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In this paper, we prove that the category TAb of topological Abelian groups
is quasi-Abelian. Using results about derived projective limits in quasi-Abelian
categories, we study exactness properties of the projective limit functor in TAb. If
X is a projective system of TAb indexed by a filtering ordered set, we give a
necessary and sufficient condition for the derived projective limit of X to be strict.
We also characterize the countable projective systems of complete metrizable
Abelian groups which are � -acyclic in TAb. � 1999 Academic Press
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0. INTRODUCTION

In this paper, we prove that the category TAb of topological Abelian
groups is quasi-Abelian in the sense of [7] (see also [4]). This allows us
to use the results about derived projective limits in quasi-Abelian categories
obtained in [5] to study exactness properties of the projective limit functor
for topological Abelian groups. In particular, if X is a projective system of
TAb indexed by a filtering ordered set I, we give a necessary and sufficient
condition for the complex

R �
i # I
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to be strict (i.e. to have relatively open differentials). When we assume
moreover that I is countable and each Xi is metrizable and complete, we
also give a necessary and sufficient acyclicity condition. This last result is
related to theorems of Palamodov (cf. [2, 3]).

In an effort to make this paper more self-contained, we start by giving
a short survey of the results of [7] concerning the homological algebra of
quasi-Abelian categories which are needed in the other sections.

In the second section, we recall the definition of the category TAb of
topological Abelian groups and the form of kernels and cokernels in this
category. This allows us to characterize the strict morphisms of TAb and
to establish that this category is quasi-Abelian.

The first part of Section 3 is devoted to a review of some of the results
on derived projective limits in quasi-Abelian categories established in [5].
More precisely, we recall that if E is a quasi-Abelian category with exact
products, the projective limit functor is right derivable and that its derived
functor is computable by means of Roos complexes (which generalize those
introduced in [6]). We also recall that if J: J � I is a cofinal functor
between small filtering categories and if E is a projective system indexed
by I, then the derived projective limits of E and E b J are isomorphic. In
order to be able to apply these results to TAb, we end this section by
showing that products are exact in this category.

In Section 4, we study strictness properties of the derived projective limit
functor in TAb. We establish that if X is a projective system of TAb
indexed by a filtering ordered set, the differential d k of its Roos complex is
strict for k�1 and that d 0 is strict if and only if X satisfies condition SC
(i.e. if and only if for any i # I and any neighborhood U of zero in Xi , there
is j�i such that

xi, k(Xk)/qi \�
i # I

Xi++U

for any k� j). As a corollary, we get that a projective system of TAb
indexed by a filtering ordered set is �-acyclic in TAb if and only if it is
�-acyclic in the category of Abelian groups and satisfies condition SC.

In the last section, we limit our study to countable projective systems of
TAb. First, we establish a slight generalization of the classical Mittag�
Leffler theorem for countable projective limits of complete metric spaces.
Using this result and results of Section 4, we give a necessary and sufficient
condition for a countable projective system of complete metrizable Abelian
groups to be �-acyclic in TAb.

To conclude this introduction, I want to thank J.-P. Schneiders for
pointing out the research direction followed in this paper and for the useful
discussions we had during its preparation.
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1. QUASI-ABELIAN HOMOLOGICAL ALGEBRA

To help the reader we recall in this section a few basic facts concerning
the homological algebra of quasi-Abelian categories. We refer to [7] for
more details (see also [4]).

Definition 1.1. Let A be an additive category with kernels and coker-
nels and let f : A � B be a morphism of A. Recall that ker f and coker f
denote respectively the kernel and cokernel of f.

Recall also that the kernel of the morphism q: B � coker f is called the
image of f and denoted by im f. Dually, the cokernel of the morphism
i: ker f � A is called the coimage of f and denoted by coim f.

We say that the morphism f is strict if the canonical morphism

coim f � im f

is an isomorphism.

Definition 1.2. A category E is quasi-Abelian if it is an additive
category with kernels and cokernels and if

(i) in a Cartesian square

X ww�f Y

X$ ww�
f $

Y$

f is a strict epimorphism, then f $ is a strict epimorphism,

(ii) in a cocartesian square

X$ ww�f $ Y$

X ww�
f

Y

f is a strict monomorphism, then f $ is a strict monomorphism.

Until the end of this section, E will denote a quasi-Abelian category.
Recall that C(E) is the category of complexes of E and that K(E) is the

category defined by

Ob(K(E))=Ob(C(E))
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and

HomK(E)(X
., Y.)=HomC(E)(X., Y.)�Ht(X., Y.)

where

Ht(X., Y.)=[ f . : X. � Y. : f . is homotopic to zero].

As is well-known, the category K(E) has a canonical structure of triangulated
category.

Definition 1.3. (i) A sequence

A w�u B w�v C

of E such that v b u=0 is strictly exact if u is strict and if the canonical
morphism

im u � ker v

is an isomorphism.

(ii) A complex X. of E is strictly exact in degree k if the sequence

Xk&1 ww�dk&1

Xk w�d
k

Xk+1

is strictly exact.

(iii) A complex of E is strictly exact if it is strictly exact in every
degree.

Proposition 1.4. The full subcategory N(E) of K(E) whose objects are
the strictly exact complexes of E is a null system.

Definition 1.5. The derived category of E is the localization of the
triangulated category K(E) by N(E). We denote it by D(E). Hence,

D(E)=K(E)�N(E).

Definition 1.6. We denote by

D�0(E) (resp. D�0(E))

the full subcategory of D(E) whose objects are the complexes which are
strictly exact in degree k>0 (resp. k<0).
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Proposition 1.7. The pair (D�0(E), D�0(E)) is a t-structure on D(E).
We call it the left t-structure of D(E).

Definition 1.8. The heart

D�0(E) & D�0(E)

of the left t-structure is denoted by LH(E). For short, we call it the left
heart of D(E). Of course, the objects of LH(E) are the complexes which
are strictly exact in every non-zero degree. The associated cohomological
functors are denoted by

LHk : D(E) � LH(E).

Proposition 1.9. Let X. be an object of D(E). The truncation functors
are given by

{�n(X.): } } } � Xn&1 � ker d n � 0

where ker d n is in degree n and

{�n(X.): 0 � coim d n&1 � X n � Xn+1 � } } }

where X n is in degree n. Hence, the cohomological functors are given by

LHn(X.): 0 � coim d n&1 � ker d n � 0

where ker d n is in degree 0.

Proposition 1.10. The functor

I: E � LH(E)

which associates to any object E of E the complex

0 � E � 0

where E is in degree 0 is fully faithful.

Remark 1.11. Let X. be an object of LH(E). By an abuse of notations,
we will write

X. # E

if X. is isomorphic to I(E) for some object E of E.
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Proposition 1.12. (a) Any object of LH(E) is isomorphic to a complex

0 � A w�u B � 0

where B is in degree 0 and u is a monomorphism. Moreover, such an object
is in the essential image of I if and only if u is strict.

(b) A sequence

E � F � G

of E is strictly exact if and only if the sequence

I(E) � I(F ) � I(G)

of LH(E) is exact.

Corollary 1.13. Let X. be an object of D(E). Then,

(i) LHk(X.)=0 � X. is strictly exact in degree k,

(ii) LHk(X.) # E � d k&1
X is strict.

Let F: E � E$ be a functor between quasi-Abelian categories.

Definition 1.14. Let

Q: K+(E) � D+(E) and Q$: K+(E$) � D+(E$)

be the canonical functors. A right derived functor of F is the data of a pair
(T, s) where

T : D+(E) � D+(E$)

is a functor of triangulated categories and

s: Q$ b K+(F ) � T b Q

is a morphism of functors such that for any pair (T $, t) where

T $: D+(E) � D+(E$)

t: Q$ b K+(F ) � T $ b Q,

140 FABIENNE PROSMANS



there is a unique morphism :: T � T $ of functors making the diagram

: b idQ

Q$ b K+(F )

s t

T b Q T $ b Q

commutative.

Definition 1.15. A full subcategory I of E is F-injective if

(i) for any E # Ob(E), there is a strict monomorphism E � I where
I # Ob(I),

(ii) when 0 � E$ � E � E" � 0 is a strictly exact sequence of E such
that E$, E # Ob(I), then E" # Ob(I) and the sequence

0 � F(E$) � F(E) � F(E") � 0

is strictly exact.

Proposition 1.16. If I is an F-injective subcategory of E, then for any
object X. of C+(E), there is a strict quasi-isomorphism

u. : X. � I.

such that, for any k, Ik # Ob(I) and uk : Xk � I k is a strict monomorphism.
(In such a case, we call I. an F-injective resolution of X..)

Proposition 1.17. If E has an F-injective subcategory I, the functor

F: E � E$

is right derivable and, if

RF : D+(E) � D+(E$)

is its derived functor, then

RF(X.)&F(I.)

where I. is an F-injective resolution of X..
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2. THE CATEGORY TAb OF TOPOLOGICAL ABELIAN GROUPS

In this paper, by a topological abelian group, we mean an Abelian group
M endowed with a topology such that the maps

+: M_M � M

and

&: M � M

are continuous.
Recall (see e.g. [1]) that if M is a topological Abelian group, then there

is a basis of neighborhoods of zero V such that

(TAb1) \V # V, V % 0,

(TAb2) \V # V, V=&V,

(TAb3) \V1 , V2 # V, _V3 # V such that V1 & V2 #V3 ,

(TAb4) \V # V, _U # V such that U+U/V.

Conversely, let V be a set of subsets of an Abelian group M satisfying
(TAb1)�(TAb4). Then, the collection T of subsets U of M such that

\x # U, _V # V such that x+V/U

is a topology of Abelian group on M for which V is a basis of neighbor-
hoods of zero.

Let M be a topological Abelian group, let N be a subgroup of M and let
V be a basis of neighborhoods of zero on M. The set

V$=[V & N: V # V]

is clearly a basis of neighborhoods of zero for a topology of Abelian group
on N. We call the topology so defined on N the induced topology.

Similarly, if q: M � M�N denotes the canonical morphism, the set

V$=[q(V ): V # V]

forms a basis of neighborhoods of zero for a topology of Abelian group on
M�N. The topology so defined on M�N is called the quotient topology.

Definition 2.1. We denote by TAb the category whose objects are the
topological Abelian groups and whose morphisms are the continuous
additive maps.
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Proposition 2.2. The category TAb has products. More precisely, let
(M:): # A be a family of topological abelian groups and let V: be a basis of
neighborhoods of zero on M: (\: # A). Then, the product of the family
(M:): # A in TAb is obtained by endowing the Abelian group

`
: # A

M:=[(m:): # A : m: # M: \: # A]

with the topology associated to the basis of neighborhoods of zero

V={ `
: # A

V: : V:=M: or V: # V: , [:: V: {M:] is finite= .

Corollary 2.3. The category TAb is additive.

Proposition 2.4. The category TAb has kernels and cokernels. More
precisely, let u: M � N be a morphism of TAb.

(i) The subgroup u&1([0]) of M endowed with the induced topology
together with the canonical monomorphism i: u&1([0]) � M form a kernel
of u.

(ii) The quotient group N�u(M) endowed with the quotient topology
together with the canonical epimorphism q: N � N�u(M) form a cokernel
of u.

(iii) The image of u is the subgroup u(M) of N endowed with the
induced topology.

(iv) The coimage of u is the quotient group M�u&1([0]) endowed with
the quotient topology.

Proof. (i) Let X be an object of TAb and let v: X � M be a
morphism of TAb such that u b v=0. Since v(X)/u&1([0]), the map

v$: X � u&1([0]) x [ v(x)

is well-defined. One sees easily that v$ is additive, continuous and makes
the diagram

v$ 0

u&1([0]) ww�i M ww�u N
v

X
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commutative. Since v$ is the unique map satisfying these properties,

(u&1([0]), i)

is a kernel of u.

(ii) Let X be an object of TAb and let v: N � X be a morphism of
TAb such that v b u=0. The map

v$: N�u(M) � X [n]u(M) [ v(n)

is well-defined and additive. Let us show that v$ is continuous. Consider a
neighborhood of zero V in X. Since v&1(V) is a neighborhood of zero in
N, q(v&1(V )) is a neighborhood of zero in N�u(M). Moreover, we have

v$&1(V )#q(q&1(v$&1(V )))=q((v$ b q)&1 (V ))=q(v&1(V)).

It follows that v$&1(V ) is a neighborhood of zero in N�u(M) and that v$ is
continuous. Of course, v$ makes the diagram

0 v$

M ww�u N ww�q N�u(M)

v

X

commutative. Since v$ is the unique map having these properties,

(N�u(M), q)

is a cokernel of u.
(iii) and (iv) follow from (i) and (ii). K

Proposition 2.5. A morphism u: M � N of TAb is strict if and only if
for any neighborhood of zero V in M, there is a neighborhood of zero V$ in
N such that

u(V)#u(M) & V$.

In other words, u is strict if and only if it is relatively open.

Proof. By definition, u: M � N is strict if and only if the canonical
morphism u~ : coim u � im u is an isomorphism. This canonical morphism

u~ : M�u&1([0]) � u(M)

is defined by

u~ ([m]u&1 ([0]))=u(m) \m # M.
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One checks easily that u~ is bijective. Moreover, u~ is continuous. Hence, u
is strict if and only if u~ &1 is continuous.

So, we have to show that

u~ &1 : u(M) � M�u&1([0]) u(m) [ [m]u&1([0])

is continuous if and only if for any neighborhood of zero V in M, there is
a neighborhood of zero V$ in N such that

u(V)#u(M) & V$.

The condition is necessary. As a matter of fact, let V be a neighborhood
of zero in M. If q$: M � M�u&1([0]) is the canonical morphism, q$(V ) is
a neighborhood of zero in M�u&1([0]). Since u~ &1 is continuous,

(u~ &1)&1 (q$(V ))=u~ (q$(V ))=u(V)

is a neighborhood of zero in u(M). Hence, there is a neighborhood of zero
V$ in N such that

u(V )#V$ & u(M).

The condition is also sufficient. Let W be a neighborhood of zero in
M�u&1([0]). There is a neighborhood of zero V in M such that W#q$(V).
By hypothesis, there is a neighborhood of zero V$ in N such that

u(V)#u(M) & V$.

Therefore, we have

(u~ &1)&1 (W)=u~ (W)#u~ (q$(V))=u(V)#u(M) & V$.

Since u(M) & V$ is a neighborhood of zero in u(M), (u~ &1)&1 (W) is a
neighborhood of zero in u(M). Hence, u~ &1 is continuous. K

Proposition 2.6. The category TAb is quasi-Abelian.

Proof. We know that TAb is additive and has kernels and cokernels.

(i) Consider a cartesian square

M0 ww�u N0

f g

M1 ww�
v

N1
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where u is a strict epimorphism and let us show that v is a strict
epimorphism. Recall that if we set

:=(u &g): M0�N1 � N0 ,

then we may assume that

M1=ker :=[(m0 , n1): u(m0)= g(n1)]

and that

f =pM0
b i: and v= pN1

b i:

where i: : ker : � M0 �N1 is the canonical monomorphism.
Of course, the morphism v is surjective. Let us prove that it is strict.

Consider a neighborhood of zero V in M1=ker :. We may assume that

V=(V0_V$1) & ker :

where V0 is a neighborhood of zero in M0 and V$1 is a neighborhood of
zero in N1 . Since u is strict, by Proposition 2.5, there is a neighborhood of
zero V$0 in N0 such that

u(V0)#u(M0) & V$0 .

Then, V$1 & g&1(V$0) is a neighborhood of zero in N1 . Since

v(V)#v(M1) & V$1 & g&1(V$0),

by Proposition 2.5, v is strict.

(ii) Consider a cocartesian square

M1 ww�v N1

f g

M0 ww�
u

N0

where u is a strict monomorphism. Let us show that v is a strict
monomorphism. Recall that if we set

:=\ f
&u+ : M0 � M1�N0 ,
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then we may assume that

N1=coker :=(M1�N0)�:(M0),

v=q: b iM1
and g=q: b iN0

where q: : M1 �N0 � (M1 �N0)�:(M0) is the canonical epimorphism.
Clearly, the morphism v is injective. Let us prove that it is strict.

Consider a neighborhood of zero V1 in M1 . We know that there is a
neighborhood of zero U1 in M1 such that

U1+U1 /V1 .

Since u is strict, there is a neighborhood of zero V$0 in N0 such that

u( f &1(U1))#u(M0) & V$0 .

Moreover, q:(U1_V$0) is a neighborhood of zero in N1=M1�N0 �:(M0).
One can check that

v(V1)#v(M1) & q:(U1 _V$0).

Hence, v is strict. K

3. GENERAL RESULTS ON DERIVED PROJECTIVE
LIMITS IN TAb

Let E be a quasi-Abelian category and let I be a small category. Recall
that EIop

denotes the quasi-Abelian category of functors from Iop to E (also
called projective systems of E indexed by I). For the reader's convenience,
we recall how to derive the projective limit functor

�
i # I

: EI op
� E

if E is a quasi-Abelian category with exact products (see [5] for more
details).

Note that, hereafter, we will often denote by the same symbol a set and
its associated discrete category.

Definition 3.1. Let I be a small category and let E be a quasi-Abelian
category with products. We define the functor

6: EOb(I) � EI op
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by setting

6(S)(i)= `
j w�: i

S( j)

for any functor S: Ob(I) � E and for any i # I. Let i be an object of I.
For any morphism :: j � i of I, we denote by

pj w�: i : 6(S)(i) � S( j)

the canonical projection.
A projective system

E: Iop � E

is of product type if there is an object S of EOb(I) such that

E&6(S)

in EIop
.

We denote by

O: EIop
� EOb(I)

the canonical functor.

Proposition 3.2. Let I be a small category and let E be a quasi-abelian
category with products.

(a) For any object S of EOb(I), we have the isomorphism

�
i # I

6(S)(i)& `
i # I

S(i).

(b) For any object E of EI op
, the morphism

f : E � 6(O(E))

defined by

pj w�: i b f (i)=E(:)

for any object i of I and any morphism :: j � i of I is a strict monomorphism.

Definition 3.3. Let I be a small category and let E be a quasi-Abelian
category with products. We define the functor

R.(I, } ): EI op
� C+(E)
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in the following way. For any functor E: Iop � E, we set

Rn(I, E)=0 \n<0

and

Rn(I, E)= `
i0 w�

: 1 } } } w�
: n in

E(i0) \n�0,

where

i0 w�
:1 } } } w�

:n in

is a chain of morphisms of I. Denoting by

pi0 w�
: 1 } } } w�

: n in
: Rn(I, E) � E(i0)

the canonical projection, we define the differential

d n
R.(I, E) : Rn(I, E) � Rn+1(I, E)

by setting

p i0 w�
: 1 } } } ww�

: n+1 in+1
b d n

R.(I, E)=E(:1) b p i1 w�
: 2 } } } ww�

: n+1 in+1

+ :
n

l=1

(&1) l p i0 w�
: 1 } } } il&1 www�

: l+1 b : l il+1 } } } ww�
: n+1 in+1

+(&1)n+1 p i0 w�
: 1 } } } w�

: n in
.

We call R.(I, E) the Roos complex of E (cf. [6]).

Notation 3.4. Let E be an object of EI op
. For any i # I, we denote by

qi : �
i # I

E(i) � E(i)

the canonical morphism.

Proposition 3.5. Let I be a small category and let E be a quasi-Abelian
category with products. For any object E of EI op

, there is a canonical
isomorphism

=0(I, E): �
i # I

E(i)[ker d 0
R.(I, E)
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defined by

pi b =0(I, E)=q i \i # I.

Definition 3.6. Let I be a small category and let E be a quasi-Abelian
category with products. An object E of EI op

is a Roos-acyclic projective
system if the co-augmented complex

0 � �
i # I

E(i) � R0(I, E) � R1(I, E) � } } }

is strictly exact.

Proposition 3.7. Let I be a small category and let E be a quasi-Abelian
category with products. For any object S of EOb(I), there is a canonical
homotopy equivalence

`
i # I

S(i) � R.(I, 6(S)).

In particular, 6(S) is a Roos-acyclic projective system.

Proposition 3.8. Let I be a small category and let E be a quasi-Abelian
category with exact products. Then, the family

F=[E # Ob(EIop
): E is Roos-acyclic]

is �
i # I

-injective. In particular, the functor

�
i # I

: EI op
� E

is right derivable and for any object E of EI op
, we have a canonical

isomorphism

R �
i # I

E(i)&R.(I, E).

Proposition 3.9. Let J: J � I be a cofinal functor between small
filtering categories and let E be a quasi-Abelian category with exact products.
For any object E of D+(EI op

), the canonical morphism

R �
i # I

E(i) � R �
j # J

E(J( j))

is an isomorphism in D+(E).
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Recall that if I is a small filtering category, there is a small filtering
ordered set I and a cofinal functor 8: I � I. Since any non empty set of
cardinal numbers has a minimum, we may assume that I has the smallest
possible cardinality. We call this cardinality the cofinality of I and denote
it cf(I).

Recall also that for k # N, |k denotes the (k+1)-th infinite cardinal
number.

Theorem 3.10. Let E be a quasi-Abelian category with exact products.
Consider a functor

X: Iop � E

where I is a small filtering category. If cf(I)<|k with k # N, then

LHn \R �
i # I

X(i)+=0 \n�k+1.

Since we know already that TAb is quasi-Abelian, the following proposi-
tion will allow us to apply the preceding results to treat derived projective
limits of topological Abelian groups.

Proposition 3.11. Products are exact in TAb.

Proof. Let I be a small set. The functor

`
i # I

: TAbI � TAb

being kernel preserving, it is sufficient to show that the product of strict
epimorphisms is a strict epimorphism. Consider a family

ui : Mi � Ni \i # I

of strict epimorphisms. Of course, the map

`
i # I

ui : `
i # I

Mi � `
i # I

Ni

is surjective. Let us show that it is strict. Consider a neighborhood of zero
V in >i # I Mi . We may assume that

V=`
i # I

Vi
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where Vi is a neighborhood of zero in Mi such that for

i � [i1 , ..., iJ], (J # N)

we have Vi=Mi . Since for any i # I, ui is strict, there is a neighborhood of
zero V$i in Ni such that

ui (Vi)#u i (Mi) & V$i .

For i � [i1 , ..., iJ], we may assume that V$i=Ni . Hence,

V$=`
i # I

V$i

is a neighborhood of zero in >i # I Ni and

`
i # I

ui (Vi)#`
i # I

ui (Mi) & `
i # I

V$i .

By Proposition 2.5, >i # I u i is strict. K

Proposition 3.12. Let I be a small category. The functor

�
i # I

: TAbI op
� TAb

is right derivable and for any object M of TAbI op
, we have

R �
i # I

M(i)&R.(I, M)

where R.(I, M) is the Roos complex of M.

Proof. This follows from Proposition 3.8. K

4. STRICTNESS PROPERTIES OF DERIVED PROJECTIVE LIMITS
IN TAb

Our aim in this section is to give a condition for the complex

R �
i # I

Xi
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to be strict (i.e. to have strict differentials). Thanks to Corollary 1.13, this
is equivalent to give a condition in order that

LHk \R �
i # I

X i+ # TAb.

Definition 4.1. Let I be a filtering ordered set. We say that a projec-
tive system X # TAbI op

satisfies condition SC if for any i # I and any
neighborhood U of zero in Xi , there is j�i such that

xi, k(Xk)/qi \�
i # I

Xi++U \k� j.

Remark 4.2. Let I be a small category and let F: Iop � TAb be a
functor. One can check easily that �

i # I

F(i) is the Abelian group

{( f i) i # I # `
i # I

F(i): F(:) f i $= fi \:: i � i $ in I=
endowed with the topology induced by that of >i # I F(i).

If moreover I is filtering, then for any neighborhood of zero V in
�
i # I

F(i), there is i # I and a neighborhood of zero Ui in F(i) such that

V#q&1
i (Ui ).

As a matter of fact, we know that V contains a neighborhood of the form

\ `
i # I

Wi+& �
i # I

F(i)

where

Wi1
, ..., Wik

(k # N)

are neighborhoods of zero in F(i1), ... F(ik) respectively and Wi=F(i) if
and only if i � [i1 , ..., ik]. Hence, we have

V#\ `
i # I

Wi+& �
i # I

F(i)= ,
k

l=1

q&1
il

(Wil
).

Since I is filtering, there is i # I and there are morphisms

:il
: il � i l=1, ..., k

153DERIVED PROJECTIVE LIMITS



of I. Since

F(:il
): F(i) � F(il) l=1, ..., k

is continuous,

Ui= ,
k

l=1

(F(:il
))&1 (Wil

)

is a neighborhood of zero in F(i) and we see easily that

q&1
i (Ui )/V.

Theorem 4.3. Let I be a filtering ordered set and let X be an object of
TAbIop

. Then,

LH1 \R �
i # I

X i+ # TAb

if and only if X satisfies condition SC.
In particular, the differential d 0

R.(I, X ) of the Roos complex of X is strict if
and only if X satisfies condition SC.

Proof. (a) Let us prove that the condition is sufficient.
We will decompose the argument in two steps.

(i) First, let us show that it is sufficient to prove that if

0 � X w�u Y w�v Z � 0

is a strictly exact sequence of TAbIop
, then �

i # I
vi is a strict morphism.

Let X be an object of TAbIop
. We know that there is a strict monomorphism

e: X � 6(O(X )).

If (Z, q) is the cokernel of e, then the sequence

0 � X w�e 6(O(X )) w�q Z � 0

is strictly exact and it gives rise to the long exact sequence

0 � �
i # I

Xi ww�
�
i # I

ei

�
i # I

6(O(X ))(i) ww�
�
i # I

qi

�
i # I

Zi

� LH1 \R �
i # I

Xi+� 0 (*)
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of LH(TAb) since 6(O(X )) is �
i # I

-acyclic. Set

f =�
i # I

qi

and let

J: TAb � LH(TAb)

be the canonical functor. Since f is strict, the sequence

�
i # I

6(O(X ))(i) w�f �
i # I

Z i � coker f � 0

is strictly exact in TAb. Hence, it gives rise to an exact sequence in
LH(TAb). Therefore,

J(coker f )&coker(J( f ))

&LH1 \R �
i # I

X i+
since the sequence (*) is exact and we have

LH1 \R �
i # I

X i+ # TAb.

(ii) Let us prove that if

0 � X w�u Y w�v Z � 0

is a strictly exact sequence of TAbIop
such that X satisfies condition SC,

then �
i # I

v i is strict. For this, it is sufficient to show that for any neighbor-

hood of zero V in �
i # I

Yi , there is a neighborhood of zero V$ in �
i # I

Z i such
that

\�
i # I

vi+ (V )#\�
i # I

vi+\�
i # I

Yi+& V$.

Let V be a neighborhood of zero in �
i # I

Y i . By Remark 4.2, V contains
a neighborhood of the form

q&1
i (Ui)

where Ui is a neighborhood of zero in Yi for some i # I.
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Consequently, it is sufficient to show that for any i # I and for any
neighborhood of zero Vi in Yi there is a neighborhood of zero V$ in �

i # I
Z i

such that

\�
i # I

vi+ (q&1
i (Vi ))#\�

i # I
v i+\�

i # I
Y i+& V$.

Let i # I and let Vi be a neighborhood of zero in Yi . There is a
neighborhood of zero V$i in Yi such that V$i+V$i /Vi . Set U$i=u&1

i (V$i). By
hypothesis, there is j�i such that

xi, k(Xk)/qi \�
i # I

Xi++U$i \k� j.

If we set V$j= y&1
i, j (V$i), since vj is strict, there is a neighborhood of zero Wj

in Zj such that

vj (Yj) & Wj /vj (V$j).

Since vj is an epimorphism, we get

Wj /vj (V$j).

Moreover, since qj is continuous, q&1
j (Wj) is a neighborhood of zero in

�
i # I

Z i . To conclude, let us show that

\�
i # I

vi+\�
i # I

Yi+& q&1
j (Wj)/\�

i # I
v i+ (q&1

i (Vi)).

Consider

# # \�
i # I

vi+\�
i # I

Yi+& q&1
j (W j).

Hence,

qj (#) # Wj

and there is ; # �
i # I

Y i such that

\�
i # I

vi+ (;)=#.
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It follows that

qj (#)=vj (qj (;)) # Wj

and since

Wj /vj (V$j),

there is ;$j # V$j such that

vj (qj (;))=vj (;$j).

Hence, we have

qj (;)&;$j # ker vj=im uj

and there is :j # Xj such that

qj (;)&;$j=uj (: j).

Remark that

qi (;)& yi, j (;$j)=qi (;)& yi, j (qj (;)&uj (:j))=(ui b x i, j)(:j).

Now, thanks to the relation

xi, j (Xj)/qi \�
i # I

X i++U$i ,

there is :$ # �
i # I

Xi such that

xi, j (:j)&qi (:$) # U$i .

Then, we have successively

qi \;&\�
i # I

ui+ (:$)+=yi, j(;$j)+ui (xi, j(: j))&u i (q i (:$))

=yi, j(;$j)+u i (xi, j(:j )&q i (:$)).

Since

yi, j (;$j) # yi, j (V$j)/V$i

and

ui (x i, j (:j)&qi (:$)) # ui (U$i)/V$i ,
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we get

qi \;&�
i # I

ui (:$)+ # Vi .

Moreover, since

\�
i # I

vi+\;&\�
i # I

ui+ (:$)+=\�
i # I

vi+ (;)=#

we have

# # �
i # I

vi (q&1
i (Vi))

and the sufficiency of the condition is established.

(b) Let us prove the necessity of the condition. Let i be an element
of I and let U be a neighborhood of zero in Xi .

We know that

R �
i # I

Xi &R.(I, X ).

Since

LH1 \R �
i # I

X i+ # TAb,

by Corollary 1.13,

d 0
R.(I, X ) : `

i # I

X i � `
j�i

Xj

is a strict morphism. Therefore, there is a finite family of pairs ( jk , ik)k # K

such that

jk�ik \k # K

and there are neighborhoods of zero Vjk , ik
in Xjk

such that

d0
R.(I, X ) \`

i # I

Xi+& ,
k # K

p&1
jk , ik

(Vjk , ik
)/d 0

R.(I, X )( p&1
i (U )). (*)

Since I is filtering, there is m # I such that

i�m, ik�m, jk�m \k # K.
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Consider n�m and ;n # Xn . If we set

;l={x l, n(;n)
0

if l�n
otherwise

then ;=(;l) l # I # > i # I Xi and for any k # K, we get

pjk , ik
b d 0

R.(I, X )(;)=xjk , ik
b pik

(;)& p jk
(;)=0.

It follows that

d 0
R.(I, X)(;) # ,

k # K

p&1
jk , ik

(Vjk , ik
)

and thanks to the relation (*), there is ;$ # p&1
i (U) such that

d 0
R.(I, X )(;)=d 0

R.(I, X )(;$).

Hence,

;&;$ # ker d 0
R.(I, X ) .

Recall that ker d 0
R.(I, X )=im(=0(I, X)), where =0(I, X ) denotes the canonical

augmentation of the Roos complex. Therefore, there is : # �
i # I

Xi such that

;&;$==0(I, X )(:).

Since i�n, we have

xi, n(;n)& pi (;$)=;i& pi (;$)= pi (;&;$)=( p i b =0(I, X ))(:)=qi (:).

Consequently,

xi, n(;n)= pi (;$)+qi (:)

and since pi (;$) # U, we see that

xi, n(;n) # U+qi \�
i # I

Xi+ .

The conclusion follows easily. K

Theorem 4.4. Let I be a filtering ordered set and let X be an object of
TAbIop

. Then,

LHk \R �
i # I

X i+ # TAb \k�2.
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In particular, the differential d k
R.(I, X ) of the Roos complex of X is strict for

k�1.

Proof. We will decompose the argument in three steps.

(a) First, let us show that for any functor S: Ob(I ) � TAb, the functor

6(S): Iop � TAb

verifies the condition SC. Consider i # I and U a neighborhood of zero in

6(S)(i)= `
l�i

Sl .

If k�i, the morphism

pi, k : 6(S)(k) � 6(S)(i)

is the canonical projection. Moreover, we know that

�
i # I

6(S)(i)& `
i # I

Si

and that

qi : �
i # I

6(S)(i) � 6(S)(i)

is the canonical projection. It follows that

pi, k(6(S)(k))=qi \�
i # I

6(S)(i)+/qi \�
i # I

6(S)(i)++U.

(b) Next, consider an epimorphism f : X � Y of TAbIop
. Let us show

that if X verifies the condition SC, then Y verifies the condition SC. Let i # I
and let V be a neighborhood of zero in Yi . Since f &1

i (V) is a neighborhood
of zero in Xi , there is j�i such that

xi, k(Xk)/qi \�
i # I

Xi++ f &1
i (V) \k� j.

Consider k� j and yk # Yk . Since fk : Xk � Yk is surjective, there is xk # Xk

such that fk(xk)= yk . Then, there are : # �
i # I

Xi and ; # f &1
i (V) such that

xi, k(xk)=q i (:)+;.
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Therefore, we get successively

yi, k( yk)= yi, k( fk(xk))= fi (xi, k(xk))

= fi (qi (:)+;)=qi \\�
i # I

fi+ (:)++ fi (;).

It follows that

yi, k(Yk)/qi \�
i # I

Yi++V.

(c) Finally, let X be an object of TAbIop
. We know that there is a

strict monomorphism

e: X � 6(O(X )).

If (Z, q) is the cokernel of e, the sequence

0 � X w�e 6(O(X )) w�q Z � 0

is strictly exact and we get the long exact sequence

Since 6(O(X )) is �
i # I

-acyclic, we have

LHk \R �
i # I

6(O(X ))(i)+=0 \k�1

and then

LHk \R �
i # I

Zi+&LH k+1 \R �
i # I

Xi+ \k�1.

By (a), 6(O(X )) verifies the condition SC and by (b), Z verifies the condi-
tion SC. Then, by Theorem 4.3,

LH1 \R �
i # I

Zi+ # TAb
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and the preceding isomorphism shows that

LH2 \R �
i # I

X i+ # TAb.

Reasoning by induction, we see easily that

LHk \R �
i # I

X i+ # TAb \k�2.

Finally, since

LHk \R �
i # I

X i+&LH k(R.(I, X)) # TAb \k�2,

Corollary 1.13 shows that d k
R.(I, X ) is strict for k�1. K

Corollary 4.5. Let 8: TAb � Ab be the forgetful functor which
associates to any object X of TAb, the abelian group X. Let I be a filtering
ordered set. If X is an object of TAbIop

, then the following conditions are
equivalent:

(i) �
i # I

X i &R �
i # I

Xi ,

(ii) �
i # I

8(Xi)&R �
i # I

8(Xi) and X satisfies condition SC.

Proof. (i) O (ii). Since �
i # I

Xi &R �
i # I

X i , we have

LHk \R �
i # I

Xi+=0 \k�1.

We know that

R �
i # I

Xi &R.(I, X ).

Hence, the sequence

Rk&1(I, X) � Rk(I, X ) � Rk+1(I, X )

is strictly exact in TAb for k�1. Therefore, this sequence is exact in Ab.
It follows that

Hk \R �
i # I

8(Xi)+=0 \k�1.
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Moreover, the functor �
i # I

: AbI op
� Ab being left exact, we have

H0 \R �
i # I

8(X i)+&�
i # I

8(Xi)

and we obtain

�
i # I

8(Xi)&R �
i # I

8(Xi ).

Finally,

LH1 \R �
i # I

X i+=0 # TAb

and by Theorem 4.3, X verifies the condition SC.

(ii) O (i). By Theorem 4.3 and Theorem 4.4,

LHk \R�
i # I

X i+ # TAb \k�1.

Hence, d k&1
R.(I, X ) is strict. Moreover, since

Hk \R �
i # I

8(Xi)+=0 \k�1,

we have

ker d k
R.(I, X )=im d k&1

R.(I, X )

in Ab. Therefore, the sequence

Rk&1(I, X) � Rk(I, X ) � Rk+1(I, X )

is strictly exact in TAb for k�1 and

LHk \R �
i # I

Xi+=0 (k�1).

Since

LH0 \R �
i # I

X i+&�
i # I

Xi ,
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we obtain

�
i # I

X i &R �
i # I

Xi . K

5. AN ACYCLICITY CONDITION FOR PROJECTIVE
SYSTEMS OF TAb

Lemma 5.1. If A is a countable filtering ordered set, there is a cofinal
functor

:: N � A.

Proof. Since A is countable, there is a surjection b: N � A. Since A is
filtering, we may find :(1) # A such that

:(1)�b(1).

In the same way, we may find :(2) # A such that

:(2)�b(2), :(2)�:(1).

By induction, we construct an increasing sequence (:(k))k # N of A such that

:(k)�b(k) \k # N.

One checks easily that the functor

:: N � A

is cofinal. K

Remark 5.2. Let F be a subset of a metric space E. For any =>0, we
set

[F]==[x # E: d(x, F )<=].

Let us recall that if f : E � F is an uniformly continuous map between
two metric spaces, then for any =>0, there is '>0 such that

f ([A]')/[ f (A)]=

for any subset A of E.
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Proposition 5.3. Let (Xa , xa, b)a # A be a filtering projective system of
non-empty complete metric spaces and assume that A has a countable cofinal
subset. Assume that for b�a,

xa, b : Xb � Xa

is uniformly continuous and that for any a # A and any =>0, there is b�a
such that

xa, b(Xb)/[xa, c(Xc)]= \c�b.

Then, for any a # A and any =>0, there is b�a such that

xa, b(Xb)/_qa \�
a # A

Xa+& =
.

In particular, �
a # A

Xa is not empty.

Proof. We will decompose the proof in two steps.

(i) First, let us show that it is sufficient to prove the result for
A=N.

By the preceding lemma, there is a cofinal functor

:: N � A.

For any k # N, set

Yk=X:(k)

and for k�l, set

yk, l=x:(k), :(l ) .

(a) Let us prove that (Yk , yk, l)k # N satisfies the same conditions as
(Xa , xa, b)a # A . Of course, (Yk , yk, l)k # N is a filtering countable projective
system of complete metric spaces and for k�l,

yk, l=x:(k), :(l ) : X:(l ) � X:(k)

is uniformly continuous. Now, consider k # N and =>0. There is b�:(k)
such that

x:(k), b(Xb)/[x:(k), c(Xc)]= \c�b.
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Since the functor :: N � A is cofinal, there is l # N such that :(l)�b.
Hence, :(l )�:(k) and we have

yk, l (Yl)=x:(k), b b xb, :(l )(X:(l ))/x:(k), b(Xb).

If m�l, then :(m)�:(l )�b and we get

yk, l (Yl)/x:(k), b(Xb)/[x:(k), :(m)(X:(m))]= /[ yk, m(Ym)]= .

(b) Now, let us show that if the result is true for Y, then it is
for X.

Remark that since : is cofinal, we may assume that

�
k # N

Yk= �
a # A

Xa

and that the canonical morphism

q$k : �
k # N

Yk � Yk

is q:(k) .
Consider a # A and =>0. The functor : being cofinal, there is k # N such

that :(k)�a. Since the map

xa, :(k) : X:(k) � Xa

is uniformly continuous, there is '>0 such that

xa, :(k) \_q:(k) \�
a # A

Xa+&'+/_(xa, :(k) b q:(k)) \�
a # A

Xa+&=
.

Thanks to our assumption, there is l�k such that

yk, l (Yl)/_q$k \�
k # N

Yk+&'
.

Hence, :(l )�:(k)�a and we get

xa, :(l)(X:(l))=xa, :(k)( yk, l (Yl ))/_qa \�
a # A

Xa+&=
.
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(ii) Next, let us prove the result for A=N.
Consider n # N and =>0. Set n0=n and choose =0<=�2.

(a) By induction, let us construct a strictly increasing sequence
(nk)k # N of natural numbers and a decreasing sequence (=k)k # N of strictly
positive reals which converges to zero in such a way that

xnk , nk+1
(Xnk+1

)/[xnk , n(Xn)]=k
\n�nk+1

and

d(u, v)�=k O d(xnl , nk
(u), xnl , nk

(v))�2l&k=l \l�k.

We have n0 and =0 . By hypothesis, there is n1>n0 such that

xn0 , n1
(Xn1

)/[xn0 , n(Xn)]=0
\n�n1

and since xn0 , n1
: Xn1

� Xn0
is uniformly continuous, there is =1>0 such that

d(u, v)�=1 O d(xn0 , n1
(u), xn0 , n1

(v))�2&1=0 .

Suppose that we have constructed ni and =i for i�k and let us construct
nk+1 and =k+1 . We know that there is nk+1>nk such that

xnk , nk+1
(Xnk+1

)/[xnk , n(Xn)]=k
\n�nk+1 .

For l<k+1, the map xnl , nk+1
: Xnk+1

� Xnl
being uniformly continuous,

there is 'l>0 such that

d(u, v)�'l O d(xnl , nk+1
(u), xnl , nk+1

(v))�2 l&k&1=l .

If we set =k+1=inf[' l : l<k+1], then

d(u, v)�=k+1 O d(xnl , nk+1
(u), xnl , nk+1

(v))�2 l&k&1=l \l�k+1.

(b) By induction, let us construct two sequences (uk)k # N and
(vk)k # N0

such that

uk=xnk , nk+1
(vk+1)

and

d(uk , xnk , nk+1
(uk+1))<=k .

First, choose

u0 # xn0 , n1
(Xn1

).
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Hence,

u0=xn0 , n1
(v1), v1 # Xn1

.

Next, construct u1 and v2 . By (ii)(a),

xn0 , n1
(Xn1

)/[xn0 , n2
(Xn2

)]=0
.

So, u0 # [xn0 , n2
(Xn2

)]=0
and there is v2 # Xn2

such that

d(u0 , xn0 , n2
(v2))<=0 .

Set u1=xn1 , n2
(v2). Then, we have

d(u0 , xn0 , n1
(u1))=d(u0 , xn0 , n2

(v2))<=0 .

Finally, assume that we have constructed u0 , ..., uk and v1 , ..., vk+1 and
let us construct uk+1 and vk+2 . We know that

uk=xnk , nk+1
(vk+1)

and that

xnk , nk+1
(Xnk+1

)/[xnk , nk+2
(Xnk+2

)]=k
.

Then, there is vk+2 # Xnk+2
such that

d(uk , xnk , nk+2
(vk+2))<=k .

If we set uk+1=xnk+1 , nk+2
(vk+2), then

d(uk , xnk , nk+1
(uk+1))=d(uk , xnk , nk+2

(vk+2))<=k .

(c) Fix l # N. For k�l, set

w l
k=xnl , nk

(uk).

We get

d(w l
k , w l

k+1)=d(xnl , nk
(uk), xnl , nk+1

(uk+1))

=d(xnl , nk
(uk), xnl , nk

(xnk , nk+1
(uk+1))).

By (ii)(b),

d(uk , xnk , nk+1
(uk+1))<=k
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and by (ii)(a),

d(wl
k , w l

k+1)�2l&k=l .

So, for q>p�l, we have

d(w l
p , wl

q)� :
q&1

k= p

d(w l
k , w l

k+1)� :
q&1

k= p

2l&k =l .

Hence, (w l
k)k�l is a Cauchy sequence in Xnl

and since Xnl
is complete, this

sequence converges. Denote wl its limit. We get successively

xnl , nl+1
(wl+1)= lim

k � +�
xnl , nl+1

(w l+1
k )= lim

k � +�
xnl , nk

(uk)=wl.

It follows that (wl) l # N # �
l # N

Xnl
. Since the sequence (nl) l # N is strictly

increasing, the map

l [ nl

is cofinal and

�
l # N

Xnl
[ �

n # N

Xn .

Denote by w$ the image of (wl) l # N by this isomorphism. For any l # N,

wl=qnl
(w$).

Since for q>p�l,

d(wl
p , w l

q)� :
q&1

k= p

2l&k=l ,

we have

d(w0
0 , w0)� :

�

k=0

2&k=0=2=0<=.

Since w0
0=xn0 , n0

(u0)=u0 , we obtain

d(u0 , qn0
(w$))=d(w0

0 , w0)<=.

It follows that

u0 # _qn0 \�
n # N

Xn+&=
.
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Since u0 is an arbitrary element of xn0 , n1
(Xn1

), we have

xn0 , n1
(Xn1

)/_qn0 \�
n # N

Xn+&=
.

Recall that n0=n. Hence, we have found n1�n such that

xn, n1
(Xn1

)/_qn \�
n # N

Xn+&=
. K

Remark 5.4. Recall that a topological abelian group is metrizable if its
topology may be defined by a metric and that the following conditions are
equivalent:

(a) M is metrizable,

(b) there is a countable basis of neighborhoods of zero V such that

,
V # V

V=[0],

(c) there is a map & }&: M � [0, +�[ such that

(1) &&x&=&x&
(2) &x+y&�&x&+& y&,

(3) &x&=0 O x=0,

(4) [B(=)=[x # M: &x&<=]: =>0] is a basis of neighborhoods of
zero.

Note that in case (c), the metric of M can be defined by

d(x, y)=&x& y&.

Conversely, in case (a), the map & }&: M � [0, +�[ can be defined by

&m&=d(m, 0) \m # M.

Of course, a metrizable topological Abelian group is separated.

Lemma 5.5. Let

0 � X w�u Y w�v Z � 0

be an exact sequence of filtering projective systems of topological abelian
groups indexed by A. Assume that A has a countable cofinal subset. Assume
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moreover that for any a # A, Xa is metrizable and complete and that for any
neighborhood of zero V in Xa , there is b�a such that

xa, b(Xb)/V+xa, c(Xc) \c�b.

Then, the sequence

0 � �
a # A

Xa ww�
�
a # A

ua

�
a # A

Ya ww�
�
a # A

va

�
a # A

Za � 0

is exact in Ab.

Proof. Since the functor �
a # A

is left exact, it is sufficient to show that

�
a # A

va : �
a # A

Ya � �
a # A

Za

is surjective.
Consider z=(za)a # A # �

a # A
Za . For any a # A, set

Ma=[ma # Ya : va(ma)=za].

Since va is surjective, Ma {<. Choose m0
a # Ma and let us prove that the

map

fa : Xa � Ma

defined by

fa(xa)=ua(xa)+m0
a , xa # Xa

is bijective. Of course, fa is injective. Consider ma # Ma . Since

va(ma&m0
a)=va(ma)&va(m0

a)=za&za=0

and since im ua=ker va , there is xa # Xa such that

ua(xa)=ma&m0
a .

Therefore, ma= fa(xa) and fa is surjective.
For b�a, we have

va( ya, b(m0
b)&m0

a)=za, b(vb(m0
b))&za=za, b(zb)&za=za&za=0.

So, there is a unique xb
a # Xa such that

ua(xb
a)= ya, b(m0

b)&m0
a .
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For b�a, consider the map

x$a, b : Xb � Xa

defined by

x$a, b(xb)=xa, b(xb)+xb
a , xb # Xb .

The diagram

x$a, b ya, b

Xb ww�
fb Mb

Xa ww�
fa

Ma

is clearly commutative. Therefore, for c�b�a, we have

x$a, b b x$b, c= f &1
a b ya, b b yb, c b fc=x$a, c .

Since xa, b is additive and continuous, xa, b is uniformly continuous. Hence,
x$a, b is also uniformly continuous and we may consider (Xa , x$a, b)a # A as a
filtering projective system of complete metric spaces. We may also assume
that the metric of Xa is associated to a map

& }&a : Xa � [0, +�[

satisfying the conditions in part (c) of Remark 5.4.
Now, consider a # A and =>0. We know that

B(=)=[x # Xa : &x&a<=]

is a neighborhood of zero in Xa . By hypothesis, there is b�a such that

xa, b(Xb)/B(=)+xa, c(Xc) c�b.

Remark that for c�b and for any xc # Xc , we have

x$a, b(x$b, c(xc))=x$a, b(xb, c(xc)+xc
b)

=xa, b(xb, c(xc))+xa, b(xc
b)+xb

a

=xa, c(xc)+xa, b(xc
b)+xb

a

and

x$a, c(xc)=xa, c(xc)+xc
a .
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Since x$a, b b x$b, c=x$a, c , we get

xa, b(xc
b)+xb

a=xc
a .

Then, for c�b, we have successively

x$a, b(Xb)=xa, b(Xb)+xb
a

=xa, b(Xb)+xa, b(xc
b)+xb

a

=xa, b(Xb)+xc
a

/B(=)+xa, c(Xc)+xc
a

/B(=)+x$a, c(Xc).

It follows that

x$a, b(Xb)/[x$a, c(Xc)]= \c�b.

Hence, the projective system

(Xa , x$a, b)a # A

satisfies the conditions of Proposition 5.3. Since for b�a, the diagram

x$a, b ya, b

Xb ww�
fb Mb

Xa ww�
fa

Ma

commutes and since for any a # A, fa is bijective, we may turn

(Ma , ya, b)a # A

into a projective system of complete non-empty metric spaces which
satisfies the same conditions. Therefore,

�
a # A

Ma {<.

Then, there is m=(ma)a # A # �
a # A

Ma and we have

\�
a # A

va+ (m)=(va(ma))a # A=(za)a # A=z. K

Theorem 5.6. Let (Xa , xa, b)a # A be a filtering projective system of
topological abelian groups. Assume that A has a countable cofinal subset and
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that for any a # A, Xa is metrizable and complete. Then, (Xa , xa, b)a # A is
�
a # A

-acyclic if and only if for any a # A and any neighborhood of zero V in

Xa , there is b�a such that

xa, b(Xb)/V+xa, c(Xc) \c�b.

Proof. The condition is sufficient. It is clear that cf(A)�|0 . Hence, by
Theorem 3.10,

LHk \R �
a # A

Xa+=0 k�2.

Moreover, there is a strict monomorphism

e: X � 6(O(X )).

If (Z, q) is the cokernel of e, the sequence

0 � X w�e 6(O(X )) w�q Z � 0

is strictly exact and it gives rise to the long exact sequence

0 � �
a # A

Xa ww�
�
a # A

ea

�
a # A

(6(O(X )))a ww�
�
a # A

qa

�
a # A

Za

� LH1 \R �
a # A

Xa+� 0 (*)

of LH(TAb). Set

f =�
a # A

qa .

By Proposition 5.5, f is surjective. Now, let us show that f is strict.
For b�a, since xa, b is additive and continuous, it is uniformly conti-

nuous. Consider a # A and =>0. By hypothesis, there is b�a such that

xa, b(Xb)/B(=)+xa, c(Xc) \c�b.

It follows that

xa, b(Xb)/[xa, c(Xc)]= \c�b.
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Therefore, by Proposition 5.3, for any a # A and any =>0, there is b�a
such that

xa, b(Xb)/_qa \�
a # A

Xa+& =
.

Consider a # A and V a neighborhood of zero in Xa . There is =>0 such
that V#B(=). By what precedes, there is b�a such that

xa, b(Xb)/_qa \�
a # A

Xa+& =
.

Therefore,

xa, b(Xb)/B(=)+qa \�
a # A

Xa+/V+qa \�
a # A

Xa+
and for c�b,

xa, c(Xc)=xa, b(xb, c(Xc))/xa, b(Xb)/V+qa \�
a # A

Xa+ .

Then, by Theorem 4.3,

LH1 \R �
a # A

Xa+ # TAb.

Let

J: TAb � LH(TAb)

be the canonical functor. We know that the cokernel of J( f ) in LH(TAb)
is given by the complex

0 � coim f w�f $
�
a # A

Za � 0

where �
a # A

Za is in degree 0. Moreover, f $ is monomorphic and

coker f&coker f $.

Hence, we get

coim f&coim f $ and im f& im f $.
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Since the sequence (*) is exact in LH(TAb), we have

coker(J( f ))&LH 1 \R �
a # A

Xa+ .

Therefore, coker J( f ) # TAb. Then, f $ is strict and it follows that so is f.
Finally, since f is a strict epimorphism, we obtain

coker(J( f ))&LH1 \R �
a # A

Xa+&0

and

LHk \R �
a # A

Xa+&0 \k�1.

The condition is necessary. Since (Xa , xa, b)a # A is �
a # A

-acyclic,

LH1 \R �
a # A

Xa+&0 # TAb.

Then, by Theorem 4.3, for any a # A and any neighborhood of zero V in
Xa , there is b�a such that

xa, c(Xc)/V+qa \�
a # A

Xa+ \c�b.

In particular,

xa, b(Xb)/V+qa \�
a # A

Xa+ .

Since, for c�b, xa, c b qc=qa , we have

xa, b(Xb)/V+xa, c \qc \�
a # A

Xa++/V+xa, c(Xc). K

REFERENCES

1. N. Bourbaki, ``Topologie ge� ne� rale,'' (Chap. 1�4), E� le� ments de Mathe� matiques, Diffusion
C. C. L. S., Paris, 1971.

2. V. P. Palamodov, The projective limit functor in the category of linear topological spaces,
Math. USSR Sbornik 4 (1968), 529�559.

176 FABIENNE PROSMANS



3. V. P. Palamodov, Homological methods in the theory of locally convex spaces, Russian
Math. Surv. 26 (1971), 1�64.

4. F. Prosmans, Alge� bre homologique quasi-abe� lienne, Me� moire de DEA, Universite� Paris
13, June 1995. Available on the web at (http:��www-math.math.univ-paris13.fr�prosmans�).

5. F. Prosmans, Derived limits in quasi-Abelian categories, Pre� publication 98-10, Universite�
Paris 13, February 1998. Available on the web at (http:��www-math.math.univ-paris13.fr�
prosmans�).

6. J.-E. Roos, Sur les foncteurs de� rive� s de �: Applications, C. R. Acad. Sci. Paris 252 (1961),
3702�3704.

7. J.-P. Schneiders, Quasi-Abelian categories and sheaves, Pre� publication 98-01, Universite�
Paris 13, January 1998. Available on the web at (http:��www-math.math.univ-paris13.fr�
jps�). To appear in Me� m. Soc. Math. France (N.S.).

177DERIVED PROJECTIVE LIMITS


	0. INTRODUCTION 
	1. QUASI-ABELIAN HOMOLOGICAL ALGEBRA 
	2. THE CATEGORY ... OF TOPOLOGICAL ABELIAN GROUPS 
	3. GENERAL RESULTS ON DERIVED PROJECTIVE LIMITS IN ... 
	4. STRICTNESS PROPERTIES OF DERIVED PROJECTIVE LIMITS IN ... 
	5. AN ACYCLICITY CONDITION FOR PROJECTIVE SYSTEMS OF ... 
	REFERENCES 

