigroup(Tt )t�0 actually is

(µ−Aα)
−1f =

∞∫
0

e′
α(t,µ)

−µ
(Ttf ) dt, f ∈ B.

Now we come back to the family(σα(·, t))t>0.



A.M. Krägeloh / J. Math. Anal. Appl. 283 (2003) 459–467 465

g

he

ilies
Proposition 6.Let t > 0. The functionσα(·, t) is an element ofC∞(0,∞) with

lim
x→0+σ

(l)
α (x, t)= 0 and lim

x→∞σ (l)
α (x, t)= 0

for all l ∈ N0, whereσ (l)
α (·, t) denotes thelth derivative in the first variable.

Proof. We regardσα(·, t) as a function onR by settingσα(x, t) = 0 for x � 0. Since
σα(·, t) ∈ L1(R) (cf. (2)), the Fourier transform FR[σα(·, t)] exists, and by the definin
identity (1) it is

FR

[
σα(·, t)

]
(ξ)= 1√

2π

∫
R

e−ixξσα(x, t) dx = 1√
2π

e−t (iξ )α , ξ ∈ R, (22)

where

(iξ)α = |ξ |α
(

cos

(
α
π

2

)
+ i sgn(ξ)sin

(
α
π

2

))
.

Let us denote withHl(R), l ∈ N0, the classical Sobolev spaces of functionsf ∈ L2(R)

with finite norm

‖f ‖Hl(R) :=
(∫

R

(
1+ |ξ |2)l∣∣FR[f ](ξ)∣∣2 dξ

)1/2

.

From (22) it follows that for eachl ∈ N0 it is

∥∥σα(·, t)∥∥2
Hl(R)

�
∞∫

−∞

(
1+ |η|2)l (e−t |ξ |α cos(α(π/2)))2dξ <∞,

so thatσα(·, t) ∈ Hl(R) for all l ∈ N0. The assertion of the theorem now follows from t
embedding theorems together with the fact that the support of the functionσα(·, t) is a
subset of[0,∞), cf. [16]. ✷

In the following theorem we establish the connection between the two fam
(σα(·, t))t>0 and(eα(·,µ))µ>0.

Theorem 7.Letx > 0. The Laplace transforms of the functionσα(x, ·) on (0,∞) exists on
the set{Reµ> 0}, and for everyµ> 0 there holds

∞∫
0

e−µtσα(x, t) dt = e′
α(x,µ)

−µ
, x > 0. (23)

Proof. In [5, p. 144] and [20, p. 263], one can find the representation

σα(x, t)= 1

π

∞∫
0

[
sin
(
xλsin(ϑ)− tλα sin(αϑ)+ ϑ

)
× exp

(
xλcos(ϑ)− tλα cos(αϑ)

)]
dλ, (24)



466 A.M. Krägeloh / J. Math. Anal. Appl. 283 (2003) 459–467

m
9,

Pacific
which is valid for anyϑ ∈ [π/2,π] andx, t > 0. If we chooseπ/2< ϑ < min(π,π/(2α))
then cos(ϑ) < 0 and cos(αϑ) > 0, so that in (24),

∣∣σα(x, t)∣∣� 1

π

∞∫
0

e−xλ|cos(ϑ)| dλ= 1

π

1

x|cos(ϑ)| .

Hence,σα(x, ·) is a bounded function on(0,∞), and in particular its Laplace transfor
exists on the set{Reµ > 0}. By the inversion formula for the Laplace transform, cf. [1
p. 67], we find forµ> 0 andω > 0 that

∞∫
0

e−µtσα(x, t) dt = 1

2πi

∞∫
0

e−µt lim
N→∞

N∫
−N

ex(ω+iη)e−t (ω+iη)α dη dt

= 1

2πi
lim

N→∞

N∫
−N

ex(ω+iη) 1

µ+ (ω+ iη)α
dη. (25)

Now (23) follows from (25) via (21). ✷
Remark 8. Forα = 1/2 the following explicit expressions are known:

σ1/2(x, t)= 1

2
√
π
x−3/2t exp

(
− t2

4x

)
, x, t > 0,

see [4, p. 71], and

e1/2(x,µ)= 2√
π
eµ

2x

∞∫
µ

√
x

e−y2
dy, x,µ > 0,

see [18, p. 18], so that for the derivativee′
α(·,µ) we get

1

−µ
e′

1/2(x,µ)= 1√
π

(
x−(1/2) − 2µeµ

2x

∞∫
µ

√
x

e−y2
dy

)
, x > 0.

Now, one can verify directly the relation
∞∫

0

e−µtσ1/2(x, t) dt = 1

−µ
e′

1/2(x,µ), x,µ > 0.

These results have been obtained in the author’s Doctoral dissertation [15].
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