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and showed to be associated with toxicity. It is important to 
remember that such features, to some extent, might be 
confounded by more simple factors (e.g. tumor volume or 
volume of irradiated region). Nevertheless, image based 
features appears in a number of studies to add independent 
toxicity information; but it is likely that no single image-
based feature (or no single feature at all) will be able to 
make a perfect patient specific toxicity prediction for the 
entire population. In many studies the correlation between a 
specific image-based feature and observed toxicity is relative 
weak. However, if predictive toxicity models simply are able 
to identify a subset of patients who are likely to have modest 
toxicity that would be very beneficial, since this group of 
patients could then be offered a more aggressive treatment, 
which hopeful would result in improved local control. 
Predictive toxicity models should thus not only be evaluated 
on their overall prediction performance for the entire 
population, but also on their ability to identify a significant 
subgroup of patients who are candidates for intensified 
treatment.  
The current lecture will present examples of image-based 
features and point to their potential clinical impact; but will 
also focus on the potential use of patient specific toxicity 
models to select subgroups of patients as described above. 
Moreover comments on image quality will be made, since 
high images quality is the foundation for imaged-based 
features used in predictive models for toxicity. 
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In the field of toxicity modeling it is common practice to 
build statistical models starting from analysis of clinical data 
which are prospectively collected in the frame of 
observational trials. Modern prospective observational studies 
devoted to modelling of radioinduced toxicity are often 
accumulating a large amount of dosimetric and patient-
related information, this requires particular attention when 
normal tissue complication probability modelling is 
approached. A core issues is related to selection of features, 
which then influences overfitting, discrimination, 
personalization and generalizability.  
These risks are particularly high in clinical research datasets, 
which are often characterized by low cardinality - i.e. the 
number of cases is overall low - and are often strongly 
imbalanced in the endpoint categories – i.e. the number of 
positive cases (e.g. toxicity events or loss of disease control) 
is small, or even very small, with respect to the negative 
ones. This is obviously positive for patients, it is however a 
disadvantage for model building.  
In this context a possible methods using in-silico experiment 
approach for toxicity modelling will be discussed together 
with some applications.  
This method aimed at identifying the best predictors of a 
binary endpoint, with the purpose of detecting the leading 
robust variables and minimizing the noise due to the 
particular dataset, thus trying to avoid both under- and over-
fitting. It followed, with adjustments, a procedure firstly 
introduced by El Naqa [IJROBP2006]: the treatment response 
curve was approximated by the logistic function, while the 
bootstrap resamplings were performed to explore the 
recurrence of the selected variables in order to check their 
stability. A further bootstrap resampling was introduced for 
the evaluation of the odds ratios of the selected variables.  
The in-silico experiment was implemented using the KNIME 
software (KNIME GmbH, Germany) and consisted in the 
following processing steps:  
1) 1000 bootstrap samplings of the original dataset are 
created, as suggested by El Naqa [IJROBP2006];  
2) backward feature selection based on minimization of 
residuals is performed on each bootstrap sample;  
3) the rate of occurrences and the placement of each 
variable (selected by the backward feature selection) in the 

1000 bootstrapped datasets are used to classify the most 
robust predictors. A synthetic index, called normalized area, 
is defined for ranking each predictor: it corresponds to the 
area under the histogram representing the number of 
occurrences of each variable (x-axis) at a given importance 
level in each re-sampled dataset;  
4) a basket analysis of the 1000 sets of predictors is used to 
identify the predictors that appears together with higher 
probability;  
5) the best set of predictors is chosen, with its maximum size 
determined by the rule of thumb “one tenth of the number 
of toxicity events”; 
6) the distribution of odds ratios are determined through 
1000 bootstrap re-samplings of the original dataset including 
the set of predictors selected in the previous step;  
7) a logistic model with the best set of predictors and the 
median odds ratios, calculated from the distributions 
obtained in the previous step, is defined. 
In this approach, logistic regression is enhanced with 
upstream and downstream data processing to find stable 
predictors.  
The method was tested with satisfactory results on different 
datasets aimed at modelling radio-induced toxicity after 
high-dose prostate cancer radiotherapy. 
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Intensity modulated radiotherapy and volumetric modulated 
radiotherapy (VMAT) involves multiple manual steps, which 
might influence the plan quality and consistency, for example 
planning objectives and constraints need to be manually 
adapted to the patients individual anatomy, tumor location, 
size and shape [1]. Additional help structures are frequently 
defined on an individual basis to further optimize the 
treatment plan, resulting in an iterative process. This manual 
method of optimization is time consuming and the plan 
quality is strongly dependent on planner experience. This is 
especially true for complex cases such as head and neck (HN) 
carcinoma and stereotactic treatment. 
In order to improve the overall plan quality and consistency, 
and to decrease the time required for planning, automated 
planning algorithms have been developed [2,3]. In this pilot 
study, we compared two commercially available automatic 
planning systems for HN cancer patients. A VMAT model was 
created with a knowledge based treatment system, Auto-
Planning V9.10 (Pinnacle, Philips Radiation Oncology Systems, 
Fitchburg, WI) [4] and for a model based optimization 
system, RapidPlan V13.6 (Eclipse, Varian Medical System, 
Palo Alto, CA) [2]. These two models were used to optimize 
ten HN plans. Since the aim was to achieve plans of 
comparable quality to the manually optimized plans in a 
shorter time, only a single cycle of plan optimization was 
done for both automated treatment planning systems (TPS). 
Auto-Planning was additionally used to evaluate the 
treatment of lung and brain metastases stereotactic 
treatments.  
The results from the planning comparison for HN cancer 
patients showed a better target coverage with AutoPlanning 
in comparison to Rapidplan and manually optimized plans (p 
< 0.05). RapidPlan achieved better dose conformity in 
comparison to AutoPlanning (p < 0.05). No significant 
differences were observed for the OARs, except for the 
swallowing muscles where RapidPlan and the manually 
optimized plans were better than AutoPlanning and for the 
mandibular bones were AutoPlanning performed better than 
the two other systems. The working time needed to generate 
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