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1. INTRODUCTION

Phyllotaxis is the study of the arrangement of botanical units such as
leaves, scales, and florets around a stem. From the very beginning of the

Ž Ž ..scientific study of this subject in 1830; see 12 the numbers observed in
phyllotaxis were seen to be connected to simple continued fractions. The
reason for this connection, however, was not immediately understood.

Ž .Because of this, one leading botanist see Section 8 rejected it outright as
meaningless playing with numbers, and one well-known mathematician
Ž .see Section 7 was trapped into an erroneous argument leading to a false
conclusion. It was not until 1974 that the real connection between contin-
ued fractions and the numbers significant in phyllotaxis was finally clari-
fied in a few rigorously established theorems about cylindrical point-lattices.
But first it was necessary to clarify the concepts that arise in phyllotaxis.
This is the subject of Section 9. It was also necessary to seek out the
underlying geometric meaning of a simple continued fraction. This is taken
up in Section 12. The rest of this paper traces the history of the connection
between phyllotaxis and continued fractions from the time it was first
observed to the time it was finally understood.

2. BASIC CONCEPTS

Ž .The first detailed studies of phyllotaxis, performed by Schimper 12 and
Ž .Braun 4, 5 , were restricted at first to the arrangement of leaves around a

mature stem and were then extended by Braun to the patterns formed by
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IRVING ADLER228

the scales of a pine cone. These studies introduced several basic concepts:

DEFINITION. In the case where there is at most one leaf at any level on
the stem the leaves may be pictured as points at equal intervals on a helix

Ž .wound around a cylinder Fig. 1 . This helix is called the fundamental or
genetic spiral.

DEFINITION. A series of consecutive leaves forms a cycle if the highest
leaf in the series is the first one to be directly over the lowest leaf.

Schimper and Braun assumed to begin with that such a cycle always
exists.

DEFINITION. The fraction of a turn between consecutive leaves in a
cycle is called the dï ergence, and is designated by d.

When d is rational, as Schimper and Braun assumed it would be, it is
equal to the fraction prq, where p is the number of times the helix winds
around the cylinder between the top and bottom of the cycle, and q is the
number of intervals between consecutive leaves in the cycle.

Schimper and Braun took note of the fact that there are two different
fundamental spirals that can be drawn for the same set of leaves, one
joining them the short way around the stem and one joining them the

FIG. 1. A cycle with five intervals in two turns: divergence s 2r5.
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other way around. If the short way around is chosen, then the divergence is
1F . The divergence, Braun asserted, determines all other properties of a2

leaf arrangement. This assertion turns out to be incorrect. Another num-
ber, the rise, designated by r and defined in Section 9, is also relevant.

3. THE FIBONACCI NUMBERS, THE GOLDEN SECTION,
AND CONTINUED FRACTIONS ENTER THE PICTURE

In their observations of many plants, Schimper and Braun found that in
the most common divergences prq, p and q were terms of the Fibonacci

� 4sequence F defined by the recurrence relation F s F q F andn nq2 n nq1
the initial condition F s F s 1. For the short way around, the typical1 2
divergence has the form F rF . For the long way around, the divergencen nq2

Ž .is F rF . Braun 5 observed that these fractions are related tonq1 nq2
certain continued fractions. The divergences measured the long way around
are the convergents of the continued fraction

1
1

1 q
1 q ???

and the divergences measured the short way around are the convergents of
the continued fraction

1
.1

2 q
1 q ???

In both fractions all terms after the first are equal to 1. The latter fraction
Ž y1 . y2 Žconverges to 1r 2 q t s t , where t is the golden section, 1

' .q 5 r2. They also noted that some divergences that occur less fre-
quently are convergents of the continued fraction in which 2 is replaced by

Ž y1 .t ) 2. Such a fraction converges to 1r t q t . Thus, with these early
observations, continued fractions entered into the study of phyllotaxis. To
explain their intrusion into the subject, Braun said that nature preferred
these particular continued fractions as a source of divergences because
they were the simplest, in that all terms after the first were equal to 1.

His intuition that continued fractions were relevant turned out to be
correct, as we shall see. The fact that all terms after the first are equal to 1
did, indeed, turn out to be significant, but his explanation did not really
explain anything.
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4. CONFUSION IN TERMINOLOGY

By assuming the existence of cycles, where the top leaf is directly above
the lowest leaf, Schimper and Braun assumed that a divergence is always a
rational number, that is, a number that can be expressed as the ratio of
two whole numbers. But they also knew that this assumption was not
always correct, so that the rational numbers they used as divergences could
only be approximations. Moreover, they introduced some confusion by
their use of the terms rational and irrational. Braun used the term rational

1 1to refer to unit fractions such as and , and used the term irrational for2 3

all other fractions. However, in standard mathematical usage, all fractions
are rational numbers, and irrational numbers are those that cannot be
expressed as fractions. Because of this confusion of terminology he may
have thought that he was taking irrational divergences into account.

5. BRAUN’S METHOD FOR CALCULATING d

The fundamental spiral is not always easy to see. In that case Braun said
that the divergence can be calculated by using the orthostichies and
parastichies that can be seen.

DEFINITION. Orthostichies are vertical alignments of the leaves.

DEFINITION. Parastichies are secondary spirals determined by joining
leaves to other leaves that are not necessarily their neighbors on the
genetic spiral.

The denominator q of the divergence prq is the number of orthos-
tichies. To obtain the numerator, p, he noted first that parastichies that
cross each other form parallelograms. Starting with parastichies that have
the least inclination to the horizontal, he drew the diagonals of the
parallelograms that they are part of. These diagonals are part of a set of
steeper parastichies. He next used these to form parallelograms whose
diagonals yield still steeper parastichies. Continuing in this way, a chain of
diagonals is formed the last of which is vertical. The number of diagonals
in this chain yields the desired numerator p. Obviously this method of
calculating the divergence works only if orthostichies are present, and they
are present only if the divergence is rational.

This method is therefore not completely general. The general rule that
connects the parastichies to the divergence was first discovered in 1974
and is described in Section 10. There are usually two sets of parallel
parastichies that catch the eye. One set goes up to the left, and the other
goes up to the right. The numbers of parastichies in these two sets are
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usually consecutive terms of the Fibonacci sequence. This is a second way
in which the Fibonacci sequence enters into the study of phyllotaxis.

6. ADVANCES BY THE BRAVAIS BROTHERS

Ž .The Bravais brothers 6 were familiar with the work of Schimper and
Braun, and referred to them frequently in their paper either by name or as
‘‘the German botanists.’’ They, too, connected the most frequently ob-
served divergences to the Fibonacci sequence and the continued fraction
expansion for ty2 . They argued, however, that the rational numbers cited
by Schimper and Braun were not separate, distinct divergences, but only
approximations to the one real divergence represented by the non-
terminating continued fraction, namely the number ty2 . Since then,
botanists and mathematicians studying phyllotaxis have interpreted this in
two different ways. Some assume that in the initial placement of leaves on
the genetic spiral, they are already separated from each other by a
divergence equal to ty2 . Others, including this author, assume that other
initial divergences are possible, but that there is a process occurring as the
plant grows that causes the divergence to converge toward ty2 as a limit.

The Bravais brothers used some techniques that have proved to be of
lasting value in the further study of this subject. Picturing the plant stem as
a cylinder and the leaves as points located at equal intervals on a helix, as
did Schimper and Braun, they then introduced the plane development of
the cylinder. This converts the genetic spiral and all parastichies into
straight lines, and thus simplifies considerably the mathematics needed to
describe the properties of the point-lattice. They numbered the leaves on
the genetic spiral in the order of their appearance, making it possible to
express phyllotactic relationships numerically. They also proved that if
‘‘the most easily seen’’ parastichies consist of m parallel spirals in one
direction and n spirals in the opposite direction, then there is a single
genetic spiral if and only if m and n are relatively prime. A refinement of
the idea of what is ‘‘most easily seen’’ turns out to be necessary, and is
taken up in Section 9.

7. A FALLACIOUS ARGUMENT BY TAIT

Ž .Tait 13 , having seen the Bravais paper, decided that its elaborate
arguments and calculations were superfluous. He offered what he consid-
ered to be a simple and complete solution to the puzzle of why the
Fibonacci sequence seems to play a special role in phyllotaxis. If m
parastichies are seen to go up to the left, and n parastichies go up to the



IRVING ADLER232

right, with m ) n and m and n relatively prime, then there may also be
seen a set of m y n less steep parastichies going up to the left, also
crossed by the n parastichies going up to the right. Continuing the process
of subtracting the smaller number from the larger, one ultimately arrives
at a single parastichy in one direction with some number t parastichies in

Žthe other direction. This follows from the fact that m and n are relatively
.prime. The single parastichy is the genetic spiral, and a single turn of it

contains t but not t q 1 leaves. In the most common case, t s 2, and the
1 1divergence is necessarily ) and F . This will occur, for example, if3 2

you start with two consecutive Fibonacci numbers, say 8 and 13. The pairs
obtained by the subtraction process that he proposes would be 8 and 5;
then 3 and 5; then 3 and 2; and finally 1 and 2. He then imagines his
subtraction procedure reversed, and concludes that whenever the diver-

1 1gence is between and the values of m and n for the most conspicuous3 2

spirals must be consecutive terms of the Fibonacci sequence. The fallacy of
Ž .his argument is exposed in Section 10. Thompson 14 , assuming that Tait’s

argument was valid, concluded that ‘‘the determination of the precise
angle of divergence of two consecutive leaves of the generating spiral does
not enter into the above general investigation . . . ; and the very fact that it
does not so enter shows it to be essentially unimportant.’’ This conclusion
is the direct opposite of the statement by Braun cited at the end of Section
2. In Section 10, where we will state precisely how parastichy numbers are
related to the divergence, we shall see that Thompson’s conclusion is
wrong.

8. SACHS REJECTS CONTINUED FRACTIONS
AS NOT RELEVANT

Ž .Sachs 11 , in his Text Book of Botany, pointed out that the continued
Ž y1 .fraction for 1r 2 q t does not suffice to represent all divergences that

are found in plants. Some are represented by the continued fraction for
Ž y1 .1r t q t , with t ) 2. For this reason he concluded that ‘‘it seems to me

absolutely impossible to imagine what value the method can have for a
deeper insight into the laws of phyllotaxis.’’ His reasoning here is faulty.
He was ignoring the experience of physicists that in determining the laws
governing a phenomenon two things are needed: a general rule, expressed
in physics as a differential equation, and boundary conditions. In phyl-

Ž y1 .lotaxis the continued fraction for 1r t q t might well express a general
rule, while the different values of t are the result of different boundary

Ž .conditions. See Sections 10]12.
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9. SOME NECESSARY DISTINCTIONS

The first step toward determining the exact role of continued fractions
in phyllotaxis is discovering the precise connection between parastichy
numbers and the divergence. But before this can be done it is necessary to
introduce some distinctions among parastichies. For this purpose we begin
with a cylindrical point-lattice with a single fundamental spiral going up to
the right, numbering the lattice-points on this spiral 0, 1, 2, 3, . . . . Experi-
ence shows that the phenomena of phyllotaxis are independent of scale. To
eliminate scale as a factor, we normalize the cylinder by taking the girth of
the cylinder as unit of length. Let 0L be the element of the cylinder
through leaf 0. Unroll the cylinder on a plane. Then the entire cylindrical
lattice lies in a strip between two parallel lines, 0L and a copy of it, 0 L .1 1
By repeating this strip over and over again to the left and right and
extending the genetic spiral downward, we convert the cylindrical point-

Ž .lattice into a point-lattice in the plane Fig. 2 . Note that it contains many
copies of 0, designated respectively as 0 , 0 , 0 , etc. In this picture, the1 2 3
divergence, d, of the genetic spiral is the horizontal component of the
distance between two consecutive leaves on it.

DEFINITION. The vertical component of the distance between two con-
secutive leaves on the genetic spiral on a normalized cylinder is called the
rise and is designated by r.
ŽFor a leaf distribution on a cylinder that is not normalized, the rise is

.the ratio of the internode distance to the girth of the cylinder.

1Let n be a leaf to the right of 0L whose distance from 0L is F and2

for which there is no leaf between 0 and n on the line that joins them. This
line is a right parastichy; that is, it goes up to the right. It contains all
those leaves and only those whose leaf numbers are multiples of n.
Parallel to it are other parastichies, each containing the leaves belonging
to a residue class modulo n. Thus the leaf n determines a set of n right
parastichies. Similarly, a leaf m to the left of 0 L whose distance from1 1

10 L is F and for which there is no leaf between 0 and m on the line1 1 12

that joins them determines a set of m left parastichies.

DEFINITION. The m left parastichies and n right parastichies constitute
Ž .an opposed parastichy pair and are designated by the ordered pair m, n .

The m left parastichies cross the n right parastichies but, in general,
there need not be a leaf at each of the intersections.

DEFINITION. In the special case where there is a leaf at every intersec-
tion of an opposed parastichy pair, we call it a ¨isible opposed parastichy
pair.
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FIG. 2. Plane development of a normalized cylindrical point-lattice.

These are the pairs that are relevant to our investigation. That they play
Ž .a special role had already been recognized by Van Iterson 15 who called

them ‘‘konjugierte spiralen.’’
We have one more definition to introduce:

DEFINITION. If m and n are the leaves nearest to leaf 0 on the left and
Ž .right, respectively, we call the opposed parastichy pair m, n conspicuous.

It is easily proved that a conspicuous opposed parastichy pair is a visible
opposed parastichy pair. When botanists say that a leaf distribution has
Ž . Ž .m, n phyllotaxis, they mean that m, n is a conspicuous opposed paras-
tichy pair.
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10. THE OPPOSED PARASTICHY TRIANGLE

Ž .We associate with any given opposed parastichy pair m, n a triangle
constructed as follows: Extend the right parastichy determined by 0 and n
to the lattice point mn. Then, from mn, draw downward the left parastichy
determined by 0m that passes through it. This left parastichy will pass
through some image 0 of 0.i

DEFINITION. We call the triangle whose vertices are 0, 0 , and mn thei
Ž .opposed parastichy triangle belonging to m, n .

The length of its base, 00 is i. The following proposition is easilyi
proved:

PROPOSITION 1. An opposed parastichy pair is a ¨isible opposed paras-
tichy pair if and only if the base of its opposed parastichy triangle has length 1.

We now introduce the concept of contraction that was used by Tait
without defining it precisely.

Ž .DEFINITION. If m, n is a visible opposed parastichy pair with m ) n,
Ž . Ž .then m y n, n is its contraction. If n ) m, then m, n y m is its contrac-

tion.

Then, using Proposition 1 and the elementary properties of a plane
point-lattice, we can prove:

PROPOSITION 2. The contraction of a ¨isible opposed parastichy pair is a
¨isible opposed parastichy pair.

Ž .FIG. 3. The opposed parastichy triangle belonging to m, n .



IRVING ADLER236

Tait sought to use the reverse of a contraction without realizing that a
contraction can be reversed in two different ways, as shown in the
following definition.

Ž . ŽDEFINITION. If m, n is a visible opposed parastichy pair, then m q
. Ž .n, n is called its left extension, and m, m q n is called its right extension.

Ž .The following three propositions proved in Adler 1 , taken together,
constitute what has been called the Fundamental Theorem of Phyllo-

Ž .taxis 8 .

Ž .PROPOSITION 3. If m, n is a ¨isible opposed parastichy pair, then there
Ž .is a unique integer t such that m, n is the end result of a finite sequence of

Ž .extensions starting with the ¨isible opposed parastichy pair t, t q 1 .

Ž .PROPOSITION 4. t, t q 1 is a ¨isible opposed parastichy pair if and only if
Ž .1r t q 1 F d F 1rt, where d is the dï ergence.

w xPROPOSITION 5. Suppose that xry, ur¨ is the range of all possible
Ž .¨alues of d for which the opposed parastichy pair ¨ , y is ¨isible. Assume that

xry and ur¨ are in lowest terms. Let m be the mediant between xry and ur¨ ,
Ž . Ž . Ž .namely m s x q u r y q ¨ . Then the left extension of ¨ , y is a ¨isible

w xopposed parastichy pair if and only if d is in the segment xry, m , and the
Ž .right extension of ¨ , y is a ¨isible opposed parastichy pair if and only if d is

w xin the segment m, ur¨ .

11. AN ALGORITHM FOR CALCULATING
THE RANGE OF d

Propositions 3, 4, and 5 provide an algorithm for determining the range
of possible values of the divergence for any given visible opposed paras-

Ž . Ž .tichy pair m, n : Starting with m, n form successive contractions until
Ž .you reach one of the form t, t q 1 . Write these now in reverse order to

Ž .obtain a sequence of extensions starting from t, t q 1 . Write next to each
extension L or R, to indicate whether it is a left or right extension of the
pair that precedes it. Then use Proposition 5 to obtain the corresponding
range of values of d. In the example below we use the algorithm to
determine the range of possible values of d for the visible opposed
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Ž .parastichy pair 34, 21 :

Contractions Extensions Range of d

Ž . Ž . w x34, 21 2, 3 1r3, 1r2
Ž . Ž . w x13, 21 L 5, 3 1r3, 2r5
Ž . Ž . w x13, 8 R 5, 8 3r8, 2r5
Ž . Ž . w x5, 8 L 13, 8 3r8, 5r13
Ž . Ž . w x5, 3 R 13, 21 8r21, 5r13
Ž . Ž . w x2, 3 L 34, 21 8r21, 13r34

Note that, contrary to Tait’s assertion, each extension narrows the range of
possible values of d.

12. THE GEOMETRIC MEANING OF A SIMPLE
CONTINUED FRACTION

In Section 11 we saw how to determine the range of possible values of d
for any given opposed parastichy pair that is visible. In order to proceed in
the opposite direction, that is, to find which opposed parastichy pairs are
visible for any given d, it is first necessary to understand the geometric
meaning of the continued fraction for d. It is customary to introduce
simple continued fractions either via the Euclidean algorithm or via Farey
sequences. The geometric meaning of a simple continued fraction is
implicit in the Farey sequence approach. It was made explicit for the first

Ž .time by Adler 2 , where it was shown that a simple continued fraction
represents a mediant nest of intervals.

To construct the mediant nest that defines a particular number n, we
proceed as follows: On the positive half of the real line designate 0 as 0r1,
and designate infinity as 1r0. Insert the mediant between these two,

w xnamely 1r1. It divides the half-line into two segments, namely 0r1, 1r1
w xon the left, and 1r1, 1r0 on the right. If n is in the left segment, write 0

as the first bit in a sequence of bits that will represent the nest of intervals
that we are constructing to represent n. If n is in the right segment, write
1 as the first bit. Now, in the segment that contains n insert the mediant
between its ends, thus dividing it into two segments, and write down as the
second bit 0 or 1, according as n is in the left or right segment. Continue
in this way, each time inserting the mediant between the ends of the
segment that contains n, and writing 0 or 1 as the next bit in the sequence,
according as n is in the left piece or the right piece of the segment just
divided.

It is easily seen that the nested set of smaller and smaller intervals
containing n is a genuine nest of intervals, and that n is the only number
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in the nest. The sequence of bits we have used to represent the nest
Žtherefore also represents the number n. If n is irrational, there will be

only one such non-terminating sequence. If n is rational, there will be two.
One of the two contains only a finite number of 1’s and continues after the
last 1 with all 0’s. The other contains only a finite number of 0’s and

.continues after the last 0 with all 1’s. The sequence of bits may be seen as
a sequence of clusters of 0’s and 1’s, as shown in the example below:

11111 00 111 0000 1111 00 . . .^̀ _̂ _̀^̀ _^̀ _^̀ _^̀ _
a a a a a a . . . .0 1 2 3 4 5

Let a be the number of 1’s in the first cluster. a G 0. Let a be the0 0 1
number of 0’s in the second cluster, a the number of 1’s in the third2
cluster, etc. In general, a stands for a number of 1’s if i is even, and for ai
number of 0’s if i is odd. For i ) 0 a G 1. Then a q 1ra q 1ra qi 0 1 2

Ž1ra q 1ra q . . . , where everything that follows a division sign is under-3 4
.stood to be under it , is the simple continued fraction for n. If the

sequence a is terminating, its last term will be infinity. Leaving out thei
last term will give the continued fraction as it is usually written. However,
the infinity should be retained for our purposes.

13. ONE ROLE OF THE CONTINUED FRACTION FOR d

Now let us assume that n s d, the divergence of a leaf distribution,
1which by definition is F . Then a s 0. If a s t G 1, the first 0 in that0 12

1cluster tells us that d F 1, the second 0 tells us that d F , the third one2
1tells us that d F , . . . , and the last 0 in the cluster tells us that d F 1rt.3

Ž . Ž .The first 1 that a stands for tells us that d G 1r t q 1 , so that 1r t q 12
F d F 1rt. Then, from Proposition 4 in Section 10, the opposed parastichy

Ž . Ž . Žpair t, t q 1 is visible. By Proposition 2, all of its contractions, t, 1 , t y
. Ž . Ž .1, 1 , t y 2, 1 . . . 1, 1 are also visible. Now by Proposition 5, by starting
Ž .with t, t q 1 , we get further visible opposed parastichy pairs by taking

first a y 1 consecutive right extensions, then a left extensions, then a2 3 4
right extensions, etc., each set of a extensions for i ) 2 being left or righti
according as i is odd or even. Thus we see that the continued fraction
expansion for the dï ergence d determines which opposed parastichy pairs are
¨isible. What we have outlined here is not restricted to divergences that
actually occur in plants. It is a theorem of pure mathematics that applies
to any cylindrical point-lattice generated by points placed at equal intervals
on a single genetic spiral.
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From the general algorithm developed here, others applicable to special
Ž .cases have been derived 9 .

14. TWO EXAMPLES

To illustrate what was developed in Section 13, we give two examples,
one of a divergence that does not occur on any plants, and one that does

'occur on some. The divergence d s 3 r4 does not occur on any plant, but
can be used nevertheless on a single genetic spiral to generate a point-
lattice on a cylinder. The simple continued fraction for this number is

0 q 1r2 q 1r3 q 1r4

where the bar indicates that the pair of terms 1r3 q 1r4 is repeated over
and over again ad infinitum. Then, according to Section 13, the visible
opposed parastichy pairs associated with this value of the divergence are
Ž . Ž . Ž .2, 3 , and the consecutive contractions 2, 1 and 1, 1 ; then, starting from
Ž . Ž . Ž .2, 3 , two right extensions, namely, 2, 5 and 2, 7 ; then four left exten-

Ž . Ž . Ž . Ž .sions, namely, 9, 7 , 16, 7 , 23, 7 and 30, 7 ; then three right extensions
Ž . Ž . Ž . Ž . Ž .30, 37 , 30, 67 and 30, 97 ; then four left extensions 127, 97 , 224, 97 ,
Ž . Ž .321, 97 and 418, 97 ; etc., with three right extensions from here on
alternating with four left extensions.

Ž y1 .The divergence d s 1r 3 q t does occur on some plants. The simple
continued fraction for this number is

0 q 1r3 q 1r1 q 1r1.

The visible opposed parastichy pairs associated with this value of the
Ž . Ž . Ž .divergence are 3, 4 and the consecutive contractions 3, 1 , 2, 1 , and

Ž . Ž .1, 1 ; then, starting from 3, 4 , the extensions that are visible are alter-
Ž . Ž . Ž . Ž .nately left and right, namely, 7, 4 , 7, 11 , 18, 11 , 18, 29 , etc.

15. A SECOND ROLE OF THE CONTINUED
FRACTION FOR d

The opposed parastichy pair on a plant that catches the eye is the
conspicuous opposed parastichy pair, defined in Section 9. It is determined
by the two leaves that are nearest to leaf 0, one on the right and one on
the left. When we try to identify which leaves are capable of qualifying as
the leaves nearest leaf 0, we find another way in which the continued
fraction for the divergence enters into the picture.
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DEFINITION. There is a sequence of points n s 1, n , n , . . . n , . . .1 2 3 i
with the property that each n with i ) 1 is the first lattice pointi

Ž .with n ) n that is closer to the line 0L than n Fig. 4 . These werei iy1 iy1
Ž .called ‘‘principal neighbors’’ by Coxeter 7 and ‘‘points of close return’’ by

Ž .Adler 1 .

The vertical component of the distance between leaf n and leaf 0 is rn ,i i
where r is the rise. Since the horizontal component is smaller for this leaf
than for any point of close return that precedes it in the sequence, it may
become the leaf nearest leaf 0 if r is small enough. Thus d alone does not
determine all the properties of a leaf arrangement, contrary to the state-
ment by Braun cited in Section 2. The value of the rise r determines which
of the n are the two leaves nearest leaf 0, and hence determines thei

FIG. 4. Points of close return.
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Ž .conspicuous opposed parastichy pair. Coxeter 7 showed that the n arei
the denominators of the successive principal convergents of the expansion
of d as a simple continued fraction.

16. A CAUSAL EXPLANATION

Nearly all observed divergences for a leaf distribution on a single genetic
Ž y1 .spiral have the form 1r t q t . The continued fraction expansions for

all these divergences have the common property that all their terms after
the first are equal to 1. The Adler model of phyllotaxis provides a causal
explanation of this fact. In the Adler model it is assumed that there is a
period in the growth of a stem in which the rise is decreasing and the
minimum distance between leaves is maximized. Under these conditions, it
can be shown that the two leaves nearest leaf 0 must be equidistant from
it, so that they lie on a circle with 0 as center. As r decreases, the next
higher point of close return will join them so that there will be three points

Ž .of close return on a circle with 0 as center Fig. 5 , and then with a further
decrease of r it will displace one of them as leaf nearest 0. The three
consecutive points of close return that are on the circle in Fig. 5 are the
denominators of consecutive principal convergents of d, say, q , q , andny1 n
q , and so are connected by the recurrence relation q s q qnq1 nq1 ny1
a q , where a is the term of the continued fraction for d thatnq1 n nq1
corresponds to the principal convergent p rq . If a ) 1 there arenq1 nq1 nq1
leaves with leaf numbers greater than q that are intermediate neighborsn

Ž .on the segment that joins q and q 7 , and that are not closer to 0Lny1 nq1
than q . But this is impossible if q , q and q are all equidistantn ny1 n nq1
from leaf 0. Hence under the assumption of maximization of the minimum
distance between leaves, it is necessary that a s 1. As r continues tonq1
decrease, one term after another of the continued fraction for d is
compelled to be equal to 1. While d is under this compulsion it alternately

Ž .increases and decreases. The details of this process 1, 2 are not relevant
to the purpose of this article and so are not given here.

17. PROPOSED FUNCTIONAL EXPLANATIONS

Why does nature have a preference for divergences in which the terms
after the first in the continued fraction for d are all equal to 1? It has been
proposed that the process that imposes this property on the values of d
has been perfected by natural selection because it has survival value for
the plant. However, there has been no consensus among botanists on what
trait produced by this process has the postulated survival value. Two
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FIG. 5. Three consecutive points of close return that are equidistant from 0.

different theories have been proposed invoking different properties alleged
to follow from these values of d. One theory is that these values of d
distribute the leaves around a mature stem in such a way as to minimize
the shading of lower leaves by those above them, thus maximizing the

Ž .amount of light they receive. Wiesner 16 claimed to have proved this
theory experimentally. However, his experiment merely proved what was
known in the first place, that upper leaves partially shade the lower leaves.
His data did not show that the so-called ‘‘golden angles’’ shade them the

Ž .least. Leigh 10 undertook a theoretical proof that this was so, but his
argument was not conclusive in that it failed to take into account the
influence of the internode distance. The other theory is that the advantage
the golden angles give the plant is found at the growing tip of the stem,
where the leaf embryos are crowded together, and not on the mature stem,
where the leaves are widely separated and the internode distance is

Ž .elongated. Airy 3 proposed this theory and demonstrated that close
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packing of equal spheres around a cylinder does indeed cause the numbers
of conspicuous opposed parastichies to be consecutive Fibonacci numbers.
In support of his theory he argued that ‘‘In the bud we see at once what
must be the use of leaf order. It is for economy of space, whereby the bud
is enabled to retire into itself and present the least surface to outward
danger and vicissitudes of temperature.’’

18. SUMMARY

We have identified three ways in which the continued fraction for the
Ž .divergence plays a role in phyllotaxis: 1 It determines which opposed

Ž .parastichy pairs are visible. 2 The points of close return are the denomi-
Ž .nators of the principal convergents of the continued fraction. 3 When

maximization of the minimum distance between leaves is in effect as r
decreases, successive terms of the continued fraction are compelled to be
equal to 1. It has been proposed in two different theories that this property
of the divergence has survival value for a plant, but the arguments in
support of these theories are not conclusive.
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