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HIGHLIGHTS

e Multiple polarization curves of two stainless steels are experimentally acquired.
e The multi-q approach automatically classifies the profiles using Tsallis entropy.
e A success rate of 80-90% was achieved using only 2% of the original data.

ARTICLE INFO ABSTRACT

Aftic{e history: Several experimental measurements are expressed in the form of one-dimensional profiles,
Rece{ved 11 May 2013 for which there is a scarcity of methodologies able to classify the pertinence of a given
Received in revised form 30 July 2013 result to a specific group. The polarization curves that evaluate the corrosion kinetics of

Available online 9 October 2013 electrodes in corrosive media are applications where the behavior is chiefly analyzed from

profiles. Polarization curves are indeed a classic method to determine the global kinetics
§ e of metallic electrodes, but the strong nonlinearity from different metals and alloys can
Profile pattern classification L . .
Polarization curve overlap and the discrimination becomes a challenging problem. Moreover, even finding
Tsallis entropy a typical curve from replicated tests requires subjective judgment. In this paper, we used
Multi-q pattern analysis the so-called multi-q approach based on the Tsallis statistics in a classification engine to
separate the multiple polarization curve profiles of two stainless steels. We collected 48
experimental polarization curves in an aqueous chloride medium of two stainless steel
types, with different resistance against localized corrosion. Multi-q pattern analysis was
then carried out on a wide potential range, from cathodic up to anodic regions. An excellent
classification rate was obtained, at a success rate of 90%, 80%, and 83% for low (cathodic),
high (anodic), and both potential ranges, respectively, using only 2% of the original profile
data. These results show the potential of the proposed approach towards efficient, robust,
systematic and automatic classification of highly nonlinear profile curves.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Several results of experimental techniques in materials science and engineering are available in the form of profiles.
Despite the crucial importance of these types of data, the use of statistics on profiles is rare, as the adequate statistical
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Fig. 1. 48 experimental polarization curves of stainless steels 304 (red) and 316 (green). Each curve consists of 800 sample points. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

techniques themselves are under development [1-3]. Useful applications of profile analysis include outlier detection and
classification/clustering of groups of results, taking into account the inherent stochasticity of the experimental data.

Since the use of statistics for realistic profile datasets is currently somewhat scarce, the evaluation and comparison of
experimental results is ordinarily performed by subjective criteria, e.g., after performing three to five runs of an experiment
to identify representatives. In the case of profiles, a physical model with a related adjustment of parameters is a good
indication of pertinence to a target group. In this situation, however, the analysis is mainly focused on the parameter values
instead of profiles themselves. We here explore systematic data analysis techniques suited for complex or highly nonlinear
profiles, i.e., when there is no simple model description or parameters to represent the entire profile curve.

In the fields of corrosion and materials science, there are numerous examples of data with complex profile shapes: the
aforementioned polarization curves, impedance diagrams, voltammograms, electrochemical noise records and so on. De-
spite this profusion of profile data, the work of Strutt et al. [4] is a rare example of profile analysis from corrosion, albeit the
studied profiles were related to the geometric shape of corroded interfaces, and not electrochemical data as in the present
work.

Polarization curves, or, more generally, current-potential plots, have crucial importance in corrosion studies as well
as in electrochemistry. They are essential for measuring the global kinetics of electrodes. A number of electrochemical
parameters can be obtained from these tests, from charge transfer, passivation, corrosion current density, to mass
transport properties. As expected, for any set of experimental results, dispersion always occurs. Even a stable reaction
performed under stringent control of experimental procedures, such as the ferri/ferrocyanide redox reaction, can present
significant scattering [5]. Moreover, the level of scattering in polarization curves naturally increases as the localized
corrosion takes place, which exhibits random nature. Another challenging case is that the surface of commercial grades
of steels, which has wide industrial interest, has inherent heterogeneity of their metallurgical aspects. Furthermore, certain
stochastic phenomena such as pitting produce electrochemical current variations that produce overlap in the experimental
curves, rendering them almost inseparable. However, these fluctuations can also be useful to describe the type and the
intensity of corrosion attack [6,7]. Thus, for some corrosion resistant alloys (CRA) such as stainless steels, the evaluation
of parameters from polarizations curves near pitting potential is an important procedure to classify their corrosion
resistance.

Having had success in employing Tsallis statistics [8] to the classification of image patterns as well as other applications
[9], we devise a similar multi-q approach based on such statistics to propose a method to classify highly nonlinear profiles
from corrosion tests, such as those in Fig. 1. The primary goal of any classification method is to assign a class label (e.g.,
material type) to a given data sample (e.g., image or profile). In our case, the profiles are the polarization curves and the
output label is one of two stainless steels. Despite having slightly different chemical compositions, the polarization of both
materials is very similar, especially in the cathodic region and in the potential immediately past the corrosion potential re-
gion. This similarity produces overlapping curves which require a systematic approach to classify, an analysis that has not
been routinely carried out in this field.
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1.1. Formulation and notation

In statistical mechanics, the concept of entropy is used to characterize a system based on its distribution of states, which
can be determined by the system energy level. If one has less information about the system then at many states the system
can still be characterized. This idea produces a direct link between the concept of entropy and the lack of information of a
system. From an information-theoretical point of view, the entropy represents how close a given probability distribution
is to the uniform distribution. Since the kinetic aspects of polarization curves are related to the allowed microstates of the
system, an approach based on the concept of entropy is then a natural choice. In addition, the random nature of this kind of
experimental data is caused, among other factors, by the joint diversity of the microstates, which is directly related to the
different chemical composition of the materials and the superficial conditions, chiefly near the pitting potential. Because
such chemical compositions are expected to produce both short- and long-range interaction in the material [ 10], using the
Tsallis entropy, which introduces a new parameter q to help model these interactions across different scales, motivated our
approach.

Formally, the Tsallis entropy S, for a given profile curve and parameter q is defined as

q
S, = 1 Zpi
q—1
where p;,i = 1, ..., N is an estimated probability distribution of desired pattern properties of a signal. In this paper we use
the histogram of measurement values in the quantized profile to represent pattern properties, where the profile amplitude
was quantized in N levels of the same size. The multi-q analysis consists in expressing the statistical aspects of this histogram
as a vector of entropy values for n < N different values of q, e.g.,, 0.1,0.2, ..., g,. This is called the multi-q vector of the
profile, which is much like an entropic spectrum. In practice, best-performing values for n are typically very small (e.g., 10),
two to three orders of magnitude less than the number of raw data (profile) sample points (e.g., 800 in the present paper).

: (1)

2. Materials and methods
2.1. Setup for generating polarization curve data

Two commercial austenitic stainless steels (UNS S30400 and UNS S31600) were used, hereafter named 304 and 316 for
simplicity. Bar samples were coated with Teflon™ and an area of 0.20 cm? was kept accessible to the electrolyte. Before each
test, the samples were grit with emery paper up to #600, and subsequently washed with distilled water and dried with hot
air. Additionally, after the polarization tests, the surfaces were analyzed with optical microscopy to detect the occurrence
of crevice. All the presented curves were free of observed crevice. These two stainless steels have austenitic microstructure,
but their main difference being the molybdenum content. The 316 alloy has circa 2.5% Mo that improves its pitting resistance
in chloride media. The 304 has only a residual content of molybdenum. The aerated aqueous electrolyte was 3.5% in mass
of NaCl with temperature kept within 25.0 + 0.1 °C.

All experiments were performed inside a Faraday cage in order to avoid spurious electric noise. After the immersion of
the sample in the solution, the assumed steady-state condition is attained after an hour at open-circuit status. After this step,
potentiodynamic polarization was applied from —0.6 up to 0.2 V x SCE under a potential rate of 1.0 mV s~!. All values of
the potential were measured with a saturated calomel electrode (SCE) reference. A platinum wire was used as the counter-
electrode. In order to obtain sufficient data, 24 curves were performed for each alloy. Each polarization curve consists of a
profile of potential versus current (or, equivalently for a constant area, current density) as a sequence of 800 data points.

2.2. Classification approach

We performed profile pattern classification experiments whose basic goal is to assign a steel class label to any given
profile curve for which the steel type is previously unknown. The classification approach is data-driven and supervised,
in that the model is not specific for stainless steel polarization curves, but it is instead learned and adjusted/trained from
previously seen data [9]. In supervised classification, the classifier is trained from a set of samples that are known to belong
to the classes (a priori knowledge) [ 11]. The classifier is then validated by a different set of so-called ‘test’ samples for which
we know the ground-truth steel classes but have not been used to train the classifier. For each test sample the classifier
outputs a likely steel type and we generate a success rate based on how well these match to ground-truth.

We employed a number of minor variants of our so-called multi-q classification approach to classify the signals, which
consists in using Tsallis statistics [9] on the profile data followed by the naive Bayes classifier [11]. We have also used classical
principal component analysis (PCA)[12] as an optional step. PCA consists in expressing each original profile (800 points) in a
rotated and translated coordinate frame such that the entire dataset variance along each direction is maximum. The desired
dimension may be reduced to less than 800 by keeping only the coordinates of the highest variance. The goal of this reduction
is threefold: representational efficiency, visualization purposes, and for automatically filtering out the low-variance aspects
of data that may otherwise add up to hinder the classification performance.
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Table 1

Classification rates for a number of different methods with variable q and also classifying directly over
the raw data. The bold line highlights our best proposed result, which differs from the first line in that
it is automatic and less dependent on the application domain, as explained in the text.

Method Classification rate (%)
Full potential Low potential High potential
Tsallisq =1 83 83 65
Tsallisq = 0.1 73 65 60
Multi-q, ¢ =0.1,0.2, ..., 1.0 73 69 69
Multi-q,q =0.1,0.2,...,2.0 83 90 80
Naive Bayes on all 800 points 81 75 73

Fig. 2. Pitting corrosion after a polarization curve for the 304 stainless steel with original magnification of 100 x.

In order to objectively evaluate the performance of the classification approach, we use the stratified 10-fold cross-
validation scheme [13]. In this scheme, the profile dataset is randomly divided into 10 folds, considering that each fold
contains two profiles, one for each steel class. At each run of this scheme, the classifier is trained using all but one fold and
then is evaluated on how it classifies the samples from the separated fold. This process is repeated such that each fold is
used once as validation. The performance is averaged, generating a single number for classification rate which represents
the overall proportion of success over all runs.

3. Results and discussion

Fig. 1 shows the 48 polarization curves of stainless steels 304 and 316 swept from cathodic to anodic potential regions. At
an actual corrosion situation, cathodic and anodic processes occur on the same metallic surface, under equal intensity. Thus,
to obtain a global view of the electrode kinectics we normally apply a potential range that covers both regions in a three-
electrode cell. Under cathodic potential, there is a predominance of cathodic process on work-electrode, that is a fixation of
electrons, which in the present case is the reduction of dissolved oxygen gas. On the other hand, under anodic polarization,
the net current provokes the corrosion of alloy, an oxidation process. At low anodic potential the corrosion process tends
to be uniform, and at high potential it can present a localized corrosion such as pitting that has essentially a stochastic
nature. Between these regions, the net current approaches null value, thus the logarithm of current attains the lowest level,
defining the corrosion potential. The cathodic process occurs to the left and the anodic to the right side of the corrosion
potential. The polarization of two stainless steels in aerated solution bears certain similarities, at least in the cathodic region
and for potentials just beyond the corrosion potential. Therefore, an overlapping of curves can be observed, despite their
different chemical composition. However, close to potential where there is a higher susceptibility to pitting, the difference
of resistance appears together with some natural dispersion. Nevertheless, as in Fig. 1, we can see a significant overlap, when
a large number of curves is considered. Therefore, at first sight, one cannot easily assign a given curve to the related steel
type. Moreover, 304 exhibits a higher scattering of current above circa 0.0 V x SCE. In that region, a highly stochastic event
occurs: the pitting attack, as in Fig. 2. The 316 steel type is specially designed to resist this localized corrosion.

Mild evidence of the high resistance of 316 can be observed at a corrosion potentials, with mean value circa —250 mV x
SCE, being slightly higher for 316 than 304, which fares close to —280 mV x SCE. However, the main stochastic phenomenon
occurs for higher potentials, where the randomness aspect is strong due to pitting. The main interest in stainless steel
corrosion behavior is limited to this high potential range. In this case, for a small number of experiment runs, as in ordinary
practice, it is possible to classify erroneously one steel instead of the other as the most pitting resistant, in a false-positive,
or, similarly, false-negative evaluation, or to not obtain the true representative result. Thus, a judgment bias can take place
due to the small number of observations. There is no generally accepted theory on how exactly these stochastic fluctuations
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Fig. 3. Results from a direct classical approach, full potential range. First and second principal components for a classic principal component analysis on raw
profile data, together with a plausible classification boundary.
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Fig.4. Results from the proposed approach, full potential range. The first and second principal components for the proposed Tsallis entropy approach with g
ranging from 0.1 to 2.0 in steps of 0.1, together with a plausible classification boundary. Even with 2 dimensions per profile for ease of visualization, only
three 316 curves (green squares) are confused with the 304 ones (red circles).

occur [14], despite their huge industrial importance. To properly study this fact, the advisable number of test runs is far
beyond the usual standard of subjective procedures which rely on only 3-4 runs.

In addition to the aforementioned stochastic events, in the region of interest (pitting) the current is of central importance.
In this case, higher currents mean more severe corrosion. At high potential, circa 0.2 V x SCE, the so-called random localized
attack occurs, and the possibility of wrong interpretation among the curves is further aggravated.

Fig. 3 depicts the first and second principal component of the obtained polarization curves by using classical principal
component analysis directly on raw profile data. A reasonable boundary separating the two sets of polarization curves was
obtained, with, however, some degree of misclassification which may be aggravated if a larger number of experiments
were available. Moreover, 316 shows a smaller variance (closer principal components) than 304. The relatively small cluster
extent of 316 suggests less susceptibility to stochastic corrosion of pits, which is consistent with the literature [4]. A plausible
classification boundary is drawn with the sole purpose of guiding the eye to the clusters.

As an attempt to improve this separation, we performed so-called multi-q pattern analysis, as shown in Fig. 4 for only
two principal components for visualization purposes (i.e., using two classification dimensions per profile). In this approach,
with g varying from 0.1 to 1.0, a very good separation was found.
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Fig. 5. Results from a direct classical approach, low potential range. First and second principal components for a classic principal component analysis on raw
profile data, together with a plausible classification boundary.

Table 1 depicts a more comprehensive summary on the score of several classification tests. The Tsallis entropy approach,
even for as few as two principal components, enabled classifying most polarization curves correctly. Moreover, the profile
data can be efficiently represented by at most 20 Tsallis entropy values, as opposed to all 800 points. As the table shows,
it was possible to attain the best classification rate using only a single value of ¢ = 1. However, using the multi-q vector
(bold line) the optimal selection of this parameter is fully automatic for a given dataset with no observed decrease in the
classification rate.

3.1. Classifying low and high potential ranges separately

We also performed classification experiments to observe the behavior of the proposed approach on different sections
of the profiles which have distinct statistical properties. Classification results using only the first half of the profiles, with
potentials inferior than —0.2 V x SCE, are shown in Figs. 5 and 6. These potentials are roughly related to the predominance
of cathodic (—0.6 to — 0.2V x SCE) and anodic (—0.2 to 0.2 V x SCE) processes on both steels.

Similar results for potentials above —0.2 V x SCE are shown in Figs. 7 and 8. More comprehensive results are shown in
the last two columns of Table 1. For both low and high potentials, the proposed method achieved very good classification
rates, having an edge of 7%-15% over the best success rate without using Tsallis statistics. The results also indicate that the
profiles are significantly more challenging to distinguish in the high potential range, and can be confirmed by the visual
inspection of Fig. 1, just where its behavior is more meaningful for technological use.

3.2. Further discussion

With the present methodology, the classification of strongly nonlinear curves with a systematic procedure is made
possible. The success in classifying a profile that originally contains 800 points using only a couple or so dimensions could be
understood as a signal expressed in a more suitable statistical representation, compressed and filtered with a low sampling
frequency. In this case, a natural question is the possibility of aliasing [ 15] in the data. However, the first and second principal
components are not subsampled data from the set, but parameters derived from the statistics, specifically the multi-q vector
of Tsallis entropies, optionally followed by the projection of maximum variance given by PCA.

Itis clear that the best classification is attained with a wider multi-q vector with g ranging from 0.1 to 2.0, instead of a fixed
q. Moreover, even though the corrosion behavior at high potential is of great interest, the best classification rate is obtained
with the entire polarization curves, and not only at high potentials (anodic process). In this case, from Table 1, the values
are 83% for the entire curve against 80% for the anodic half of the potential. Thus, for the purpose of a reliable classification,
polarization curves performed from cathodic to anodic potentials convey more information than a single range.

4. Conclusion

A relatively high number of polarization curves were generated through the experiments performed for two austenitic
stainless steels UNS $S30400 and UNS S31600 in chloride medium at 25 °C. For the entire potential range of the polarization
curves a degree of overlap of the experimental curves was observed. The data samples were subsequently tested with a
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Fig. 6. Results from the proposed approach, low potential range. The first and second principal components for the proposed Tsallis entropy approach with
g ranging from 0.1 to 2.0 in steps of 0.1, together with a plausible classification boundary.
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Fig. 7. Results from a direct classical approach, high potential range. First and second principal components for a classic principal component analysis on the
raw profile data, together with a plausible classification boundary.

Tsallis-based statistics in order to classify the profiles for each steel. For the case where a multi-q pattern analysis was carried
out on a complete potential range, from cathodic up to anodic regions, an excellent classification rate was obtained, using
only 2% of the original profile data. When automatically classifying only the low potential range, the approach attained 90%
correct classification, as opposed to 80% at high potentials. However, the industrial interest for these steels lies on the high
potential range. These results together with the inspection of a series of scatter plots using principal component analysis
demonstrate the capacity of the proposed approach towards efficient, robust, systematic and automatic classification of
highly nonlinear profile curves, which can be used for analyzing the pattern properties as well as for outlier detection.

With the promising results obtained in the classification of polarization curves, an extension to study further types
of signals such as time records of electrochemical noise and comparison with related procedures already available in the
literature is ongoing in our research group. In these aspects, the Tsallis statistics can be very useful to identify the corrosion
status from a continuous recording of on-line monitoring. In this scenario, the noisy potential and current related to the
corrosion process would be recorded in order to detect changes that affect the corrosion attack.
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Fig. 8. Results from the proposed approach, high potential range. The first and second principal components for the proposed Tsallis entropy approach with
q ranging from 0.1 to 2.0 in steps of 0.1, together with a plausible classification boundary.
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