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SUMMARY

The process of cancer immunoediting generates a
repertoire of cancer cells that can persist in im-
mune-competent hosts. In its most complex form,
this process begins with the elimination of highly
immunogenic unedited tumor cells followed by the
escape of less immunogenic edited cells. Although
edited tumors can release immunosuppressive fac-
tors, it is unknownwhether unedited tumors produce
cytokines that enhance antitumor function. Utilizing
gene microarray analysis, we found the cytokine
interleukin 17D (IL-17D) was highly expressed in
certain unedited tumors but not in edited mouse
tumor cell lines. Moreover, forced expression of IL-
17D in edited tumor cells induced rejection by stimu-
lating MCP-1 production from tumor endothelial
cells, leading to the recruitment of natural killer
(NK) cells. NK cells promoted M1macrophage devel-
opment and adaptive immune responses. IL-17D
expression was also decreased in certain high-grade
and metastatic human tumors, suggesting that it can
be targeted for tumor immune therapy.

INTRODUCTION

The cancer immunoediting process involves the initial elimina-

tion of highly immunogenic tumor cells from an ‘‘unedited’’ het-

erogeneous cell repertoire, followed by the eventual escape of

poorly immunogenic, ‘‘edited’’ cells (Schreiber et al., 2011;

Shankaran et al., 2001). Edited cell lines, which are derived

from tumors that develop in wild-type (WT) mice, are termed

‘‘progressors’’ because they are poorly immunogenic and grow

progressively when transplanted into syngeneic naive WT

mice. Unedited cell lines, which are derived from immune-defi-

cient mice, are often highly immunogenic and are termed

‘‘regressors’’ because they are rejected when transplanted into

syngeneic naiveWTmice. Immune cells can infiltrate, recognize,

become activated, and eliminate regressor, but not progressor,

tumor cells (Bui et al., 2006; Flood et al., 1987; Shankaran

et al., 2001).
Edited tumors possess antigens (Boon and van der Bruggen,

1996; DuPage et al., 2012) that can concomitantly immunize

the host (Vaage, 1971), but the adaptive immune response to

edited tumors ultimately fails, leading to cancer progression

and death (Schreiber et al., 2011). The failure of the adaptive

immune response to control antigenic tumors can involve

multiple mechanisms that are intrinsic to the tumor cell,

including antigen loss and acquisition of inhibitory ligands,

or tumor-cell-extrinsic effects, including immune suppressive

cytokines and antigen tolerance (Schreiber et al., 2011; Zitvogel

et al., 2006; Zou and Chen, 2008). It is not known to what

extent tumor-extrinsic effects or intrinsic escape mechanisms

contribute to cancer progression. Nevertheless, it is clear that

progressor tumors express cytokines such as transforming

growth factor b (TGF-b) that can inhibit antitumor immune

responses (Bierie and Moses, 2010). In contrast, it has not

been shown whether regressor cells can produce cytokines

that serve to activate antitumor immunity. Importantly, cyto-

kine-based immune therapy is a mainstay for treatment of

human cancers such as melanoma and renal cell carcinoma

(Nicholas and Lesinski, 2011; Rosenblatt and McDermott,

2011). In these diseases, treatment with interleukin-2 (IL-2)

and interferon a (IFNa) is associated with severe toxic effects

that limit therapeutic efficacy (Garbe et al., 2011; Hutson,

2011). Thus, discovering novel, safe, nontoxic cytokines that

can mediate tumor rejection would have a high impact on

tumor immune therapy.

The IL-17 family of cytokines is one of the most ancient cyto-

kine families (Paul, 2013) and includes six members (IL-17A, IL-

17B, IL-17C, IL-17D, IL-17E, and IL-17F) identified by homology

that possess a putative cysteine-knot structure (Iwakura et al.,

2011; Kolls and Lindén, 2004). IL-17A and IL-17F are defining

members of the family and are produced by Th-17 cells to

mediate immunity against extracellular bacteria and fungi.

Recently, IL-17C was shown to have similar activity as IL-17A/

IL-17F, although it is expressed by infected epithelial cells and

not by T cells (Ramirez-Carrozzi et al., 2011; Song et al., 2011).

IL-17D is a cytokine whose function is not well described,

although similar to IL-17C, it is known to be expressed outside

the immune system and can stimulate human umbilical vein

endothelial cells to produce interleukin-6, interleukin-8 (IL-8),

and granulocyte-macrophage colony-stimulating factor (GM-

CSF) (Starnes et al., 2002). It has also been found in rheumatoid
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nodules (Müller and Lamprecht, 2008) and is decreased in

psoriatic skin (Johansen et al., 2009). Interestingly, IL-17D is

considered to be the most ancient cytokine in the IL-17D family

(Paul, 2013; Roberts et al., 2008), although there have been no

studies addressing the function of IL-17D in cancer or any other

disease model system.

In this study, we sought to identify tumor-secreted molecules

that can mediate tumor rejection. We found that IL-17D is ex-

pressed in some regressor, but not in progressor, cell lines.

Importantly, IL-17D is sufficient to induce rejection or growth

delay when overexpressed in some progressor cells. We show

that themechanism of action of IL-17D is to stimulate production

of monocyte chemotactic protein-1 (MCP-1, aka CCL2), which

recruits natural killer (NK) cells to the tumor and leads to M1

macrophage development and productive antitumor adaptive

immune responses. These observations identify IL-17D as a

cytokine that can promote immune responses via recruitment

of NK cells.

RESULTS

IL-17D Is Highly Expressed by Certain Regressor, but
Not Progressor, Tumors
To identify genes that could induce tumor rejection, we used a

model system whereby edited progressors and unedited regres-

sor methylcholanthrene (MCA)-induced sarcoma cell lines were

derived from syngeneic WT and immune-deficient mice (Shan-

karan et al., 2001; O’Sullivan et al., 2012). We performed gene

microarray studies on eight regressor and 16 progressor cell

lines (Figure S1A). Among the many gene expression differences

detected, we focused on the cytokine IL-17D due to its unknown

function in tumor biology. We found that IL-17D was highly

upregulated in some regressors but was not expressed in any

progressor tumor cell line tested by microarray (Figure 1A),

quantitative RT-PCR (qRT-PCR) (Figures 1B and S1B), and

intracellular fluorescence-activated cell sorting (FACS) and veri-

fied with an independent set of regressors/progressors from

another strain (Figures S1C and S1D) (O’Sullivan et al., 2012;

Shankaran et al., 2001). Furthermore, treatment of regressor

tumor cell lines with protein transport inhibitors doubled the

amount of intracellular IL-17D signal (Figure 1C), confirming its

secretion.

To assess the expression of IL-17D in human cancers, we uti-

lized publicly available National Center for Biotechnology Infor-

mation (NCBI) Gene Expression Omnibus (GEO) data sets to

examine IL-17D expression in multiple malignant human tissues.

Interestingly, IL-17D gene expression was decreased in meta-

static prostate tumors compared to primary prostate tumors

(Figure 1D) and was also suppressed in more advanced,

higher-stage gliomas (World Health Organization [WHO] grade

III astrocytoma, grade IV glioblastomamultiforme [GBM]) relative

to less advanced, lower-stage gliomas (WHO grade II oligoden-

droglioma) (Figure 1E, left panel). Additional studies confirmed

that IL-17D expression was suppressed in grade IV GBM when

compared to grade III astrocytomas (Figure 1E, right panel)

and that high expression of IL-17D in tumor biopsy specimens

correlated with a greater survival time for a subset of patients

with grade IV GBM (Figure 1F).
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IL-17D Promotes Progressor Tumor Rejection but Is Not
Required for Regressor Tumor Rejection
We then explored whether manipulating IL-17D expression

could influence tumor growth. IL-17D was silenced in regressor

cell lines by 95%–100% and overexpressed in progressors at

approximately 5-fold of control cells, a level similar to the expres-

sion in unmanipulated regressors (Figures S2A–S2D). Silencing

of IL-17D in regressor tumors led to a slight growth increase

and delayed rejection in one regressor tumor (d42m1) while hav-

ing no measurable effect in another regressor tumor (d30m4)

(Figure 2A). In four of the six progressor cell lines tested, the

overexpression of IL-17D led to complete rejection (F244 and

d30m1) or a significant delay in growth (B16.OVA and LLC) in

WT mice (Figure 2B). This effect of IL-17D was due to adaptive

immune cells, because in vitro and in vivo growth kinetics (in

RAG2�/� mice) remained unchanged (Figures S2F and S2G).

To demonstrate the antitumor efficacy of IL-17D on pre-

established tumors, we generated a progressor tumor cell line

(F244TR17D) that expressed IL-17D upon administration of

doxycycline (Figure S2E). Induced expression of IL-17D caused

the rejection of 25 mm2 tumors, but not 100 mm2 tumors

(Figure 2C), indicating IL-17D was most effective in inducing

rejection of small tumors. We then tested whether intratumoral

injections of recombinant IL-17D could mediate tumor regres-

sion of pre-established B16.OVA tumors transplanted into

WT mice. Strikingly, intratumoral injections of recombinant

IL-17D caused a significant growth delay compared to con-

trol-treated tumors, demonstrating the antitumor efficacy of

IL-17D (Figure 2D).

IL-17D Expression Enhances Recruitment of NK Cells in
Progressor and Regressor Tumors
To define the mechanism of IL-17D-mediated tumor rejection,

we characterized tumor-infiltrating immune cells in tumors with

high and low levels of IL-17D. We found an approximately

2-fold increase in the amount of NK cells in tumors with high

versus low IL-17D (Figures 3A and 3B). These NK cells had

similar phenotype to splenic NK cells and did not displaymarkers

found in immunoablative NK cells (Terme et al., 2012) or inter-

feron-producing killer dendritic cells (Bonmort et al., 2008) (Fig-

ure S3). Notably, NK cells were required for tumor rejection,

because mice treated with anti-NK1.1, but not control immuno-

globulin G (IgG), failed to reject the IL-17D-overexpressing

tumors (d30m1, F244) or showed increased growth (B16.OVA)

(Figure 3C). The recruitment of NK cells likely mediates IL-

17D’s antitumor activity, as we did not observe enhanced

numbers of either neutrophils or monocytes in tumors express-

ing high versus low levels of IL-17D and neutrophils were not

required for IL-17D-mediated tumor rejection (data not shown).

Because it is known that NK-dependent tumor rejection can

lead to priming of adaptive immune responses (Diefenbach

et al., 2001; Kelly et al., 2002), we then tested whether mice

that had rejected IL-17D-overexpressing tumors could reject a

rechallenge with untransduced progressor tumors. Indeed, we

found that parental cells were rejected in primed mice (Fig-

ure 3C), confirming that edited tumors possess antigens and

that initiating the ‘‘correct’’ innate cell response (via IL-17D)

can result in productive antigen-specific antitumor responses.



Figure 1. IL-17D Is Highly Expressed in SomeRegressor Cell Lines and Is Downregulated in Progressor Tumor Cell Lines and Several Human

Cancer Samples

(A) Plotted microarray data of IL-17D gene expression of regressor (n = 8) and progressor (n = 16) tumor cell lines.

(B) qRT-PCR analysis of independent regressor (n = 4) and progressor (n = 4) tumor cell lines.

(C) Quantitated IL-17D intracellular protein expression of 129/Sv RAG2�/�-derived regressor (n = 3) and progressor (n = 3) tumor cell lines incubated with or

without brefeldin A andmonensin. IL-17Dmean channel shift (MCS) values are calculated by taking themean florescence of IL-17D intracellular protein signal and

subtracting the mean fluorescence signal of the isotype control stain for the same tumor cell line sample.

(D and E) IL17D gene expression was evaluated from publicly available NCBI Gene Expression Omnibus data sets (GDS) from studies comparing indicated

cancerous and metastatic tissue from human patients.

(F) GDS1816 samples from patients who had been diagnosed with WHO grade IV astrocytomas with necrosis were divided into low or high survival time

categories, and IL17D gene expression was evaluated. Each point represents an individual patient sample.

Data from (B) and (C) are representative of two independent experiments. Samples were compared using an unpaired, two-tailed Student’s t test with Welch’s

correction. Error bars are depicted as ±SEM (*p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant).

See also Figure S1.
Previously, we have found a requirement for NK cells and inter-

feron g (IFNg) in the accumulation of M1macrophages in regres-

sor tumors during cancer immunoediting (O’Sullivan et al., 2012).

We also observed an approximately 1.5-fold enhancement in the

accumulation of M1 macrophages in progressor tumors overex-

pressing IL-17D (Figure 3D), whereas silencing of IL-17D in

regressor tumors reduced M1 macrophages by approximately

2-fold in bothWT andRAG2�/�, but not RAG2�/�3 gc�/�, hosts,
which are deficient in NK cells (Figure 3D).

IL-17D Recruits Innate Immune Cells in an Air Pouch
Model of Inflammation
To show directly whether IL-17D can induce the recruitment of

immune cells, we used an in vivo air pouch model of inflamma-
tion in WT mice. Sterile air pouches become well vascularized

after a period of 7 days (data not shown) and recruit immune cells

rapidly after administration of lipopolysaccharide (LPS) (Pelletier

et al., 2004). Indeed, we found that LPS, IL-17A, and IL-17D

significantly recruited CD45+ immune cells into air pouches

compared to PBS control (Figure 4A). When we examined the

composition of the immune cells, we found that LPS and IL-

17A recruited more neutrophils than any other cell type, whereas

neutrophils constituted a smaller percentage of cells recruited by

IL-17D (Figure 4B). Interestingly, IL-17D recruited significantly

more NK cells (Figure 4C), but not monocytes (Figure 4C), neu-

trophils, or macrophages (Figure S4A), compared to LPS and

IL-17A. We found that the IL-17D-recruited NK cells were mostly

CD27high (Figure S4B), which could be a semimature population
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Figure 2. Expression of IL-17D Mediates Progressor Tumor Rejection

(A) Tumor growth of indicated (ctrl, sh17D) regressor tumors transplanted into WT mice (n = 5 for each tumor cell line).

(B) Tumor growth of indicated (ctrl, ex17D) progressor tumors transplanted into WT mice (n = 5 for each tumor cell line).

(C) Tumor growth of inducible IL-17D progressor tumor cell line transplanted into WT mice receiving water or doxycycline continuously from day 0 (n = 5), day 5

(n = 5), or day 12 (n = 5).

(D) Tumor growth of B16.OVA melanoma tumor cell line transplanted into WT mice and receiving intratumoral injections of IL-17D (2 mg) or Hank’s balanced salt

solution on days 10 and 11. Data from (A)–(D) are representative of two independent experiments. Samples were compared using an unpaired, two-tailed

Student’s t test with Welch’s correction. Error bars are depicted as ±SEM (*p < 0.05, **p < 0.01, ***p < 0.001).

See also Figure S2.
of NK cells that may participate in IFNg-dependent T cell priming

in lymph nodes (Martı́n-Fontecha et al., 2004; Watt et al., 2008).

Interestingly, IL-17D recruited approximately twice the amount

of CD27highCD11blow NK cells as LPS, with no significant recruit-

ment of mature CD27lo NK cells (Figure 4D).

IL-17D Indirectly Recruits NK Cells In Vivo by
Stimulating the Production of MCP-1
Because IL-17A is known to induce IL-8 from endothelial cells to

recruit neutrophils (Roussel et al., 2010), we examined whether

IL-17D utilized a similar mechanism. Indeed, we found that IL-

17D induced the expression of MCP-1 inmouse air pouch lavage

fluid (Figure 5A). We then repeated air pouch experiments in the

presence of blocking antibodies specific for MCP-1 and found

that anti-MCP1, but not control IgG, completely inhibited IL-

17D-mediated recruitment of NK cells (Figure 5B), monocytes,

and neutrophils (Figure S5A). Furthermore, qRT-PCR analysis

of purified tumor endothelial cells from two IL-17D-overexpress-

ing tumors (Figure S5B) showed a 4–17 times increase in MCP-1

transcript compared to control tumors, respectively (Figure 5C),

whilemaintaining similar levels of VEGFR1 (Figure S5C). Notably,

depletion of MCP-1 led to increased growth of two IL-17D-over-
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expressing tumors (Figure 5D). These results were likely due to

reduced overall numbers of infiltrating NK cells, asMCP-1 deple-

tion reduced the density of tumor-infiltrating NK cells compared

to control depletion in tumors overexpressing IL-17D (Figure 5E).

DISCUSSION

The IL-17 family of cytokines promotes immune responses by

inducing the expression of proinflammatory cytokines and che-

mokines, leading to recruitment of neutrophils and other innate

immune cells (Pappu et al., 2011). IL-17A and IL-17F are pro-

duced by Th-17 cells and are involved in autoimmune disease

and host responses to tissue infection. IL-17C may have similar

inflammatory functions to IL-17A and IL-17F, although IL-17C is

expressed in epithelial cells and is induced by microbial ligands.

Our discovery that IL-17D is expressed outside the immune sys-

tem and functions to recruit NK cells suggests that the IL-17

family may have evolved to evoke distinct arms of the immune

response, presumably to deal with specific pathogen insults.

We speculate that similar to IL-17C, the expression of IL-17D

in nonimmune tissues may represent an early evolutionary adap-

tation to mediate local antiviral immunity through the recruitment



Figure 3. Overexpression of IL-17D in Progressor Tumors Recruits NK Cells that Are Required for Tumor Rejection in WTMice and Promote

M1 Macrophage Infiltration

(A) Percentage of (7AAD�, CD45+, CD3�, NK1.1+) NK cells, (7AAD�, CD45+, CD11b+, Ly6G+, MHCIIlo) neutrophils, (7AAD�, CD45+, CD11b+, Ly6Chi) monocytes/

macrophage precursors, (7AAD�, CD45+, F4/80+, Ly6Clo, MHCIIhi, CD206lo) M1 macrophages, (7AAD�, CD45+, F4/80+, Ly6Clo, MHCIIlo, CD206hi) M2 macro-

phages, (7AAD�, CD45+, CD3+, CD4+, CD8�) CD4+ T cells, and (7AAD�, CD45+, CD3+, CD4�, CD8+) CD8+ T cell-infiltrating immune cells in F244 ctrl or ex17D

tumors on days 7 and 14 posttransplantation in WT mice. (‘‘Other’’ indicates infiltrating Ly6C-MHCII�NK1.1�CD3� immune cells).

(B) Percent infiltrating NK cells of total viable (7AAD�) cells from transduced regressor and progressor tumors on day 7 posttumor transplant in WT mice.

(C) Tumor growth of IL-17D overexpressing (ex17D) progressor tumors transplanted intoWTmice receiving either intraperitoneal injections of anti-NK1.1/control

IgG or preimmunized with transplantation of IL-17D overexpressing (ex17D) tumor cell lines.

(D) Percentage of M1 macrophages of total viable cells on day 14 posttumor transplant of progressor tumor cell lines into WT, RAG2�/�, or RAG2�/� 3 gc�/�

hosts.

Data from (A)–(D) are representative of two independent experiments. Samples were compared using an unpaired, two-tailed Student’s t test with Welch’s

correction. Error bars are depicted as ±SEM (**p < 0.01, ***p < 0.001, ****p < 0.0001; NS, not significant). See also Figure S3.
of NK cells. Notably, our preliminary studies indeed have found

increased IL-17D transcripts in virus-infected skin (R.S.K. and

J.D.B., unpublished data). Future studies on the endogenous

role of IL-17D in the context of infection, autoimmunity, and can-

cer and its regulation are certainly warranted.

Our studies have shown that IL-17D is poorly expressed in

cancer cells that grow progressively (mouse MCA-induced

sarcomas and certain human cancers) but, comparatively, can
bemore highly expressed in certain immunogenic MCA-induced

sarcoma cells and in low-stage tumors. It is not clear what regu-

lates the constitutive expression of IL-17D in certain cells, but it is

clear that high expression of IL-17D may not be compatible with

tumor progression, because advanced-stage human and edited

mouse cancer cells have lower levels of IL-17D and the ectopic

expression of IL-17D in progressor cells led to NK depen-

dent tumor rejection. Overexpression of immune-cell-derived
Cell Reports 7, 989–998, May 22, 2014 ª2014 The Authors 993



Figure 4. Recombinant Mouse IL-17D Re-

cruits NKCells in an Air Pouch Inflammation

Model

(A) Total number of infiltrating immune cells per air

pouch in WT mice receiving intrapouch injections

of PBS, LPS, IL-17A, IL-17D-1 (generated from

E. coli.), or IL17D-2 (generated from C. reinhardtii).

(B) Percentages of NK cells, monocytes, neutro-

phils, and macrophages per air pouch receiving

indicated intrapouch injections. (Other indicates

CD4+, CD8+ T cells or Ly6C�MHCII�NK1.1�CD3�

recruited immune cells). Cell populations are

defined as in Figure 3A.

(C) Total number of NK cells andmonocytes per air

pouch receiving indicated intrapouch injections.

(D) Immunophenotypic analysis of infiltrating

NK1.1+CD3� NK cells in mouse air pouches

receiving intrapouch injections of LPSor rmIL-17D.

Data from (A)–(D) are representative of two inde-

pendent experiments. Each point represents an

individual mouse. Samples were compared using

an unpaired, two-tailed Student’s t test with

Welch’s correction. Error bars are depicted

as ±SEM (*p < 0.05, **p < 0.01, ***p < 0.001). See

also Figure S4.
chemokines and cytokines such as GM-CSF (Dranoff, 2004;

Dranoff et al., 1993) and IL-15 (Liu et al., 2012) have already

been demonstrated to have potent antitumor efficacy. Our find-

ings are unique in that IL-17D is tumor expressed (rather than

immune cell derived) and thus likely represents an endogenous

tumor surveillance activity.

It should be noted that not all regressors have high levels of

IL-17D (Figure 1) and that there are multiple genes that are

differentially expressed in regressor tumors (Figure S1), thus

indicating that IL-17D is one of many genes that could partici-

pate in tumor surveillance. This is likely due to the heterogeneity

and redundancy that is inherent in our system (and possibly

in normal tumor surveillance mechanisms). For example, we

have found that some regressors are well recognized by NK

cells whereas others are not, and this is not always correlated

with NKG2D ligand expression (O’Sullivan et al., 2011), even

though NK cells and NKG2D are important for tumor surveil-

lance (Guerra et al., 2008; Smyth et al., 2005). Furthermore,

some regressors require type I interferon for their rejection

whereas others do not (Dunn et al., 2005), even though

IFNAR�/� mice lacking interferon a/b (IFNa/b) responsiveness

are more susceptible to cancer (Diamond et al., 2011; Dunn

et al., 2005; Fuertes et al., 2011), and IFNa/b is used in the treat-

ment of melanoma (Garbe et al., 2011). We therefore conclude

that IL-17D is one of many genes that regressor cells produce

that can stimulate antitumor immunity. The identification of other

genes that can differentiate regressor from progressor cell lines

will involve future studies likely combining proteomic, gene
994 Cell Reports 7, 989–998, May 22, 2014 ª2014 The Authors
expression, and exome sequencing ap-

proaches (Matsushita et al., 2012).

NK cells are known to be integral medi-

ators of tumor surveillance (Bui and

Schreiber, 2007; Smyth et al., 2001), but
little is known about how they are recruited to sites of stress or

transformation. Interestingly, in a model of liver carcinoma, the

process of senescence induced MCP-1 and increased NK cell

infiltration, leading to tumor suppression (Xue et al., 2007; Ian-

nello et al., 2013), but IL-17D was not measured in this study.

A recent study showed that the novel chemokine chemerin can

recruit NK cells to mediate tumor surveillance (Pachynski et al.,

2012), but it remains unclear what induces chemerin during

inflammation. The chemokine receptor CXCR3 is expressed on

NK cells (Uppaluri et al., 2008) and it ligands ITAC, MIG, and

IP-10 can be induced by interferons during tumor development,

but this receptor-ligand axis is not involved in the surveillance of

MCA-induced sarcomas (Winkler et al., 2011). On the other

hand, CXCR3 is thought to be the receptor that mediates the

recruitment of cytokine-secreting CD27high NK cells into lymph

nodes (Martı́n-Fontecha et al., 2004; Watt et al., 2008), and it

may be possible that IL-17D can also induce CXCR3 ligands,

either directly or indirectly via NK cell production of IFNg.

Other studies of IL-17 family members in tumor progression

have focused on IL-17A and Th-17 cells. These studies have

shown both tumor-promoting and tumor-inhibiting roles for

IL-17A/Th-17 cells. For instance, transfection of IL-17A can

augment the progression of human tumor cell lines transplanted

in nude mice by increasing neovascularization (Numasaki et al.,

2003, 2005; Tartour et al., 1999), whereas in a mouse syngeneic

system, IL-17A promotes tumor rejection by boosting T cell

responses (Benchetrit et al., 2002; Hirahara et al., 2001). Th17

cells have also been associated with tumor rejection and good



Figure 5. IL-17D Indirectly Recruits NK

Cells through Tumor Endothelial Cell Pro-

duction of MCP-1

(A) Air pouch lavage fluid chemokine levels of

MCP-1.

(B) Total number of NK cells per air pouch for WT

mice receiving intrapouch injections of PBS, LPS,

IL-17A, IL-17D, MCP-1, or IL-17D and anti-MCP-1

monoclonal antibodies.

(C) qRT-PCR analysis of MCP-1 expression from

purified tumor leukocytes and endothelial cells

harvested from day 7 F244 or B16.OVA control or

ex17D tumors.

(D) Tumor growth of F244 or B16 OVA control and

ex17D tumors transplanted intoWTmice receiving

either intraperitoneal (i.p.) injections of goat poly-

clonal anti-MCP-1 or control goat IgG.

(E) Number of tumor-infiltrating NK cells per

square mm of tumor from day 7 B16 OVA ex17D

tumors transplanted into WT mice receiving either

i.p. injections of goat polyclonal anti-MCP-1 or

control goat IgG.

Data are representative of two independent ex-

periments. Each point represents a single mouse.

Samples were compared using an unpaired, two-

tailed Student’s t test with Welch’s correction.

Error bars are depicted as ±SEM (*p < 0.05, **p <

0.01, ***p < 0.001; NS, not significant). See also

Figure S5.
prognosis in some studies (Kryczek et al., 2007; Muranski et al.,

2008), whereas other studies indicate that Th17 cells promote

tumor growth (Xiao et al., 2009; Zhang et al., 2008). One potential

explanation for these conflicting results is that IL-17A can acti-

vate and recruit neutrophils, which recently have been shown

to have both tumor-promoting and tumor-inhibiting activities

(Fridlender et al., 2009). In contrast, it is well established that

NK cells have antitumor activities (Bui and Schreiber, 2007;

Smyth et al., 2001) and in fact can promote antitumor T cell

(Diefenbach et al., 2001; Kelly et al., 2002) (Figure 2C) and

macrophage responses (O’Sullivan et al., 2012) (Figure 3D).

Therefore, unlike IL-17A, IL-17D may induce more consistent

antitumor responses through NK cell recruitment that could be

more effectively translated to cancer immune therapy. On the

other hand, because enforced IL-17D expression induced

rejection of some, but not all, progressor cell lines, it is likely

that IL-17D-based therapy, acting through NK cells, will need

to be used in combination with checkpoint blockade or inhibitors

of T regulatory cells, which can prevent NK cell activation

(Ghiringhelli et al., 2005; Smyth et al., 2006). It is not clear what

the total effect enforced IL-17D expression would have on adap-

tive immunity, but nevertheless, adaptive immunity is required
Cell Reports 7, 989–9
(Figure S2) and induced (Figure 3C) in

IL-17D-mediated rejection. Finally, we

speculate that the selective expression

of IL-17D in neoplastic cells as opposed

to immune cells would translate to a

more benign side effect profile, because

this ancient cytokine may have evolved

to mediate early, and clinically silent,
innate tissue surveillance of stress, transformation, and/or

pathogen infection.

EXPERIMENTAL PROCEDURES

All experiments involving mice were conducted under animal protocols

approvedby theWashingtonUniversityAnimal StudiesCommittee and theUni-

versity of California, San Diego Institutional Animal Care and Use Committee

(IACUCprotocol #S06201) andwere in accordancewith their ethical guidelines.

Cell Lines and Mice

MCA sarcoma cell lines are a kind gift from Dr. Robert Schreiber and were

generated as described previously (Shankaran et al., 2001). All experiments

were done with cells passaged between 4 and 12 cycles. 129/Sv, C57BL/6 3

129/Sv F1, 129/Sv RAG2�/�, C57BL/6 RAG2�/�, and RAG2�/� 3 gc�/� mice

used were used for tumor transplantation experiments. Cell lines were main-

tained in RPMI 1640 supplemented with 10% fetal calf serum, L-glutamine,

nonessential amino acids, sodium pyruvate, sodium bicarbonate, penicillin/

streptomycin, and b-mercaptoethanol.

Microarray and Clustering Analysis

Murine Genome U74v2 Set GeneChip Array (Affymetrix) was used for analysis

of cDNA generated from regressor and progressor tumor cell lines. Details of

RNA preparation, cDNA preparation, microarray setup, and clustering analysis

are described in the Supplemental Experimental Procedures.
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Human Cancer Microarray Data Analysis

For human clinical samples, IL-17D gene expression was evaluated from

NCBI GEO data sets from studies comparing primary and metastatic tumors

(GDS2546) or low-grade versus high-grade glioma patient samples

(GDS4467, GDS1976, and GDS1816) as described previously (Pachynski

et al., 2012).

Generation of IL-17D-Deficient and Overexpressing Tumor Cell

Lines

Cell lines were generated as described in the Supplemental Experimental

Procedures.

Antibodies and FACS Analysis of Tumor Cells

For intracellular staining, cells were either incubated with or without 2 mMmon-

ensin (Sigma) and 1 mg/ml Brefeldin A (BD Biosciences) and then harvested by

trypsinization, washed once with PBS, stained, and analyzed for intracellular

IL-17D signal as described in the Supplemental Experimental Procedures.

Tumor Transplantation and TIL Analysis

Subconfluent tumor cell lineswere harvested and injected subcutaneously into

syngeneic recipient WT, RAG2�/�, or RAG2�/� 3 gc�/� mice at either 13 106

cells/mouse (for all growth experiments) or 5–103 106 cells/mouse (for tumor-

infiltrating leukocyte [TIL] analysis), as previously described (Bui et al., 2006).

Tumor rechallenge was performed 3 months after mice had rejected trans-

planted tumors by injecting 1 3 106 cells per mouse subcutaneously with

parental tumor cell lines. In vivo depletion of various immune subsets, doxycy-

cline administration, and intratumoral injection of IL-17D are described in the

Supplemental Experimental Procedures. Tumor growth and immune infiltration

were analyzed as described in the Supplemental Experimental Procedures.

Mouse Air Pouch Experiments

C57BL/6 3 129/Sv F1 mice were injected subcutaneously with 3 ml of steril-

ized air filtered through a 0.2 mm Millipore filter (Bellerica) to form air pouches

on day 0 and reinflated again on day 3. On day 7, 1 ml of LPS (1 mg/ml), IL-17A

(5 mg/ml) (R&D Systems), IL-17D (5 mg/ml) (R&D Systems), IL-17D (5 mg/ml)

(Mayfield Lab), MCP-1 (5 mg/ml) (Peprotech), or IL-17D (5 mg/ml) + anti-

MCP-1 polyclonal antibodies (25 mg/ml) (R&D Systems) was injected into

mouse air pouches 8 hr before air pouch harvest. Air pouches were lavaged

with 2 ml PBS and centrifuged at 1,250 rpm for 5 min at room temperature.

Supernatant was harvested and analyzed for chemokine protein levels using

themouse Chemokine FlowCytomix kit from eBioscience. Infiltrating air pouch

cells were resuspended in FACS stain buffer, counted on a hemocytometer,

and analyzed by cell-surfacemarkers as described in the Supplemental Exper-

imental Procedures.

Chemokine Secretion Assay

On days 7 and 14 posttransplantation, tumors were harvested and single-cell

suspensions were prepared as described for the TIL analysis. Filtered tumor/

immune cell suspensions were plated in triplicate wells at 40,000 cells per well

in 100 ml for 24 hr at 37�C. Supernatant was analyzed for chemokines using the

mouse chemokine flowcytomix kit from eBioscience.

Generation of cDNA and Quantitative PCR

Tumor cell lines were plated in triplicate at 63 104 cells/well in a six-well plate

and incubated for 48 hr at 37�C. Supernatant was aspirated and cells were

washed twice with PBS before addition of 1 ml TRIzol reagent (Invitrogen).

CD31+ and CD45+ tumor-derived cell populations were washed twice with

PBS before addition of 1 ml TRIzol reagent (Invitrogen). Details describing

RNA extraction, cDNA preparation, quantitative PCR reactions, and analysis

are described in the Supplemental Experimental Procedures.
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