OBJECTIVES: The objectives of the current analysis are: 1) to update cost-effectiveness estimates for the current 4-dose schedule of 7-valent pneumococcal conjugate vaccine (PCV7) using recent 2008 epidemiological data and new data obtained from recent resource use for pneumococcal disease, 2) to investigate the cost-effectiveness of a reduced-dose schedule, and switching to 10- or 13-valent pneumococcal vaccines.

METHODS: We constructed a decision analysis model to compare the expected net costs and health benefits in two hypothetical cohorts of 180,000 children—one vaccinated (with the PCV7/PCV10/PCV13) and one unvaccinated. Both herd protection and serotype replacement were included for the cohorts, so net-vaccine benefits for adults and elderly may be included. RESULTS: Under base-case assumptions, vaccination with 4-doses of PCV7 prevents 72 cases of invasive pneumococcal disease and 6,812 cases of respirator infections corresponding to a gain of 173 discounted life-years or a gain of 270 QALYs. The cost savings due to vaccination is estimated at €2.7 billion annually. With a vaccine price of €50, the cost-effectiveness ratio is estimated €161,847/QALY or €182,002/LYG. Using a 3-dose schedule lowers the CER to €59,104/QALY gained. At a threshold of €80,139 per QALY gained, 20,139 per QALY gained, 50, the cost-effectiveness ratio is estimated 11,489 per PHN case averted.

A294

ECONOMIC EVALUATION OF ATOSIBAN COMPARED TO BETAMIMETICS FOR THE TREATMENT OF PRETERM LABOUR IN AUSTRIA

Wasch J, Talner M, Rath W, Nielsen SK

Objective: To determine the cost-effectiveness of atosiban compared to betamimetics in the treatment of preterm labour in Austria. Methods: A systematic literature review identified RCTs comparing atosiban to betamimetics in the first 48 hours of hospitalisation. In Austria, the most common betamimetic indicated for preterm labour had demonstrated comparable safety profiles within this group. Cost-minimisation analysis was conducted using Excel model of the combined ITT population. Drug dosing was based on clinical trial protocols and Austrian treatment guidelines. Costs of drugs were obtained for 2009. The Hospital Financing System (LKF) score was calculated using the 2009 Kdok software. Analyses were conducted from the payer (KRAZAF) and hospital (KAV) perspectives. Results: Six RCTs were identified: three double-blinded, one single-blinded, and two open label studies. Meta-analysis of the double-blinded studies showed, that atosiban and betamimetics had similar efficacy (RR = 0.99, 95% CI: 0.94–1.04, p = 0.772) in preventing preterm labour for 48 hours. Atosiban was associated with a significantly lower frequency of adverse events for tachycardia, palpitation, vomiting, headache, hyperglycaemia, tremor, dyspnoea, chest pain, hypocalcaemia and foetal tachycardia (p < 0.05). From the public payer perspective, the cost saving from choosing atosiban over betamimetics was €523 per patient. From the hospital perspective, savings ranged from €807 for 18 hours of tocolysis to €723 for 48 hours. The results were consistent when the double-blinded clinical trials were analysed separately or combined with the single-blinded and open label trials, and were robust in the probabilistic sensitivity analyses. The cost savings were €323 per patient. From the hospital per- fective, ICERs of the vaccination programme against HZ and PHN were calculated.

A295

CHANGING THE SURGICAL WOUND CLOSURE MANAGEMENT PATHWAY: TIME AND SUPPLIES WITH PRINEO® VS. STANDARD OF CARE FOR BREAST RECONSTRUCTION

De Cock E1, Van Nooten F 2, Raluy M1, Müller K3, Fabré J4, Hargreaves J5

OBJECTIVES: To evaluate differences in time and supplies between PRINEO® and SOC for breast reconstruction.

METHODS: A time and motion study was conducted in one centre per country with data recorded on Data Observation Forms by trained centre staff. In NL, 5 procedures per group were observed involving both donor and breast site (DIEAP flap). In GER, 7 SOC and 8 PRINEO® procedures were observed involving mostly one site (Latissimus Dorsi). Activities were observed for which differences in time and supplies between PRINEO® and SOC were expected: incision closure, dressing application, and dressing changes. Analyses were conducted for donor and breast site. RESULTS: In NL, average skin layer closure time was 3.19 min for PRINEO® vs. 3.64 min for SOC and speed of closure was higher for PRINEO® (31.89 s vs. 2.68 cm/min). Including dermal layer closure, total average wound closure time was 46.57 min for PRINEO® vs. 68.51 min for SOC, which required on average 6.26 min for dressing application and post-op dressing changes compared to 3.36 min for PRINEO® removal. In GER, average skin layer closure time was 2.98 min for PRINEO® vs. 9.61 min and speed of closure was increased for PRINEO® (12.37 s vs. 4.03 cm/min). Including dermal layer closure, total average time for wound closure was similar (23.29 min vs. 21.73 min). SOC required on average 13.25 min for dressing application and post-op dressing changes compared to 10.10 min for PRINEO® removal. Additionally, average use of 1.13 PRINEO® units (GER) and 2.00 (NL) resulted in elimination of suture closure materials. CONCLUSIONS: PRINEO® lead to increased skin closure speed and avoided time and supplies associated with dressing application and changes, at the expense of an average at least 1 PRINEO® unit for donor and breast site combined.