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endomorphisms of F(X). A T-subspace V in F(X) is limit if every
larger T-subspace W ; V is finitely generated (as a T-subspace)

I]Vggl'o but V itself is not. Recently Branddo Jr., Koshlukov, Krasilnikov and
16R40 Silva have proved that over an infinite field F of characteristic
16R50 p > 2 the T-subspace C(G) of the central polynomials of the

infinite dimensional Grassmann algebra G is a limit T-subspace.
Keywords: They conjectured that this limit T-subspace in F(X) is unique, that
Polynomial identities is, there are no limit T-subspaces in F(X) other than C(G). In the
Central polynomials present article we prove that this is not the case. We construct
Grassmann algebra infinitely many limit T-subspaces Ry (k > 1) in the algebra F(X)
T-subspace

over an infinite field F of characteristic p > 2. For each k > 1,
the limit T-subspace Ry arises from the central polynomials in 2k
variables of the Grassmann algebra G.
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1. Introduction

Let F be a field, X a non-empty set and let F(X) be the free unitary associative algebra over F on
the set X. Recall that a T-ideal of F(X) is an ideal closed under all endomorphisms of F(X). Similarly,
a T-subspace (or a T-space) is a vector subspace in F(X) closed under all endomorphisms of F(X).

Let I be a T-ideal in F(X). A subset S C I generates I as a T-ideal if I is the minimal T-ideal in
F(X) containing S. A T-subspace of F(X) generated by S (as a T-subspace) is defined in a similar
way. It is clear that the T-ideal (T-subspace) generated by S is the ideal (vector subspace) generated
by all the polynomials f(g1,...,8&mn), where f = f(x1,...,xn) €S and g; € F(X) for all i.
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Note that if I is a T-ideal in F(X) then T-ideals and T-subspaces can be defined in the quotient
algebra F(X)/I in a natural way. We refer to [9,10,12,18,20,25] for the terminology and basic results
concerning T-ideals and algebras with polynomial identities and to [4,8,16-18] for an account of the
results concerning T-subspaces.

From now on we write X for {x1,x2,...} and X; for {x1,...,%,}, Xn C X. If F is a field of charac-
teristic O then every T-ideal in F(X) is finitely generated (as a T-ideal); this is a celebrated result of
Kemer [19,20] that solves the Specht problem. Moreover, over such a field F each T-subspace in F(X)
is finitely generated; this has been proved more recently by Shchigolev [28]. Very recently Belov [7]
has proved that, for each Noetherian commutative and associative unitary ring K and each n e N,
each T-ideal in K(Xp) is finitely generated.

On the other hand, over a field F of characteristic p > 0 there are T-ideals in F(X) that are not
finitely generated. This has been proved by Belov [5], Grishin [13] and Shchigolev [26] (see also [6,
14,18]). The construction of such T-ideals uses the non-finitely generated T-subspaces in F({X) con-
structed by Grishin [13] for p =2 and by Shchigolev [27] for p > 2 (see also [14]). Shchigolev [27]
also constructed non-finitely generated T-subspaces in F{X,), where n > 1 and F is a field of charac-
teristic p > 2.

A T-subspace V* in F(X) is called limit if every larger T-subspace W 2 V* is finitely generated
as a T-subspace but V* itself is not. A limit T-ideal is defined in a similar way. It follows easily from
Zorn’s lemma that if a T-subspace V is not finitely generated then it is contained in some limit
T-subspace V*. Similarly, each non-finitely generated T-ideal is contained in a limit T-ideal. In this
sense limit T-subspaces (T-ideals) form a “border” between those T-subspaces (T-ideals) which are
finitely generated and those which are not.

By [5,13,26], over a field F of characteristic p > 0 the algebra F(X) contains non-finitely generated
T-ideals; therefore, it contains at least one limit T-ideal. No example of a limit T-ideal is known
so far. Even the cardinality of the set of limit T-ideals in F(X) is unknown; it is possible that, for
a given field F of characteristic p > 0, there is only one limit T-ideal. The non-finitely generated
T-ideals constructed in [1] come closer to being limit than any other known non-finitely generated
T-ideal. However, it is unlikely that these T-ideals are limit.

About limit T-subspaces in F(X) we know more than about limit T-ideals. Recently Brandio Jr.,
Koshlukov, Krasilnikov and Silva [8] have found the first example of a limit T-subspace in F{X) over
an infinite field F of characteristic p > 2. To state their result precisely we need some definitions.

For an associative algebra A, let Z(A) denote the centre of A,

Z(A)={ze A|za=azforallae A}

A polynomial f(xq,...,xp) is a central polynomial for A if f(ai,...,ay) € Z(A) for all ay,...,a, € A.
For a given algebra A, its central polynomials form a T-subspace C(A) in F(X). However, not every
T-subspace can be obtained as the T-subspace of the central polynomials of some algebra.

Let V be the vector space over a field F of characteristic # 2, with a countable infinite basis
e1,e,... and let Vg denote the subspace of V spanned by eq,...,es (s=2,3,...). Let G and G;
denote the unitary Grassmann algebras of V and Vg, respectively. Then as a vector space G has a
basis that consists of 1 and of all monomials e; e;, ---e;,, i1 <iz <--- <, k> 1. The multiplication
in G is induced by eje; = —eje; for all i and j. The algebra Gs is the subalgebra of G generated
by e1,...,es, and dimGs = 25. We refer to G and Gs (s =2,3,...) as to the infinite dimensional
Grassmann algebra and the finite dimensional Grassmann algebras, respectively.

The result of [8] concerning a limit T-subspace is as follows:

Theorem 1. (See [8].) Let F be an infinite field of characteristic p > 2 and let G be the infinite dimensional
Grassmann algebra over F. Then the vector space C(G) of the central polynomials of the algebra G is a limit
T-space in F(X).

It was conjectured in [8] that a limit T-subspace in F{X) is unique, that is, C(G) is the only limit
T-subspace in F(X). In the present article we show that this is not the case. Our first main result is
as follows.
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Theorem 2. Over an infinite field F of characteristic p > 2 the algebra F (X) contains infinitely many limit
T-subspaces.

Let F be an infinite field of characteristic p > 0. In order to prove Theorem 2 and to find infinitely
many limit T-subspaces in F(X) we first find limit T-subspaces in F(X;) for n =2k, k > 1. Let C;; =
C(G) N F(X;) be the set of the central polynomials in at most n variables of the unitary Grassmann
algebra G. Our second main result is as follows.

Theorem 3. Let F be an infinite field of characteristic p > 2. If n = 2k, k > 1, then Cy, is a limit T-subspace
in F(Xy). Ifn=2k+ 1, k > 1, then Cy, is finitely generated as a T-subspace in F (Xy).

Remark. We do not know whether the T-subspace Cs3 is finitely generated.

Define [a,b] =ab — ba, [a,b, c] = [[a, b, c]. For k > 1, let T®-® denote the T-ideal in F(X) gen-
erated by [x1,X2,x3] and [x1,x2][X3,X4]---[X2k_1,X2x] and let R, denote the T-subspace in F(X)
generated by Cy, and TG*+D. Theorem 2 follows immediately from our third main result that is

as follows.

Theorem 4. Let F be an infinite field of characteristic p > 2. For each k > 1, Ry, is a limit T-subspace in F{X).
Ifk # 1 then Ry # R;.

Now we modify the conjecture made in [8].
Problem 1. Let F be an infinite field of characteristic p > 2. Is each limit T-subspace in F(X) equal
to either C(G) or Ry for some k? In other words, are C(G) and Ry (k > 1) the only limit T-subspaces
in F(X)?

In the proof of Theorems 3 and 4 we will use the following theorem that has been proved inde-

pendently by Bekh-Ochir and Rankin [4], by Branddo Jr., Koshlukov, Krasilnikov and Silva [8] and by
Grishin [15]. Let

-1 _
qx1, %) =X 087 @, Xo) = (X1, X2) -+ G (Kot Xok)-

Theorem 5. (See [4,8,15].) Over an infinite field F of a characteristic p > 2 the vector space C(G) of the central
polynomials of G is generated (as a T-space in F{X)) by the polynomial

X1[X2, X3, X4]

and the polynomials

p P p p
X1, X1q1(X2, X3), X1 q2(X2, X3, X4, X5), ..., X1 qn(X2, - - -, X2n4+1), - - -«
In order to prove Theorems 3 and 4 we need some auxiliary results. Define, for each [ > 0,

11 -4
qVx1,x0) =28 " xg, xxh
1
QI(c)(XL e x) =4V (1, %2) P G, xa00).

Recall that C; = C(G) N F(X;). To prove Theorem 3 we need the following assertions that are also of
independent interest.
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Proposition 6. If n = 2k, k > 1, then C, is generated as a T-subspace in F(X,) by the polynomials

p ,p p
X1[X2, X3, X4], X7, X141 (X2, X3), - . ., X{ Q1 (X2, - - ., X2k—1)

together with the polynomials

0P, x [1=1,2,.00),

Ifn=2k + 1, k > 1, then Cy, is generated as a T-subspace in F{Xy) by the polynomials

p P p
x1[x2, X3, 4], X7, X1q1 (X2, X3), ..., X1 qk (X2, . . ., X2k41)-

Let T® denote the T-ideal in F(X) generated by [x1, x2, x3]. Define T\ = T® NF(X,). We deduce
Proposition 6 from the following.

Proposition 7. If n = 2k, k > 1, then Cn/T,§3) is generated as a T-subspace in F(Xn)/T,§3) by the polyno-
mials

3 3 3
X+ T xPqix, x3) + T, X1 (ks X)) + TS (1)

together with the polynomials
! 3
{0 Gavoxa) + T [1=1,2,..0), )
Ifn=2k+1, k> 1, then the T-subspace Cn/T,?) in F(Xn)/T,(,3) is generated by the polynomials

3 3 3
X) + T, ),XfQ1(Xz,X3) + Ty )n--,Xka(Xz,---,X2k+1) +T. (3)

Remarks. 1. For each k > 1, the limit T-subspace Ry does not coincide with the T-subspace C(A) of
all central polynomials of any algebra A.

Indeed, suppose that Ry = C(A) for some A. Let T(A) be the T-ideal of all polynomial identities
of A. Then, for each f € C(A) and each g € F(X), we have [f, g] € T(A). Since [x1, x2] € Ry = C(A),
we have [x1, X2, x3] € T(A). It follows that T® C T(A).

It is well known that if a T-ideal T in the free unitary algebra F(X) over an infinite field F con-
tains T® then either T=T® or T = T3 for some n (see, for instance, [11, Proof of Corollary 7]).
Hence, either T(A) =T® or T(A) = T3 for some n. Note that T® = T(G) and T®™ = T(Gan_1)
(see, for example, [11]) so we have either T(A) = T(G) or T(A) = T(Gap—1) for some n.

For an associative algebra B, we have f(xq,...,%) € C(B) if and only if [f(x1,...,%:), Xr+1] € T(B).
It follows that if By, B, are algebras such that T(B1) = T(B;) then C(B1) = C(B3). In particular, if
T(A) =T(G) then C(A) = C(G), and if T(A) = T(G2y—1) then C(A) = C(Gap—1).

However,

X1[x2, x3]- - [Xok42, Xok+3] € Rp \ C(G)

S0 Ry # C(G). Furthermore, the T-subspaces C(Gs) of the central polynomials of the finite di-
mensional Grassmann algebras Gs (s = 2,3,...) have been described recently by Bekh-Ochir and
Rankin [3] and by Koshlukov, Krasilnikov and Silva [21]; these T-subspaces are finitely generated
and do not coincide with Ry. This contradiction proves that Ry # C(A) for any algebra A, as claimed.

2. For an associative unitary algebra A, let C,(A) and T,(A) denote the set of the central poly-
nomials and the set of the polynomial identities in n variables x1,...,x, of A, respectively; that is,
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Ch(A)=C(A)NF(Xy) and T (A) =T(A) N F(Xy,). Then Ch(A) is a T-subspace and T,(A) is a T-ideal
in F(Xy).

Note that, by Belov’s result [7], the T-ideal T,(A) is finitely generated for each algebra A over a
Noetherian ring and each positive integer n. On the other hand, there exist unitary algebras A over an
infinite field F of characteristic p > 2 such that, for some n > 1, the T-subspace C,(A) of the central
polynomials of A in n variables is not finitely generated. Moreover, such an algebra A can be finite
dimensional. Indeed, take A = G, where s >n. It can be checked that C(Gs) N F(X;,) = C, if s >n. By
Proposition 9, the T-subspace Co,(Gs) in F(Xo) is not finitely generated provided that s > 2k.

However, the following problem remains open.

Problem 2. Does there exist a finite dimensional algebra A over an infinite field F of characteristic
p > 0 such that the T-subspace C(A) of all central polynomials of A in F(X) is not finitely generated?

Note that a similar problem for the T-ideal T(A) of all polynomial identities of a finite dimensional
algebra A over an infinite field F of characteristic p > 0 remains open as well; it is one of the most
interesting and long-standing open problems in the area.

2. Preliminaries

Let (S)TS denote the T-subspace generated by a set S C F(X). Then (S)”® is the span of all
polynomials f(gy,...,gn), where f € S and g; € F(X) for all i. It is clear that for any polynomials
fioooos fs € F(X) we have (fi,.... f)T° = (f1)"> +--- 4 (f5)°.

Recall that a polynomial f(x1,...,%;) € F(X) is called a polynomial identity in an algebra A over F
if f(ay,...,ay) =0 for all ay,...,a, € A. For a given algebra A, its polynomial identities form a
T-ideal T(A) in F(X) and for every T-ideal I in F(X) there is an algebra A such that I = T(A), that
is, I is the ideal of all polynomial identities satisfied in A. Note that a polynomial f = f(x1,...,%,) is
central for an algebra A if and only if [f, x,41] is a polynomial identity of A.

Let f = f(xq,...,%;) € F(X). Then f = ZOSH YYYY in fiy...i,» where each polynomial fj, ;, is multiho-
mogeneous of degree is in xs (s=1,...,n). We refer to the polynomials f;, ;, as to the multihomo-
geneous components of the polynomial f. Note that if F is an infinite field, V is a T-ideal in F(X) and
f eV then fi, i, €V forall iy,...,i, (see, for instance, [2,9,12,25]). Similarly, if V is a T-subspace
in F(X) and f € V then all the multihomogeneous components f;, , of f belong to V.

Over an infinite field F the T-ideal T(G) of the polynomial identities of the infinite dimensional
unitary Grassmann algebra G coincides with T). This was proved by Krakowski and Regev [22] if F
is of characteristic O (see also [23]) and by several authors in the general case, see for example [11].

It is well known (see, for example, [22,23]) that over any field F we have

(g1, 821Ig1, &3]+ T® =TC);
g1, 821183, 81+ T = —[g3, &21lg1, 81 + T;
[eT. g2] + T =mgl (g1, 21+ T¢ (@)

for all g1, g2, g3, 84 € F(X). Also it is well known (see, for instance, [8,17]) that a basis of the vector
space F(X)/T® over F is formed by the elements of the form

mq

m 3
X o 'xidd[xh Xyl X0 X 1 + T ), (5)

where d, s >0, i1 <--- <ig, j1 <+ < jos.
Define T> = T® N F(X,). We claim that if n < 2i then

TED N F(Xy) =TS, (6)
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Indeed, a basis of the vector space (F(X,)+T®)/T® is formed by the elements of the form (5) such
that 1 <ij <---<ig<n, 1 <j; <--- < jas <n. In particular, we have 2s < n. On the other hand, it
can be easily checked that T3D/T®) is contained in the linear span of the elements of the form (5)
such that s > i. Since n < 2i, we have

((F(Xn) +T®)/TO) N (TED/T®) = {0},

that is, TG) N F(X,) € T®. It follows immediately that T®) N F(X,) € TY. Since T2 c 73D n
F(Xy) for all i, we have TGD N F(X,) =T.> if n < 2i, as claimed.

Let F be a field of characteristic p > 2. It is well known (see, for example, [24,4,8,16]) that, for
each g,g1,..., 8 € F(X), we have

gP + T® is central in F(X)/T®;
g-gn)P + TV =gl gh + T
@+ g+ TV =g+ g +TO. (7)

Let F be an infinite field of characteristic p > 2. Let Q D be the T-subspace in F(X) generated
by q,((l) (1>0), Q&b = <ql(<l) (*1,...,%))7S. Note that the multihomogeneous component of the poly-

nomial

q,(!)(l +Xx1,..., 1+ Xx)

I_ I_ I_ I_
=1 +x)P 7 x1, %201+ x2)P 71 (1 + X 1)P  xoke1, X (1 + Xp0)P !

of degree p'~! in all the variables x1, ..., X is equal to
(-1 P11 P21 P21 P21
Ve (X1, .. X00) = VX [X1, x21x; coXypq [Xak—1s xoklxy,

| 2k
where y = (pzlj;_l1) =1 (mod p). It follows that q,(!*]) eQ®D for all [ >0 so Q&I=D c kb,

Hence, for each [ > 0 we have

I
3 Qi = kD, (8)

i=0

The following lemma is a reformulation of a result of Grishin and Tsybulya [16, Theorem 1.3,
item 1)].

Lemma 8. Let F be an infinite field of characteristic p > 2. Letk > 1,a; > 1 foralli=1,2..., 2k and let

ar—1 a;—1 axr—1
m=x1"" X" Xil (X1, %2 [Xok—1, X2] € F(X).

Suppose that, for some ig, 1 < ip < 2k, we have a;, = p'b, where | > 0 and b is coprime to p. Suppose also
that, for each i, 1 <i < 2k, we have a; = 0 (mod p’). Then

<m>TS + T(3) — Q(k,l) + T(3)
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3. Proof of Propositions 6 and 7
In the rest of the paper, F will denote an infinite field of characteristic p > 2.
3.1. Proof of Proposition 7

Let U be the T-subspace of F(X,) defined as follows:

(i) 17 cU;
(ii) the T-subspace U/T,(f) of F(Xn)/T,(f) is generated by the polynomials (1) and (2) if n =2k and
by the polynomials (3) if n =2k + 1.

To prove the proposition we have to show that Cn/TG) U/T(3) (equivalently, C, = U). It can be eas-

ily seen that U/T,§3> c Cn/T,§3). Thus, it remains to prove that Cn/Tf) c U/T,§3) (equivalently, C, C U).
Let h be an arbitrary element of C,. We are going to check that h + T,f‘) elU/ T,(f').
Since h € C(G), it follows from Theorem 5 that

h—Z%V +Zaljwuql f(l])’. f('j))‘i‘h/,

whgre Vi, Wij, S(ij) € F(X), aj,ajjeF, I e T3, Note that h € F(X,;) so we may assume that Vi, Wij,
F 0 e F(Xy) for all i, j, s. It follows that

h+T = Zav Za”wuq, f(”),. f(”))+T,§3).
j

Recall that TG is the T-ideal in F(X) generated by the polynomials [xi,xy,X3] and

[X1,X2] - [X2i_1, X2i]. By (6), we have T3 N F(X,) =T> for each i such that 2i > n. Since, for
each i, j,

(i) (ij) 3,i
whai(F(7, ... f5) e 7O,

we have

) , ,
ZZa,, Pai(F7, .. ) e T NF (X =T1.

l>2

It follows that

h+TO = Zav +ZZ(XU l]ql f(”), f(”)) T,

1<§

Ifn=2k+1 (k> 1) then we have
3 3
h+ Ty = Za vh +Zzaquql (A7 i)+ T

so h+ T,(l3) € U/T,?), as required.
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If n=2k (k > 1) then we have

h+TP =hy+hy + TV,

where
k—1 .. ..
=Y et + 3 Yagwha(r. . 1)
j i=1 j

and

hz = Zakjwquk( ](kj), ey 2(;:]')).
i

It is clear that hi + T,(,3) belongs to the T-subspace generated by the polynomials (1); hence, h1 +
T,§3) € U/T,?). On the other hand, it can be easily seen that h; + T,§3) is a linear combination of
polynomials of the form m + T,§3), where

b b
m=x;" - X0 [X1, X2] - - - [Xor—1. X2k ]

We claim that, for each m of this form, the polynomial m + T;C) belongs to U/ Té,i).
0]

Indeed, by Lemma 8, we have (m)7S +T® = (q,(!))” +T® for some [ > 0. Since both m and g,
are polynomials in xi,..., Xy, this equality implies that m + TS;) belongs to the T-subspace of

F(X2,¢)/T§,3<) that is generated by q,(!) + Téi) for some [ > 0. If [ > 1 then m+ T;i) € U/Téi) because, for

[>1, q,(f) + Téi) is a polynomial of the form (2). If =0 then m + Téi) belongs to the T-subspace of

F(sz)/Téi) generated by ql(cl) + TS(). Indeed, in this case m + T;i) belongs to the T-subspace gener-

ated by qlio) + T;i) and the latter T-subspace is contained in the T-subspace generated by qlil) + Téi)
because q,io) is equal to the multilinear component of q,({D(l +X1,..., 14+ x9). It follows that, again,
m+ Téi) elu/ Téi) . This proves our claim.

It follows that hy + T,§3) € U/T,f,z') and, therefore, h + T,§3) € U/T,§3), as required.

Thus, C, C U for each n. This completes the proof of Proposition 7.

3.2. Proof of Proposition 6

It is clear that the polynomial xi[x2,X3,X4]x5 generates T® as a T-subspace in F(X). Since
21182, 83, 84185 = 81(82, &3, 84, 851 + g185(82, 83, 84] for all g; € F(X), the polynomial x1[x2, x3, x4]
generates T3 as a T-subspace in F(X) as well. It follows that xi[xy, x3,x4] generates T,§3) as a
T-subspace in F(X,) for each n > 4. Proposition 6 follows immediately from Proposition 7 and the
observation above.

4. Proof of Theorem 3
If n=2k+1, k > 1, then Theorem 3 follows immediately from Proposition 6.
Suppose that n = 2k, k > 1. Then Theorem 3 is an immediate consequence of the following two

propositions.

Proposition 9. For all k > 1, Cyy is not finitely generated as a T-subspace in F (Xyy).
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Proposition 10. Let k > 1 and let W be a T-subspace of F(Xy) such that Cy ;Ct W. Then W is a finitely
generated T-subspace in F(Xoy).

4.1. Proof of Proposition 9
The proof is based on a result of Grishin and Tsybulya [16, Theorem 3.1].

By Proposition 7, Cy is generated as a T-subspace in F(Xy) by Téi) together with the polyno-
mials

X xDqr(x2,x3), X Qe (X2, Xok1) 9)

and

{ng)(xly---’sz) |[1=1,2,...}.

Let V; be the T-subspace of F{Xy) generated by T;i) together with the polynomials (9) and the
polynomials {q,(f)(x], ..., X21) | 1 <I}. Then we have
Cu=Jvi. (10)
1>1

Also, it is clear that V; CV, C---.
Let U%=D be the T-subspace in F(X) generated by the polynomials (9). The following proposition
is a particular case of [16, Theorem 3.1].

Proposition 11. (See [16].) For each | > 1,

Remark. The T-subspaces U*D L 7@y /7@ (Q&*D 4 T®)/TG® and TG, /T3 are denoted
in [16] by >"; CDS), Cgf) and C*+D | respectively.

Since the T-subspace Q ®!*1 is generated by the polynomial q,((m) and T® c TGXD | proposi-
tion 11 immediately implies that

I+1 - +
q’(< ) ¢ U(k 1) Q(k,l) T(3,k 1).
Further, since lék) CT &) C1 G. 1), we have

i<l

(recall that, by (8), Y Q& = @ &by 1t follows that ql(fﬂ) ¢ V; for all [ > 1; on the other hand,

q,({m) € V41 by the definition of V;, 1. Hence,

ViGVvaGo-n. (11)

It follows immediately from (10) and (11) that Cy is not finitely generated as a T-subspace in F(Xyy).
The proof of Proposition 9 is completed.
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4.2. Proof of Proposition 10

For all integers iq,...,i; such that 1 <i; <--- <i; <n and all integers ay,...,a, > 0 such that
41,92 an
X1 X7 X, .
aj,,...,a; =1, define =.-2—" to be the monomial
1 t Xiy Xig ~Xig
a az an
X X .o .Xn
M1 :xﬁ”xgz X e F(X),
xilxiz oo xl[

where bj=a; —1if je{iy,i2,...,i¢} and bj =a; otherwise.

Lemma 12. Let f(xq,...,X;) € F(X) be a multihomogeneous polynomial of the form

Xal .. .Xa”
f=oax{"-xy" + iy i) = [Xiy s Xiy |+~ [Xigy_1 s Xing ] (12)
— %Y n (i1,..., 12t)x, X i1 iy ipr—1 e
I 12t

1<iy<+<ip<n

where o, (i, i) € F. Let L= (f)T5 4+ ([x1, x2)T5 + T®).
Suppose that a; = 1 for some i, 1 <i < n. Then either L = F(X) or L = {[x1,%1)75 + T® or L =
(x1[x2, X3] - - [X20, X201 1) 75 + ([x1, x21)TS + T® for some 6 < 51

Proof. Note that each multihomogeneous polynomial f(xi,...,%;) € F(X) can be written, mod-
ulo T®, in the form (12). Hence, we can assume without loss of generality (permuting the free
generators X1, ..., Xp if necessary) that a; = 1.

Note that if e # 0, then f(x1,1,...,1) =ax; € L so L= (x;)TS = F(X). Suppose that o = 0.

We claim that we may assume without loss of generality that f is of the form f(xq,...,%;) =
x18(x2, ..., Xxp), where

az an
XZ -+ Xp

g = § a(h ..... i2t) ] . [Xi1 ) Xiz] e [XiZt—l ) Xl‘zr]' (13)
Xl] .. .X,Zt

2<ip < <iyp<n

=

a1 ., xon
Indeed, consider a term m = %[}ql JXip |- [Xige_ s Xip ] in (12). If i > 1 then

a2 An
XZ < Xp
m = X1 —————[Xi;, Xip | - - [Xip_1 s Xip |- (14)
Xi] e iZt
. P
Suppose that iy =1; then m =m’'[x1, X;,]- - - [Xiy,_, . Xiy, ], where m’ = 22—"-. We have
My

m+ T(B) = m/[X] ) xiz] e [xl'2[,1 ’ xiZ[] + T(3)
= [m'x1, i, | [Xige_y s Xige ] — X1 [m %3, |+ [Xiyy_ s Xige ] + T
= [m/X‘l [Xi3a Xi4] e [XiZ[,] s Xl'zt]ﬁ Xiz] —X1 [m/7 Xiz] e [XiZt,] s xizr] + T(B)'
Hence,
m=—xi[m’, xi,] - [Xipe_,» Xip, ] + 1, (15)

where h € ([x1,x])TS + T®.
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It follows easily from (14) and (15) that there exists a multihomogeneous polynomial g =
g1(x2, ..., xp) € F(X) such that f =x;g1 +h1, where hy € ([x1,x21)TS + T®. Further, there is a multi-
homogeneous polynomial g of the form (13) such that g =g; (mod T®); then f = x1g + hy, where
hy € ([x1, xS + T, It follows that L = (x1g2(x2, ..., x))TS + ([x1, x21)7° + T®. Thus, we can as-
sume without loss of generality that f =x1g(x2,...,X,), where g is of the form (13), as claimed.

If f=0 then L= ([x1,x])7S + T®. Suppose that f # 0. Let § = min{t | &, iy 7 O0}. It is clear

,,,,,

a an
XZ .o .Xn
f=x1{a@,. 2041 ———[X2,X3]- - - [X20, X20+1]
X2+ X2041
as a
XZ .. .xﬂ”
+ Z a(i],...,iZt) ﬁ [Xi1 ) Xiz] e [Xi2[,1 ) xiZ[] . (16)
2<iy < <ige <0 1 1t
30, in>20+1
Let fi(x1,...,%041) = f(X1,X2,...,X%041,1,...,1) € L; then
ng .. ?1"
fi=oa@, 2041X1 ————[X2,X3] - - - [X20, X204+1].
X2+ - X20+1

It can be easily seen that the multihomogeneous component of degree 1 in the variables x1, x5, ...,
X20+1 of the polynomial f1(x1,x2+1,...,x204+1 + 1) is equal to

o@,..20+1)X1[X2, X3] - - - [X20, X260 11].

It follows that x1[x2, x3]-- - [X20, X20+1] € L; hence,

TS TS
(x1[x2, X31- - [X20, X20411) ~ + ([x1,%21) ~ +T® C L.
On the other hand, it is clear that the polynomial f of the form (16) belongs to the T-subspace

of F(X) generated by x1[x2,X3]---[X29,X2041]; it follows that (f)TS € (x1[x2,x3]-- - [x20, X20411)T°
and, therefore,

TS TS
L C (x1[x2, 3]+ [x20. X20411) ~ +([x1.%2]) ~ + TP,

Thus, L = (x1[x2,x3]---[X20, X20411)7° + ([x1,%2])TS + T®. The proof of Lemma 12 is com-
pleted. O

Proposition 13. Let W be a T-subspace of F (Xy) such that Cyy ; W.Then W = F(Xy) or W is generated
as a T-subspace by the polynomials

X xPgi(x2,x3), . @ik, xm1),

X1[X2, X3, X4], X1[X2, X3] - - - [X2a, X220 411,

for some positive integer A <k — 1.

Proof. It is well known that over a field F of characteristic 0 each T-ideal in F(X) can be generated
by its multilinear polynomials. It is easy to check that the same is true for each T-subspace in F(X).
Over an infinite field F of characteristic p > 0 each T-ideal in F(X) can be generated by all its
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multihomogeneous polynomials f(x1,...,xn) such that, for each i, 1 <i<n, deg, f = p for some
integer s; (see, for instance, [2]). Again, the same is true for each T-subspace in F(X).
Let f(X1,...,Xx) € W\ Cy be an arbitrary multihomogeneous polynomial such that, for each i

(1 <i<2k), we have either deg,, f = p% or deg,, f =0. We may assume that deg, f = p®% for i =
1,....,land deg, f=0fori=I[+1,...,2k (that is, f = f(x1,...,%)). Then we have

3 m 3
f+ Ték) =am+ Z Uiy, ... i) ﬁ[xil s Xiz] - [;(1-2[71 , xi2r] + TZk)’
1<iy < <in <1 h fat

p’l pl
where &, &, ... i) € F, m=x7 ---x .
If sj>0foralli=1,...,I then it can be easily seen that f € C(G) so f € Cy, a contradiction with

the choice of f. Thus, s; =0 for some i, 1 <i < Let Ly be the T-subspace of F(X) generated by f,
[x1,x2] and T®. By Lemma 12, we have either Lf = F(X) or

TS TS
Ly =(xi[x2.x3] - [X20, X2941]) ~ +([x1,%20) " + T

for some 6 <k (since f ¢ Co, we have Ly # ([x1,x21)T° + T®). Note that if k=1 (that is, f =
f(x1,x2)) then the only possible case is L = F(X).

It is clear that if Ly = F(X) for some f € W \ Cy then x; € W so W = F(Xy). Suppose that
W # F(Xy); then k> 1 and Ly # F(X) for all f € W \ Cy. For each f € W \ Cy satisfying the con-
ditions of Lemma 12, the T-subspace Ly in F(X) can be generated, by Lemma 12, by the polynomials

[x1, X2], x1[x2, X3X4] and X1 [x2, X3] - - - [X20, X2041] (17)

for some 6 =6y < k. Since the polynomials (17) belong to F(Xy) (recall that k > 1), the T-subspace
in F(Xy) generated by f, [x1,x2] and T® is also generated (as a T-subspace in F(Xy)) by the
polynomials (17). Note that [x1,x2] and Xq[X2, X3, x4] belong to Cy, so the T-subspace V¢ in F(Xoy)
generated by f and Cy can be generated by Coi and xq[x2, x3]-- - [X26, X29+1] for some 6 =67 <k.

Let A = min{f | x1[x2, x3]-- - [X29,X204+1] € W}. Since W is the sum of the T-subspaces Vy for
all suitable multihomogeneous polynomials f € W \ Cy and each Vy is generated by Cy and
X1[x2,X3] - - - [X20, X2041] for some 6 =07 <k, W can be generated as a T-subspace in F(Xp,) by Cok
and xq[xz, X3]-- - [X2x, X25+1]. Now it follows easily from Proposition 6 that W can be generated by
the polynomials

X X qi(xa,x3), . @1 (xa, o xas1)

together with the polynomials

x1[x2, X3, x4] and x1[x2, X3] - - - [X25, X22 411,

where we note that A <k.
This completes the proof of Proposition 13. O

Proposition 10 follows immediately from Proposition 13. The proof of Theorem 3 is completed.
5. Proof of Theorem 4

Proposition 14. For each k > 1, Ry, is not finitely generated as a T-subspace in F (X).
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Proof. Recall that Ry, is the T-subspace in F(X) generated by Cy; and T3k+1) By Proposition 7, Cy is
generated as a T-subspace in F({Xy) by Téi) together with the polynomials (9) and the polynomials

{q,ﬁl)(xh X)) |1=1,2,...}. Since Téi) c T® c TGkD we have

Re=U®D 4 Z Q kD 4 TGk+D)
I>1

where U®=D and Q ®D are the T-subspaces in F(X) generated by the polynomials (9) and by the

polynomial q,ﬁb (X1, ..., Xa), respectively.
Let Vi=U®"D 43, Q%D 4 TG Then

Re=JWi (18)

I>1

and V1 SV, € ---. Recall that, by (8), Y kD =Q&b 5o v;=u*k-D 4 Q&b TGK+D) By Propo-
sition 11, Q®HD ¢ v, for all [ > 1 so

ViGVva G-l (19)

The result follows immediately from (18) and (19). O

Lemma 15. Let f = f(x1,...,xn) € F(X) be a multihomogeneous polynomial of the form
X xP
S1 sn <o Xp
f= O(Xf o -Xﬁ + 2 Uiy, ... i) 1‘ - [Xil ’ Xiz] T [XiZt—l s XiZt]’ (20)
. . Xiy -+ Xiy,
1 <--<lpt

where o, a(j,,...i,) € F, si 2 0 foralli. Let L = (F)TS + Ry, k > 1. Then one of the following holds:

.....

1. L=F(X);

2. L= Ry

3. L= (x1[x2, %3] [x20, X20+11)7° + Ry for some 6, 1 < 6 <k;

4 L= q,(f)(xz, v Xoke1)) TS + Ry for some s > 1.
Proof. Note that each multihomogeneous polynomial f(x1,...,x;) € F(X) of degree p% in x; (1<
i <n) can be written, modulo T®, in the form (20). Hence, we can assume without loss of generality
(permuting the free generators xq, ..., X, if necessary) that s; <s; for all i. Write s =s7.

Suppose that s =0. Then, by Lemma 12, we have either

(TS +(x1,%20)° +T® = F(x)
or
(TS + (%1, %0)"° + T4 = (x1, %)) +T®

or

(AT + (1. %20)"° +TO = (x11x2. X531+ [X20. %2941]1)  + (1. %20) ° + TS
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for some 6. Since ([x1,x])TS + T® C Ry and xq[x2, x3]-- - [X26, X294+1] € Rk if & > k, we have either
L=F(X) or L=Ry or

TS
L=(x1[x2,x3]- - [X20, X20411) ~ + Ry

for some 6 <k.
Now suppose that s > 0; then s; > 0 for all i, 1 <i < n. It can be easily seen that, by (7),

xfsl X e (0TS + T®) C Ry and, for all ¢ <k,

p1 pn
X e TS
1 n 3
o x [Xiy, Xip 1+ [Xip 15 Xip, ] € ((Xth(Xz, C X))+ T )) C Rg.
iyt Ry

N
Also we have X)‘(i XX';[ [Xiys Xip | -+ [Xige_q+ Xig, ] € TG, < Ry for each t > k. It follows that we can

assume without loss of generality that the polynomial f is of the form

pl pn
Xl e xn
f= E : iy, ....i%) [Xiys Xiy 1+ - [Xigy_y» i 1. (21)
Xl] .o .Xlzk

1<ip < <iy<n
Note that if n < 2k then f =0 and if n = 2k then

ps1 pS2k

X ..
1 2%

[x1,x2]- - [X2k—1, X2k]
X1X2 -+ Xok

f=0aa2,. %
so, by Lemma 8, we have f € Q%% 4 T®) where s =s; > 0. In both cases we have f € Ry and
L = Ry.
Suppose that n > 2k. We claim that we may assume that f is of the form

pS
Fx1, ..., %) =% g(x2, ..., %), (22)
where
sy sn
XS coexb
g= Z a(i],...,izk) X X [le B xiz] tee [Xizk—l ) Xizk]~
2<iy < <ige<n h 12k
M.
Indeed, consider a term m = W[xh,xiz] -+ [Xiy_ s Xig ] in (21). If iy > 1 then
p2 pr
s XZ <o Xp
m=x; —————[Xi;, Xiy |-+ [Xiy_y» Xigg |- (23)
Xig ++ Kig,

Suppose that iy = 1. Let a; = p* for all i. Then

X7 P
s q
m 4 TOKD — P =122 (X1, Xip ] iy Xigg ] TEKHD
Xio - Xi
¥) 12k
_ 30 4 a;—1 Qigg 1 . . ) 3,k+1)
=T BT I X ] i Xig ]+ T

_ a1 _9j; aji T S (3.k+1)
=Xy X Xj [)(1,)<lz]xi2 m+T R
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where
p_ Sig=lo o dig =1 iy —1 o9tk
mo=x.° [, X0, X, T g s XigJX, -
{1, .... 0y ={1,....n}\ {1,i2,...,ix}, | =n — 2k > 0. Suppose that
a1 =aj, =aj, =---=aj, and daj,,,04j,.,,...,a; > dj.
Let
9 g
— s : . z+1 coe . [
U=X1Xjy XX Xj o
where a; =q;/p® for all i. Let
i — i -1 aj.,, —
a—1 aj, =1 g1 i1
h=h&x1,....x00) =% X1, %20%,% x5, 7 [Xak—1, XakJXo ¢

By (4), h € C(G); hence, h € Cy¢ C Ry. It follows that h(u, x;,, ..., X, ) € Ry, that is,
s_ aj,—1
uP ~u, XiyJx2 m' € Ry. (24)

Since, by (7), [vF,v21€ T® ¢ TGKD for all vq, v, € F(X), we have

s_ aj, —1
up 1[”, Xlz]xlzlz m/ + T(3yk+1)

Qizt1

: P—
= (XX - x;i )P XX s xR T o TGk
= XXy X)T X X XXy e X, X IS m 4+ T

ajz+1 . /

-1
Jz+1 m

= (X1 X1, - x: )P X T ek x2
= (X1Xj, - - Xj,) X X [x1, Xi, 1x, XjzXi,
ajz+1

iy ) RV P S B.k+1)
PRI x1[xh~--)<Jz,xlz]xi2 m +T

pi-1
+ (X1xj, ---Xj,) X
_ p*,p°—1 p* =1 %z ity,, . oy W27l 1 (Bk+1)
=m+x; X S X X X [xj, ---xlz,x,z]xi2 m+T

J1 ' Jz jz+1

where the second summand is not present if z=0 (that is, if aj, > a; for all i), in which case m € Ry.
Since

P’ p°-1 p*—1 fiz Dty . o W27l 1 (Bk+1)
Xy X; Lox X. ...le [x]1 "'X]yXlz]Xiz m+T

J1 ' Jjz Jz+1
p52 pSn
X .o x

_ P ) (LI SV . . B.k+1)
- xl Z /3([1 ,,,, i) X X [Xn ) xlz] e [Xlzk—l ) XIZk] + T

2<iy <<y h 2k

for some B,....iy,) € F, we have
m+ X-l Z ﬁ(i],...,izk) 7[)(1'1 ) xiz] e [szk,1 ) xizk] € Rk' (25)
Xi‘] cee Xizk

2<i1 <'--<i2)<
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It is clear that, using (23) and (25), we can write f = f1 + f2, where

s sn
s XPT L XP
f1=xP i 2 X xi ] [X Xi |
1= Vi) = - i1> Ay iok—1 Vi
Xiy = Xiy,

2y <<

is of the form (22) and f, € Ry. Then we have (f)TS + R, = (f1)T5 + Ry. Thus, we can assume
(replacing f with f1) that the polynomial f is of the form (22), as claimed.

If f =0 then L = Ry. Suppose that f = 0. Then we can assume without loss of generality that
a2,3,..2k+1) # 0. It follows that the T-subspace (f)TS contains the polynomial

h(x1, ..., Xk41) :Ol(_213 ke KXo, 11T
$2 —1 S2k+1
—Xf xhT Q’,M X2, %31+ [Xok. Xk -
Then (f)TS 4 Ry also contains the homogeneous component of the polynomial h(x; 41, ..., Xprr1 +1)

of degree pS in each variable x; (i=1,2,...,2k+ 1), that is equal, modulo T®, to

-1 s—1
yal X k3] [k Kok,

2k+1 (pSi—1

where y =[5 (‘;;71) =1 (mod p). It follows that
K4S (o xoks1) € (TS + Ry

On the other hand, for all iy, ..., iy such that 2 <i; <--- < iy <n, we have

sxgz... p*n ©) TS 3 ka1

xf Xi e Xi (Xig» Xip ] -+ [Xigy_y 5 Xiy ] € <X1 9 (X2, - "’X2’<+1)> + 7D
I Dk

(recall that s; > s for all i) so

Ts
felxf q(s)(Xz,...,XZkH)) + Ry.

Thus,

TS
(NS + R =g o, x0) + Ree
where s > 1. The proof of Lemma 15 is completed. O
Proposition 16. Let W be a T-subspace of F (X) such that Ry ; W. Then one of the following holds:

1. W =F(X).
2. W is generated as a T-subspace by the polynomials

p P p
X1,X%101(X2,X3), ..., X Qa—1(X2, - -, X2)-1),
X1[x2, X3, X4], X1[x2, X3] - - - [X2, X2041]

for some A < k.
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3. W is generated as a T-subspace by the polynomials

X X g (x2,x3), o X Qo1 (o, L Xok1),
I B
[aP 1,0 [1<I< =128 g (o ok,
X1[x2, X3, X4], X1[X2, X3] - - - [X2k42, X2k 4-3]

forsome > 1.

Proof. Let f = f(x1,...,X;) be an arbitrary polynomial in W \ Ry satisfying the conditions of
Lemma 15, that is, an arbitrary multihomogeneous polynomial such that deg,, f = p* for some s; >0
(1<ign). Let Ly = (f)TS 4+ Ry. By Lemma 15, we have either Ly =F(X) or

TS
Ly =(x1[x2.x3]- - [x20, X26411) ~ + Ri

for some 0 <k or

s TS
Ly=(x} ql(f)(ng X)) 4 Ri

for some s > 1.

Note that W is generated as a T-subspace in F(X) by Ry together with the polynomials f € W\ Ry
satisfying the conditions of Lemma 15. It follows that W =" L, where the sum is taken over all the
polynomials f € W \ Ry satisfying these conditions.

It is clear that if Ly = F(X) for some f e W \ Ry then W = F(X). Suppose that Ly # F(X) for all
f € W\ Ry. Let, for some f e W \ Ry, we have Ly = (x1[x2,X3]- - [X20, X20411)"°> + R, 6 < k. Define
A =min{0 | x1[x2,X3]-- - [X20, X20+1] € W}; note that A <k. We have

TS
X1[x2,X3] -+ [X29, X2911] € (X1[X2, X3] - - [X21, X2241])

for all & > A and

s TS
Xy ql(f)(xz, coes Xoker1) € (X1[X2, K31 [Xo0, xoa41])  + T

for all s. Hence, W = (x1[x2,x3]-- [X2}L,X2)\_+]]>TS + Ry, where A < k. It follows that W is generated
as a T-subspace by the polynomials

X X qr(x2x3), X @ (X2, X2m),
X1[x2, X3, X4], X1[x2, X3] - - - [X25, X2041],

A<k
Now suppose that, for all f € W \ Ry satisfying the conditions of Lemma 15, we have

S TS
Ly =(x} Q,(f)(xz,-..,X2k+1)> + Ry

for some s =sy > 1. Note that if s <r then

r S TS
XY ql(:)(XL C Xokg1) € (X Q,(cs)(xz, X)) T+ TO
Take w = min{s | xfsq,(f) (X2, ..., Xok41) € W). Then we have W = Ry + (xfﬂq,((“)(xz, o X TS and

it is straightforward to check that W can be generated as a T-subspace in F(X) by the polynomials
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p P P
X1, X7q1(X2,X3), ..., X7 Qr—1(X2, ..., X2k —1)

and the polynomials {ql(f)(xh Lax)1<<I< =1y, xf“q,i“) (X2, ..., Xx41) together with the poly-
nomials

x1[X2, X3, X4] and xq[X2, X3] - - - [X2k 42, X431
This completes the proof of Proposition 16. O
Proposition 16 immediately implies the following corollary.

Corollary 17. Let W be a T-subspace of F(X) such that Ry G W (k > 1). Then W is a finitely generated
T-subspace in F{X).

Proposition 18. If k # | then R # R;.

Proof. Suppose, in order to get a contradiction, that R, = R; for some k, [, k < l. Then we have

C(G) CR,.
Indeed, by Theorem 5, the T-subspace C(G) is generated by the polynomial x1[x2, X3, X4] and the
polynomials x¥, x¥qq(x2,x3), ..., X} qn(x2, ..., X2n41), ... Clearly,
X1[x2, X3, X4] € T ¢ R;.
Further,

X xq1(xa,x3), . g1 (%2, ... Xo_1) € R,

by the definition of R; and

p p 3,k+1 _
X1, Xoks3) X Q2 (X, - Xokgs), .. € TEKHFD C Ry =R,

by the definition of TG-¥*1 Since k <1, we have

p D p p
X1, X1q1(X2,%3), ..., X1 Qe(X2, ..., Xok41), X1 Qrp1 (X2, -+, X2k 3), - .- € RpL

Hence, all the generators of the T-subspace C(G) belong to R; so C(G) C Ry, as claimed.

Note that TG*+1D c Ry and TGk ¢ C(G) so C(G) S Ry. By Theorem 1, C(G) is a limit T-subspace
so each T-subspace W such that C(G) ;Ct W is finitely generated. In particular, R; is a finitely gener-
ated T-subspace. On the other hand, by Proposition 14, the T-subspace R; is not finitely generated.
This contradiction proves that Ry # R; if k #1, as required. O

Theorem 4 follows immediately from Proposition 14, Corollary 17 and Proposition 18.
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