Limit T-subspaces and the central polynomials in n variables of the Grassmann algebra

Dimas José Gonçalves, Alexei Krasilnikov*, Irina Sviridova
Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília, DF, Brazil

A R T I C L E I N F O

Article history:

Received 20 May 2011
Available online 30 August 2012
Communicated by Efim Zelmanov

MSC:

16R10
16R40
16R50

Keywords:

Polynomial identities
Central polynomials
Grassmann algebra
T-subspace

Abstract

Let $F\langle X\rangle$ be the free unitary associative algebra over a field F on the set $X=\left\{x_{1}, x_{2}, \ldots\right\}$. A vector subspace V of $F\langle X\rangle$ is called a T-subspace (or a T-space) if V is closed under all endomorphisms of $F\langle X\rangle$. A T-subspace V in $F\langle X\rangle$ is limit if every larger T-subspace $W \nexists V$ is finitely generated (as a T-subspace) but V itself is not. Recently Brandão Jr., Koshlukov, Krasilnikov and Silva have proved that over an infinite field F of characteristic $p>2$ the T-subspace $C(G)$ of the central polynomials of the infinite dimensional Grassmann algebra G is a limit T-subspace. They conjectured that this limit T-subspace in $F\langle X\rangle$ is unique, that is, there are no limit T-subspaces in $F\langle X\rangle$ other than $C(G)$. In the present article we prove that this is not the case. We construct infinitely many limit T-subspaces $R_{k}(k \geqslant 1)$ in the algebra $F\langle X\rangle$ over an infinite field F of characteristic $p>2$. For each $k \geqslant 1$, the limit T-subspace R_{k} arises from the central polynomials in $2 k$ variables of the Grassmann algebra G.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let F be a field, X a non-empty set and let $F\langle X\rangle$ be the free unitary associative algebra over F on the set X. Recall that a T-ideal of $F\langle X\rangle$ is an ideal closed under all endomorphisms of $F\langle X\rangle$. Similarly, a T-subspace (or a T-space) is a vector subspace in $F\langle X\rangle$ closed under all endomorphisms of $F\langle X\rangle$.

Let I be a T-ideal in $F\langle X\rangle$. A subset $S \subset I$ generates I as a T-ideal if I is the minimal T-ideal in $F\langle X\rangle$ containing S. A T-subspace of $F\langle X\rangle$ generated by S (as a T-subspace) is defined in a similar way. It is clear that the T-ideal (T-subspace) generated by S is the ideal (vector subspace) generated by all the polynomials $f\left(g_{1}, \ldots, g_{m}\right)$, where $f=f\left(x_{1}, \ldots, x_{m}\right) \in S$ and $g_{i} \in F\langle X\rangle$ for all i.

[^0]Note that if I is a T-ideal in $F\langle X\rangle$ then T-ideals and T-subspaces can be defined in the quotient algebra $F\langle X\rangle / I$ in a natural way. We refer to $[9,10,12,18,20,25$] for the terminology and basic results concerning T-ideals and algebras with polynomial identities and to [4,8,16-18] for an account of the results concerning T-subspaces.

From now on we write X for $\left\{x_{1}, x_{2}, \ldots\right\}$ and X_{n} for $\left\{x_{1}, \ldots, x_{n}\right\}, X_{n} \subset X$. If F is a field of characteristic 0 then every T-ideal in $F\langle X\rangle$ is finitely generated (as a T-ideal); this is a celebrated result of Kemer $[19,20$] that solves the Specht problem. Moreover, over such a field F each T-subspace in $F\langle X\rangle$ is finitely generated; this has been proved more recently by Shchigolev [28]. Very recently Belov [7] has proved that, for each Noetherian commutative and associative unitary ring K and each $n \in \mathbb{N}$, each T-ideal in $K\left\langle X_{n}\right\rangle$ is finitely generated.

On the other hand, over a field F of characteristic $p>0$ there are T-ideals in $F\langle X\rangle$ that are not finitely generated. This has been proved by Belov [5], Grishin [13] and Shchigolev [26] (see also [6, $14,18]$). The construction of such T-ideals uses the non-finitely generated T-subspaces in $F\langle X\rangle$ constructed by Grishin [13] for $p=2$ and by Shchigolev [27] for $p>2$ (see also [14]). Shchigolev [27] also constructed non-finitely generated T-subspaces in $F\left\langle X_{n}\right\rangle$, where $n>1$ and F is a field of characteristic $p>2$.

A T-subspace V^{*} in $F\langle X\rangle$ is called limit if every larger T-subspace $W \nRightarrow V^{*}$ is finitely generated as a T-subspace but V^{*} itself is not. A limit T-ideal is defined in a similar way. It follows easily from Zorn's lemma that if a T-subspace V is not finitely generated then it is contained in some limit T-subspace V^{*}. Similarly, each non-finitely generated T-ideal is contained in a limit T-ideal. In this sense limit T-subspaces (T-ideals) form a "border" between those T-subspaces (T-ideals) which are finitely generated and those which are not.

By $[5,13,26]$, over a field F of characteristic $p>0$ the algebra $F\langle X\rangle$ contains non-finitely generated T-ideals; therefore, it contains at least one limit T-ideal. No example of a limit T-ideal is known so far. Even the cardinality of the set of limit T-ideals in $F\langle X\rangle$ is unknown; it is possible that, for a given field F of characteristic $p>0$, there is only one limit T-ideal. The non-finitely generated T-ideals constructed in [1] come closer to being limit than any other known non-finitely generated T-ideal. However, it is unlikely that these T-ideals are limit.

About limit T-subspaces in $F\langle X\rangle$ we know more than about limit T-ideals. Recently Brandão Jr., Koshlukov, Krasilnikov and Silva [8] have found the first example of a limit T-subspace in $F\langle X\rangle$ over an infinite field F of characteristic $p>2$. To state their result precisely we need some definitions.

For an associative algebra A, let $Z(A)$ denote the centre of A,

$$
Z(A)=\{z \in A \mid z a=a z \text { for all } a \in A\}
$$

A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is a central polynomial for A if $f\left(a_{1}, \ldots, a_{n}\right) \in Z(A)$ for all $a_{1}, \ldots, a_{n} \in A$. For a given algebra A, its central polynomials form a T-subspace $C(A)$ in $F\langle X\rangle$. However, not every T-subspace can be obtained as the T-subspace of the central polynomials of some algebra.

Let V be the vector space over a field F of characteristic $\neq 2$, with a countable infinite basis e_{1}, e_{2}, \ldots and let V_{s} denote the subspace of V spanned by $e_{1}, \ldots, e_{s}(s=2,3, \ldots)$. Let G and G_{s} denote the unitary Grassmann algebras of V and V_{S}, respectively. Then as a vector space G has a basis that consists of 1 and of all monomials $e_{i_{1}} e_{i_{2}} \cdots e_{i_{k}}, i_{1}<i_{2}<\cdots<i_{k}, k \geqslant 1$. The multiplication in G is induced by $e_{i} e_{j}=-e_{j} e_{i}$ for all i and j. The algebra G_{s} is the subalgebra of G generated by e_{1}, \ldots, e_{s}, and $\operatorname{dim} G_{s}=2^{s}$. We refer to G and $G_{s}(s=2,3, \ldots)$ as to the infinite dimensional Grassmann algebra and the finite dimensional Grassmann algebras, respectively.

The result of [8] concerning a limit T-subspace is as follows:
Theorem 1. (See [8].) Let F be an infinite field of characteristic $p>2$ and let G be the infinite dimensional Grassmann algebra over F. Then the vector space $C(G)$ of the central polynomials of the algebra G is a limit T-space in $F\langle X\rangle$.

It was conjectured in [8] that a limit T-subspace in $F\langle X\rangle$ is unique, that is, $C(G)$ is the only limit T-subspace in $F\langle X\rangle$. In the present article we show that this is not the case. Our first main result is as follows.

Theorem 2. Over an infinite field F of characteristic $p>2$ the algebra $F\langle X\rangle$ contains infinitely many limit T-subspaces.

Let F be an infinite field of characteristic $p>0$. In order to prove Theorem 2 and to find infinitely many limit T-subspaces in $F\langle X\rangle$ we first find limit T-subspaces in $F\left\langle X_{n}\right\rangle$ for $n=2 k, k \geqslant 1$. Let $C_{n}=$ $C(G) \cap F\left\langle X_{n}\right\rangle$ be the set of the central polynomials in at most n variables of the unitary Grassmann algebra G. Our second main result is as follows.

Theorem 3. Let F be an infinite field of characteristic $p>2$. If $n=2 k, k \geqslant 1$, then C_{n} is a limit T-subspace in $F\left\langle X_{n}\right\rangle$. If $n=2 k+1, k>1$, then C_{n} is finitely generated as a T-subspace in $F\left\langle X_{n}\right\rangle$.

Remark. We do not know whether the T-subspace C_{3} is finitely generated.
Define $[a, b]=a b-b a,[a, b, c]=[[a, b], c]$. For $k \geqslant 1$, let $T^{(3, k)}$ denote the T-ideal in $F\langle X\rangle$ generated by $\left[x_{1}, x_{2}, x_{3}\right]$ and $\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right] \cdots\left[x_{2 k-1}, x_{2 k}\right]$ and let R_{k} denote the T-subspace in $F\langle X\rangle$ generated by $C_{2 k}$ and $T^{(3, k+1)}$. Theorem 2 follows immediately from our third main result that is as follows.

Theorem 4. Let F be an infinite field of characteristic $p>2$. For each $k \geqslant 1, R_{k}$ is a limit T-subspace in $F\langle X\rangle$. If $k \neq l$ then $R_{k} \neq R_{l}$.

Now we modify the conjecture made in [8].
Problem 1. Let F be an infinite field of characteristic $p>2$. Is each limit T-subspace in $F\langle X\rangle$ equal to either $C(G)$ or R_{k} for some k ? In other words, are $C(G)$ and $R_{k}(k \geqslant 1)$ the only limit T-subspaces in $F\langle X\rangle$?

In the proof of Theorems 3 and 4 we will use the following theorem that has been proved independently by Bekh-Ochir and Rankin [4], by Brandão Jr., Koshlukov, Krasilnikov and Silva [8] and by Grishin [15]. Let

$$
q\left(x_{1}, x_{2}\right)=x_{1}^{p-1}\left[x_{1}, x_{2}\right] x_{2}^{p-1}, \quad q_{k}\left(x_{1}, \ldots, x_{2 k}\right)=q\left(x_{1}, x_{2}\right) \cdots q\left(x_{2 k-1}, x_{2 k}\right) .
$$

Theorem 5. (See $[4,8,15]$.) Over an infinite field F of a characteristic $p>2$ the vector space $C(G)$ of the central polynomials of G is generated (as a T-space in $F\langle X\rangle$) by the polynomial

$$
x_{1}\left[x_{2}, x_{3}, x_{4}\right]
$$

and the polynomials

$$
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), x_{1}^{p} q_{2}\left(x_{2}, x_{3}, x_{4}, x_{5}\right), \ldots, x_{1}^{p} q_{n}\left(x_{2}, \ldots, x_{2 n+1}\right), \ldots
$$

In order to prove Theorems 3 and 4 we need some auxiliary results. Define, for each $l \geqslant 0$,

$$
\begin{gathered}
q^{(l)}\left(x_{1}, x_{2}\right)=x_{1}^{p^{l}-1}\left[x_{1}, x_{2}\right] x_{2}^{p^{l}-1} \\
q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right)=q^{(l)}\left(x_{1}, x_{2}\right) \cdots q^{(l)}\left(x_{2 k-1}, x_{2 k}\right) .
\end{gathered}
$$

Recall that $C_{n}=C(G) \cap F\left\langle X_{n}\right\rangle$. To prove Theorem 3 we need the following assertions that are also of independent interest.

Proposition 6. If $n=2 k, k>1$, then C_{n} is generated as a T-subspace in $F\left\langle X_{n}\right\rangle$ by the polynomials

$$
x_{1}\left[x_{2}, x_{3}, x_{4}\right], x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{k-1}\left(x_{2}, \ldots, x_{2 k-1}\right)
$$

together with the polynomials

$$
\left\{q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right) \mid l=1,2, \ldots\right\}
$$

If $n=2 k+1, k>1$, then C_{n} is generated as a T-subspace in $F\left\langle X_{n}\right\rangle$ by the polynomials

$$
x_{1}\left[x_{2}, x_{3}, x_{4}\right], x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{k}\left(x_{2}, \ldots, x_{2 k+1}\right)
$$

Let $T^{(3)}$ denote the T-ideal in $F\langle X\rangle$ generated by $\left[x_{1}, x_{2}, x_{3}\right]$. Define $T_{n}^{(3)}=T^{(3)} \cap F\left\langle X_{n}\right\rangle$. We deduce Proposition 6 from the following.

Proposition 7. If $n=2 k, k \geqslant 1$, then $C_{n} / T_{n}^{(3)}$ is generated as a T-subspace in $F\left\langle X_{n}\right\rangle / T_{n}^{(3)}$ by the polynomials

$$
\begin{equation*}
x_{1}^{p}+T_{n}^{(3)}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right)+T_{n}^{(3)}, \ldots, x_{1}^{p} q_{k-1}\left(x_{2}, \ldots, x_{2 k-1}\right)+T_{n}^{(3)} \tag{1}
\end{equation*}
$$

together with the polynomials

$$
\begin{equation*}
\left\{q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right)+T_{n}^{(3)} \mid l=1,2, \ldots\right\} \tag{2}
\end{equation*}
$$

If $n=2 k+1, k \geqslant 1$, then the T-subspace $C_{n} / T_{n}^{(3)}$ in $F\left\langle X_{n}\right\rangle / T_{n}^{(3)}$ is generated by the polynomials

$$
\begin{equation*}
x_{1}^{p}+T_{n}^{(3)}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right)+T_{n}^{(3)}, \ldots, x_{1}^{p} q_{k}\left(x_{2}, \ldots, x_{2 k+1}\right)+T_{n}^{(3)} \tag{3}
\end{equation*}
$$

Remarks. 1. For each $k \geqslant 1$, the limit T-subspace R_{k} does not coincide with the T-subspace $C(A)$ of all central polynomials of any algebra A.

Indeed, suppose that $R_{k}=C(A)$ for some A. Let $T(A)$ be the T-ideal of all polynomial identities of A. Then, for each $f \in C(A)$ and each $g \in F\langle X\rangle$, we have $[f, g] \in T(A)$. Since $\left[x_{1}, x_{2}\right] \in R_{k}=C(A)$, we have $\left[x_{1}, x_{2}, x_{3}\right] \in T(A)$. It follows that $T^{(3)} \subseteq T(A)$.

It is well known that if a T-ideal T in the free unitary algebra $F\langle X\rangle$ over an infinite field F contains $T^{(3)}$ then either $T=T^{(3)}$ or $T=T^{(3, n)}$ for some n (see, for instance, [11, Proof of Corollary 7]). Hence, either $T(A)=T^{(3)}$ or $T(A)=T^{(3, n)}$ for some n. Note that $T^{(3)}=T(G)$ and $T^{(3, n)}=T\left(G_{2 n-1}\right)$ (see, for example, [11]) so we have either $T(A)=T(G)$ or $T(A)=T\left(G_{2 n-1}\right)$ for some n.

For an associative algebra B, we have $f\left(x_{1}, \ldots, x_{r}\right) \in C(B)$ if and only if $\left[f\left(x_{1}, \ldots, x_{r}\right), x_{r+1}\right] \in T(B)$. It follows that if B_{1}, B_{2} are algebras such that $T\left(B_{1}\right)=T\left(B_{2}\right)$ then $C\left(B_{1}\right)=C\left(B_{2}\right)$. In particular, if $T(A)=T(G)$ then $C(A)=C(G)$, and if $T(A)=T\left(G_{2 n-1}\right)$ then $C(A)=C\left(G_{2 n-1}\right)$.

However,

$$
x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 k+2}, x_{2 k+3}\right] \in R_{k} \backslash C(G)
$$

so $R_{k} \neq C(G)$. Furthermore, the T-subspaces $C\left(G_{s}\right)$ of the central polynomials of the finite dimensional Grassmann algebras $G_{s}(s=2,3, \ldots)$ have been described recently by Bekh-Ochir and Rankin [3] and by Koshlukov, Krasilnikov and Silva [21]; these T-subspaces are finitely generated and do not coincide with R_{k}. This contradiction proves that $R_{k} \neq C(A)$ for any algebra A, as claimed.
2. For an associative unitary algebra A, let $C_{n}(A)$ and $T_{n}(A)$ denote the set of the central polynomials and the set of the polynomial identities in n variables x_{1}, \ldots, x_{n} of A, respectively; that is,
$C_{n}(A)=C(A) \cap F\left\langle X_{n}\right\rangle$ and $T_{n}(A)=T(A) \cap F\left\langle X_{n}\right\rangle$. Then $C_{n}(A)$ is a T-subspace and $T_{n}(A)$ is a T-ideal in $F\left\langle X_{n}\right\rangle$.

Note that, by Belov's result [7], the T-ideal $T_{n}(A)$ is finitely generated for each algebra A over a Noetherian ring and each positive integer n. On the other hand, there exist unitary algebras A over an infinite field F of characteristic $p>2$ such that, for some $n>1$, the T-subspace $C_{n}(A)$ of the central polynomials of A in n variables is not finitely generated. Moreover, such an algebra A can be finite dimensional. Indeed, take $A=G_{s}$, where $s \geqslant n$. It can be checked that $C\left(G_{s}\right) \cap F\left\langle X_{n}\right\rangle=C_{n}$ if $s \geqslant n$. By Proposition 9, the T-subspace $C_{2 k}\left(G_{s}\right)$ in $F\left\langle X_{2 k}\right\rangle$ is not finitely generated provided that $s \geqslant 2 k$.

However, the following problem remains open.
Problem 2. Does there exist a finite dimensional algebra A over an infinite field F of characteristic $p>0$ such that the T-subspace $C(A)$ of all central polynomials of A in $F\langle X\rangle$ is not finitely generated?

Note that a similar problem for the T-ideal $T(A)$ of all polynomial identities of a finite dimensional algebra A over an infinite field F of characteristic $p>0$ remains open as well; it is one of the most interesting and long-standing open problems in the area.

2. Preliminaries

Let $\langle S\rangle^{T S}$ denote the T-subspace generated by a set $S \subseteq F\langle X\rangle$. Then $\langle S\rangle^{T S}$ is the span of all polynomials $f\left(g_{1}, \ldots, g_{n}\right)$, where $f \in S$ and $g_{i} \in F\langle X\rangle$ for all i. It is clear that for any polynomials $f_{1}, \ldots, f_{s} \in F\langle X\rangle$ we have $\left\langle f_{1}, \ldots, f_{S}\right\rangle^{T S}=\left\langle f_{1}\right\rangle^{T S}+\cdots+\left\langle f_{S}\right\rangle^{T S}$.

Recall that a polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ is called a polynomial identity in an algebra A over F if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{1}, \ldots, a_{n} \in A$. For a given algebra A, its polynomial identities form a T-ideal $T(A)$ in $F\langle X\rangle$ and for every T-ideal I in $F\langle X\rangle$ there is an algebra A such that $I=T(A)$, that is, I is the ideal of all polynomial identities satisfied in A. Note that a polynomial $f=f\left(x_{1}, \ldots, x_{n}\right)$ is central for an algebra A if and only if $\left[f, x_{n+1}\right.$] is a polynomial identity of A.

Let $f=f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$. Then $f=\sum_{0 \leqslant i_{1}, \ldots, i_{n}} f_{i_{1} \ldots i_{n}}$, where each polynomial $f_{i_{1} \ldots i_{n}}$ is multihomogeneous of degree i_{s} in $x_{s}(s=1, \ldots, n)$. We refer to the polynomials $f_{i_{1} \ldots i_{n}}$ as to the multihomogeneous components of the polynomial f. Note that if F is an infinite field, V is a T-ideal in $F\langle X\rangle$ and $f \in V$ then $f_{i_{1} \ldots i_{n}} \in V$ for all i_{1}, \ldots, i_{n} (see, for instance, $[2,9,12,25]$). Similarly, if V is a T-subspace in $F\langle X\rangle$ and $f \in V$ then all the multihomogeneous components $f_{i_{1} \ldots i_{n}}$ of f belong to V.

Over an infinite field F the T-ideal $T(G)$ of the polynomial identities of the infinite dimensional unitary Grassmann algebra G coincides with $T^{(3)}$. This was proved by Krakowski and Regev [22] if F is of characteristic 0 (see also [23]) and by several authors in the general case, see for example [11].

It is well known (see, for example, $[22,23]$) that over any field F we have

$$
\begin{gather*}
{\left[g_{1}, g_{2}\right]\left[g_{1}, g_{3}\right]+T^{(3)}=T^{(3)}} \\
{\left[g_{1}, g_{2}\right]\left[g_{3}, g_{4}\right]+T^{(3)}=-\left[g_{3}, g_{2}\right]\left[g_{1}, g_{4}\right]+T^{(3)}} \\
{\left[g_{1}^{m}, g_{2}\right]+T^{(3)}=m g_{1}^{m-1}\left[g_{1}, g_{2}\right]+T^{(3)}} \tag{4}
\end{gather*}
$$

for all $g_{1}, g_{2}, g_{3}, g_{4} \in F\langle X\rangle$. Also it is well known (see, for instance, $[8,17]$) that a basis of the vector space $F\langle X\rangle / T^{(3)}$ over F is formed by the elements of the form

$$
\begin{equation*}
x_{i_{1}}^{m_{1}} \cdots x_{i_{d}}^{m_{d}}\left[x_{j_{1}}, x_{j_{2}}\right] \cdots\left[x_{j_{2 s-1}}, x_{j_{2 s}}\right]+T^{(3)} \tag{5}
\end{equation*}
$$

where $d, s \geqslant 0, i_{1}<\cdots<i_{d}, j_{1}<\cdots<j_{2 s}$.
Define $T_{n}^{(3)}=T^{(3)} \cap F\left\langle X_{n}\right\rangle$. We claim that if $n<2 i$ then

$$
\begin{equation*}
T^{(3, i)} \cap F\left\langle X_{n}\right\rangle=T_{n}^{(3)} \tag{6}
\end{equation*}
$$

Indeed, a basis of the vector space $\left(F\left\langle X_{n}\right\rangle+T^{(3)}\right) / T^{(3)}$ is formed by the elements of the form (5) such that $1 \leqslant i_{1}<\cdots<i_{d} \leqslant n, 1 \leqslant j_{1}<\cdots<j_{2 s} \leqslant n$. In particular, we have $2 s \leqslant n$. On the other hand, it can be easily checked that $T^{(3, i)} / T^{(3)}$ is contained in the linear span of the elements of the form (5) such that $s \geqslant i$. Since $n<2 i$, we have

$$
\left(\left(F\left\langle X_{n}\right\rangle+T^{(3)}\right) / T^{(3)}\right) \cap\left(T^{(3, i)} / T^{(3)}\right)=\{0\},
$$

that is, $T^{(3, i)} \cap F\left\langle X_{n}\right\rangle \subseteq T^{(3)}$. It follows immediately that $T^{(3, i)} \cap F\left\langle X_{n}\right\rangle \subseteq T_{n}^{(3)}$. Since $T_{n}^{(3)} \subseteq T^{(3, i)} \cap$ $F\left\langle X_{n}\right\rangle$ for all i, we have $T^{(3, i)} \cap F\left\langle X_{n}\right\rangle=T_{n}^{(3)}$ if $n<2 i$, as claimed.

Let F be a field of characteristic $p>2$. It is well known (see, for example, [24,4,8,16]) that, for each g, $g_{1}, \ldots, g_{n} \in F\langle X\rangle$, we have

$$
\begin{gather*}
g^{p}+T^{(3)} \text { is central in } F\langle X\rangle / T^{(3)} \\
\left(g_{1} \cdots g_{n}\right)^{p}+T^{(3)}=g_{1}^{p} \cdots g_{n}^{p}+T^{(3)} \\
\left(g_{1}+\cdots+g_{n}\right)^{p}+T^{(3)}=g_{1}^{p}+\cdots+g_{n}^{p}+T^{(3)} \tag{7}
\end{gather*}
$$

Let F be an infinite field of characteristic $p>2$. Let $Q^{(k, l)}$ be the T-subspace in $F\langle X\rangle$ generated by $q_{k}^{(l)}(l \geqslant 0), Q^{(k, l)}=\left\langle q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right)\right\rangle^{T S}$. Note that the multihomogeneous component of the polynomial

$$
\begin{aligned}
& q_{k}^{(l)}\left(1+x_{1}, \ldots, 1+x_{2 k}\right) \\
& \quad=\left(1+x_{1}\right)^{p^{l}-1}\left[x_{1}, x_{2}\right]\left(1+x_{2}\right)^{p^{l}-1} \cdots\left(1+x_{2 k-1}\right)^{p^{l}-1}\left[x_{2 k-1}, x_{2 k}\right]\left(1+x_{2 k}\right)^{p^{l}-1}
\end{aligned}
$$

of degree p^{l-1} in all the variables $x_{1}, \ldots, x_{2 k}$ is equal to

$$
\gamma q_{k}^{(l-1)}\left(x_{1}, \ldots, x_{2 k}\right)=\gamma x_{1}^{p^{l-1}-1}\left[x_{1}, x_{2}\right] x_{2}^{p^{l-1}-1} \cdots x_{2 k-1}^{p^{l-1}-1}\left[x_{2 k-1}, x_{2 k}\right] x_{2 k}^{p^{l-1}-1}
$$

where $\gamma=\binom{p^{l-1}-1}{p^{l-1}-1}^{2 k} \equiv 1(\bmod p)$. It follows that $q_{k}^{(l-1)} \in Q^{(k, l)}$ for all $l>0$ so $Q^{(k, l-1)} \subseteq Q^{(k, l)}$. Hence, for each $l>0$ we have

$$
\begin{equation*}
\sum_{i=0}^{l} Q^{(k, i)}=Q^{(k, l)} \tag{8}
\end{equation*}
$$

The following lemma is a reformulation of a result of Grishin and Tsybulya [16, Theorem 1.3, item 1)].

Lemma 8. Let F be an infinite field of characteristic $p>2$. Let $k \geqslant 1, a_{i} \geqslant 1$ for all $i=1,2 \ldots, 2 k$ and let

$$
m=x_{1}^{a_{1}-1} x_{2}^{a_{2}-1} \cdots x_{2 k}^{a_{2 k}-1}\left[x_{1}, x_{2}\right] \cdots\left[x_{2 k-1}, x_{2 k}\right] \in F\langle X\rangle
$$

Suppose that, for some $i_{0}, 1 \leqslant i_{0} \leqslant 2 k$, we have $a_{i_{0}}=p^{l} b$, where $l \geqslant 0$ and b is coprime to p. Suppose also that, for each $i, 1 \leqslant i \leqslant 2 k$, we have $a_{i} \equiv 0\left(\bmod p^{l}\right)$. Then

$$
\langle m\rangle^{T S}+T^{(3)}=Q^{(k, l)}+T^{(3)}
$$

3. Proof of Propositions 6 and 7

In the rest of the paper, F will denote an infinite field of characteristic $p>2$.

3.1. Proof of Proposition 7

Let U be the T-subspace of $F\left\langle X_{n}\right\rangle$ defined as follows:
(i) $T_{n}^{(3)} \subset U$;
(ii) the T-subspace $U / T_{n}^{(3)}$ of $F\left\langle X_{n}\right\rangle / T_{n}^{(3)}$ is generated by the polynomials (1) and (2) if $n=2 k$ and by the polynomials (3) if $n=2 k+1$.

To prove the proposition we have to show that $C_{n} / T_{n}^{(3)}=U / T_{n}^{(3)}$ (equivalently, $C_{n}=U$). It can be easily seen that $U / T_{n}^{(3)} \subseteq C_{n} / T_{n}^{(3)}$. Thus, it remains to prove that $C_{n} / T_{n}^{(3)} \subseteq U / T_{n}^{(3)}$ (equivalently, $C_{n} \subseteq U$).

Let h be an arbitrary element of C_{n}. We are going to check that $h+T_{n}^{(3)} \in U / T_{n}^{(3)}$.
Since $h \in C(G)$, it follows from Theorem 5 that

$$
h=\sum_{j} \alpha_{j} v_{j}^{p}+\sum_{i, j} \alpha_{i j} w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right)+h^{\prime},
$$

where $v_{j}, w_{i j}, f_{s}^{(i j)} \in F\langle X\rangle, \alpha_{j}, \alpha_{i j} \in F, h^{\prime} \in T^{(3)}$. Note that $h \in F\left\langle X_{n}\right\rangle$ so we may assume that $v_{j}, w_{i j}$, $f_{s}^{(i j)}, h^{\prime} \in F\left\langle X_{n}\right\rangle$ for all i, j, s. It follows that

$$
h+T_{n}^{(3)}=\sum_{j} \alpha_{j} v_{j}^{p}+\sum_{i, j} \alpha_{i j} w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right)+T_{n}^{(3)} .
$$

Recall that $T^{(3, i)}$ is the T-ideal in $F\langle X\rangle$ generated by the polynomials $\left[x_{1}, x_{2}, x_{3}\right]$ and $\left[x_{1}, x_{2}\right] \cdots\left[x_{2 i-1}, x_{2 i}\right]$. By (6), we have $T^{(3, i)} \cap F\left\langle X_{n}\right\rangle=T_{n}^{(3)}$ for each i such that $2 i>n$. Since, for each i, j,

$$
w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right) \in T^{(3, i)},
$$

we have

$$
\sum_{i>\frac{n}{2}} \sum_{j} \alpha_{i j} w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right) \in T^{(3, i)} \cap F\left\langle X_{n}\right\rangle=T_{n}^{(3)}
$$

It follows that

$$
h+T_{n}^{(3)}=\sum_{j} \alpha_{j} v_{j}^{p}+\sum_{i \leqslant \frac{n}{2}} \sum_{j} \alpha_{i j} w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right)+T_{n}^{(3)} .
$$

If $n=2 k+1(k \geqslant 1)$ then we have

$$
h+T_{n}^{(3)}=\sum_{j} \alpha_{j} v_{j}^{p}+\sum_{i=1}^{k} \sum_{j} \alpha_{i j} w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right)+T_{n}^{(3)}
$$

so $h+T_{n}^{(3)} \in U / T_{n}^{(3)}$, as required.

If $n=2 k(k \geqslant 1)$ then we have

$$
h+T_{n}^{(3)}=h_{1}+h_{2}+T_{n}^{(3)}
$$

where

$$
h_{1}=\sum_{j} \alpha_{j} v_{j}^{p}+\sum_{i=1}^{k-1} \sum_{j} \alpha_{i j} w_{i j}^{p} q_{i}\left(f_{1}^{(i j)}, \ldots, f_{2 i}^{(i j)}\right)
$$

and

$$
h_{2}=\sum_{j} \alpha_{k j} w_{k j}^{p} q_{k}\left(f_{1}^{(k j)}, \ldots, f_{2 k}^{(k j)}\right)
$$

It is clear that $h_{1}+T_{n}^{(3)}$ belongs to the T-subspace generated by the polynomials (1); hence, $h_{1}+$ $T_{n}^{(3)} \in U / T_{n}^{(3)}$. On the other hand, it can be easily seen that $h_{2}+T_{n}^{(3)}$ is a linear combination of polynomials of the form $m+T_{n}^{(3)}$, where

$$
m=x_{1}^{b_{1}} \cdots x_{2 k}^{b_{2 k}}\left[x_{1}, x_{2}\right] \cdots\left[x_{2 k-1}, x_{2 k}\right] .
$$

We claim that, for each m of this form, the polynomial $m+T_{2 k}^{(3)}$ belongs to $U / T_{2 k}^{(3)}$.
Indeed, by Lemma 8, we have $\langle m\rangle^{T S}+T^{(3)}=\left\langle q_{k}^{(l)}\right\rangle^{T S}+T^{(3)}$ for some $l \geqslant 0$. Since both m and $q_{k}^{(l)}$ are polynomials in $x_{1}, \ldots, x_{2 k}$, this equality implies that $m+T_{2 k}^{(3)}$ belongs to the T-subspace of $F\left\langle X_{2 k}\right\rangle / T_{2 k}^{(3)}$ that is generated by $q_{k}^{(l)}+T_{2 k}^{(3)}$ for some $l \geqslant 0$. If $l \geqslant 1$ then $m+T_{2 k}^{(3)} \in U / T_{2 k}^{(3)}$ because, for $l \geqslant 1, q_{k}^{(l)}+T_{2 k}^{(3)}$ is a polynomial of the form (2). If $l=0$ then $m+T_{2 k}^{(3)}$ belongs to the T-subspace of $F\left\langle X_{2 k}\right\rangle / T_{2 k}^{(3)}$ generated by $q_{k}^{(1)}+T_{2 k}^{(3)}$. Indeed, in this case $m+T_{2 k}^{(3)}$ belongs to the T-subspace generated by $q_{k}^{(0)}+T_{2 k}^{(3)}$ and the latter T-subspace is contained in the T-subspace generated by $q_{k}^{(1)}+T_{2 k}^{(3)}$ because $q_{k}^{(0)}$ is equal to the multilinear component of $q_{k}^{(1)}\left(1+x_{1}, \ldots, 1+x_{2 k}\right)$. It follows that, again, $m+T_{2 k}^{(3)} \in U / T_{2 k}^{(3)}$. This proves our claim.

It follows that $h_{2}+T_{n}^{(3)} \in U / T_{n}^{(3)}$ and, therefore, $h+T_{n}^{(3)} \in U / T_{n}^{(3)}$, as required.
Thus, $C_{n} \subseteq U$ for each n. This completes the proof of Proposition 7 .

3.2. Proof of Proposition 6

It is clear that the polynomial $x_{1}\left[x_{2}, x_{3}, x_{4}\right] x_{5}$ generates $T^{(3)}$ as a T-subspace in $F\langle X\rangle$. Since $g_{1}\left[g_{2}, g_{3}, g_{4}\right] g_{5}=g_{1}\left[g_{2}, g_{3}, g_{4}, g_{5}\right]+g_{1} g_{5}\left[g_{2}, g_{3}, g_{4}\right]$ for all $g_{i} \in F\langle X\rangle$, the polynomial $x_{1}\left[x_{2}, x_{3}, x_{4}\right]$ generates $T^{(3)}$ as a T-subspace in $F\langle X\rangle$ as well. It follows that $x_{1}\left[x_{2}, x_{3}, x_{4}\right]$ generates $T_{n}^{(3)}$ as a T-subspace in $F\left\langle X_{n}\right\rangle$ for each $n \geqslant 4$. Proposition 6 follows immediately from Proposition 7 and the observation above.

4. Proof of Theorem 3

If $n=2 k+1, k>1$, then Theorem 3 follows immediately from Proposition 6 .
Suppose that $n=2 k, k \geqslant 1$. Then Theorem 3 is an immediate consequence of the following two propositions.

Proposition 9. For all $k \geqslant 1, C_{2 k}$ is not finitely generated as a T-subspace in $F\left\langle X_{2 k}\right\rangle$.

Proposition 10. Let $k \geqslant 1$ and let W be a T-subspace of $F\left\langle X_{2 k}\right\rangle$ such that $C_{2 k} \varsubsetneqq W$. Then W is a finitely generated T-subspace in $F\left\langle X_{2 k}\right\rangle$.

4.1. Proof of Proposition 9

The proof is based on a result of Grishin and Tsybulya [16, Theorem 3.1].
By Proposition 7, $C_{2 k}$ is generated as a T-subspace in $F\left\langle X_{2 k}\right\rangle$ by $T_{2 k}^{(3)}$ together with the polynomials

$$
\begin{equation*}
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{k-1}\left(x_{2}, \ldots, x_{2 k-1}\right) \tag{9}
\end{equation*}
$$

and

$$
\left\{q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right) \mid l=1,2, \ldots\right\} .
$$

Let V_{l} be the T-subspace of $F\left\langle X_{2 k}\right\rangle$ generated by $T_{2 k}^{(3)}$ together with the polynomials (9) and the polynomials $\left\{q_{k}^{(i)}\left(x_{1}, \ldots, x_{2 k}\right) \mid i \leqslant l\right\}$. Then we have

$$
\begin{equation*}
C_{2 k}=\bigcup_{l \geqslant 1} V_{l} . \tag{10}
\end{equation*}
$$

Also, it is clear that $V_{1} \subseteq V_{2} \subseteq \cdots$.
Let $U^{(k-1)}$ be the T-subspace in $F\langle X\rangle$ generated by the polynomials (9). The following proposition is a particular case of [16, Theorem 3.1].

Proposition 11. (See [16].) For each $l \geqslant 1$,

$$
\left(Q^{(k, l+1)}+T^{(3)}\right) / T^{(3)} \nsubseteq\left(U^{(k-1)}+Q^{(k, l)}+T^{(3, k+1)}\right) / T^{(3)} .
$$

Remark. The T-subspaces $\left(U^{(k-1)}+T^{(3)}\right) / T^{(3)}$, $\left(Q^{(k, l)}+T^{(3)}\right) / T^{(3)}$ and $T^{(3, k+1)} / T^{(3)}$ are denoted in [16] by $\sum_{i<k} C D_{p}^{(i)}, C_{p^{l}}^{(k)}$ and $C^{(k+1)}$, respectively.

Since the T-subspace $Q^{(k, l+1)}$ is generated by the polynomial $q_{k}^{(l+1)}$ and $T^{(3)} \subset T^{(3, k+1)}$, Proposition 11 immediately implies that

$$
q_{k}^{(l+1)} \notin U^{(k-1)}+Q^{(k, l)}+T^{(3, k+1)}
$$

Further, since $T_{2 k}^{(3)} \subset T^{(3)} \subset T^{(3, k+1)}$, we have

$$
V_{l} \subset U^{(k-1)}+\sum_{i \leqslant l} Q^{(k, i)}+T^{(3, k+1)}=U^{(k-1)}+Q^{(k, l)}+T^{(3, k+1)}
$$

(recall that, by (8), $\sum_{i \leqslant l} Q^{(k, i)}=Q^{(k, l)}$). It follows that $q_{k}^{(l+1)} \notin V_{l}$ for all $l \geqslant 1$; on the other hand, $q_{k}^{(l+1)} \in V_{l+1}$ by the definition of V_{l+1}. Hence,

$$
\begin{equation*}
V_{1} \varsubsetneqq V_{2} \varsubsetneqq \cdots . \tag{11}
\end{equation*}
$$

It follows immediately from (10) and (11) that $C_{2 k}$ is not finitely generated as a T-subspace in $F\left\langle X_{2 k}\right\rangle$. The proof of Proposition 9 is completed.

4.2. Proof of Proposition 10

For all integers i_{1}, \ldots, i_{t} such that $1 \leqslant i_{1}<\cdots<i_{t} \leqslant n$ and all integers $a_{1}, \ldots, a_{n} \geqslant 0$ such that $a_{i_{1}}, \ldots, a_{i_{t}} \geqslant 1$, define $\frac{x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots \ldots x_{n}^{a_{n}}}{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}$ to be the monomial

$$
\frac{x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}} \in F\langle X\rangle
$$

where $b_{j}=a_{j}-1$ if $j \in\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$ and $b_{j}=a_{j}$ otherwise.
Lemma 12. Let $f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ be a multihomogeneous polynomial of the form

$$
\begin{equation*}
f=\alpha x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+\sum_{1 \leqslant i_{1}<\cdots<i_{2 t} \leqslant n} \alpha_{\left(i_{1}, \ldots, i_{2 t} t\right.} \frac{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right] \tag{12}
\end{equation*}
$$

where $\alpha, \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \in F$. Let $L=\langle f\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$.
Suppose that $a_{i}=1$ for some $i, 1 \leqslant i \leqslant n$. Then either $L=F\langle X\rangle$ or $L=\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$ or $L=$ $\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$ for some $\theta \leqslant \frac{n-1}{2}$.

Proof. Note that each multihomogeneous polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ can be written, modulo $T^{(3)}$, in the form (12). Hence, we can assume without loss of generality (permuting the free generators x_{1}, \ldots, x_{n} if necessary) that $a_{1}=1$.

Note that if $\alpha \neq 0$, then $f\left(x_{1}, 1, \ldots, 1\right)=\alpha x_{1} \in L$ so $L=\left\langle x_{1}\right\rangle^{T S}=F\langle X\rangle$. Suppose that $\alpha=0$.
We claim that we may assume without loss of generality that f is of the form $f\left(x_{1}, \ldots, x_{n}\right)=$ $x_{1} g\left(x_{2}, \ldots, x_{n}\right)$, where

$$
\begin{equation*}
g=\sum_{\substack{2 \leqslant i_{1}<\cdots<i_{2 t} \leqslant n \\ t \geqslant 1}} \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \frac{x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right] . \tag{13}
\end{equation*}
$$

Indeed, consider a term $m=\frac{x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}}{x_{i_{1}} \cdots x_{2 \text { t }}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]$ in (12). If $i_{1}>1$ then

$$
\begin{equation*}
m=x_{1} \frac{x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right] . \tag{14}
\end{equation*}
$$

Suppose that $i_{1}=1$; then $m=m^{\prime}\left[x_{1}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]$, where $m^{\prime}=\frac{x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{i 2} \cdots x_{i_{2 t}}}$. We have

$$
\begin{aligned}
m+T^{(3)} & =m^{\prime}\left[x_{1}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]+T^{(3)} \\
& =\left[m^{\prime} x_{1}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]-x_{1}\left[m^{\prime}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]+T^{(3)} \\
& =\left[m^{\prime} x_{1}\left[x_{i_{3}}, x_{i_{4}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right], x_{i_{2}}\right]-x_{1}\left[m^{\prime}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]+T^{(3)} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
m=-x_{1}\left[m^{\prime}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]+h, \tag{15}
\end{equation*}
$$

where $h \in\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$.

It follows easily from (14) and (15) that there exists a multihomogeneous polynomial $g_{1}=$ $g_{1}\left(x_{2}, \ldots, x_{n}\right) \in F\langle X\rangle$ such that $f=x_{1} g_{1}+h_{1}$, where $h_{1} \in\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$. Further, there is a multihomogeneous polynomial g of the form (13) such that $g \equiv g_{1}\left(\bmod T^{(3)}\right)$; then $f=x_{1} g+h_{2}$, where $h_{2} \in\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$. It follows that $L=\left\langle x_{1} g\left(x_{2}, \ldots, x_{n}\right)\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$. Thus, we can assume without loss of generality that $f=x_{1} g\left(x_{2}, \ldots, x_{n}\right)$, where g is of the form (13), as claimed.

If $f=0$ then $L=\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$. Suppose that $f \neq 0$. Let $\theta=\min \left\{t \mid \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \neq 0\right\}$. It is clear that $2 \theta+1 \leqslant n$ so $\theta \leqslant \frac{n-1}{2}$. We can assume that $\alpha_{(2, \ldots, 2 \theta+1)} \neq 0$; then

$$
\begin{align*}
f= & x_{1}\left(\alpha_{(2, \ldots, 2 \theta+1)} \frac{x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{2} \cdots x_{2 \theta+1}}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right. \\
& +\sum_{\substack{2 \leqslant i_{1}<\ldots<i_{2 t} \leqslant n \\
t \geqslant \theta, i_{2 t}>2 \theta+1}} \alpha_{\left(i_{1}, \ldots, i_{2 t}\right.} \frac{x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{\left.i_{2 t-1}, x_{i_{2 t}}\right]}\right) . \tag{16}
\end{align*}
$$

Let $f_{1}\left(x_{1}, \ldots, x_{2 \theta+1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{2 \theta+1}, 1, \ldots, 1\right) \in L$; then

$$
f_{1}=\alpha_{(2, \ldots, 2 \theta+1)} x_{1} \frac{x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}}{x_{2} \cdots x_{2 \theta+1}}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] .
$$

It can be easily seen that the multihomogeneous component of degree 1 in the variables x_{1}, x_{2}, \ldots, $x_{2 \theta+1}$ of the polynomial $f_{1}\left(x_{1}, x_{2}+1, \ldots, x_{2 \theta+1}+1\right)$ is equal to

$$
\alpha_{(2, \ldots, 2 \theta+1)} x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] .
$$

It follows that $x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] \in L$; hence,

$$
\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)} \subseteq L .
$$

On the other hand, it is clear that the polynomial f of the form (16) belongs to the T-subspace of $F\langle X\rangle$ generated by $x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]$; it follows that $\langle f\rangle^{T S} \subseteq\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}$ and, therefore,

$$
L \subseteq\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)} .
$$

Thus, $L=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$. The proof of Lemma 12 is completed.

Proposition 13. Let W be a T-subspace of $F\left\langle X_{2 k}\right\rangle$ such that $C_{2 k} \varsubsetneqq W$. Then $W=F\left\langle X_{2 k}\right\rangle$ or W is generated as a T-subspace by the polynomials

$$
\begin{gathered}
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{\lambda-1}\left(x_{2}, \ldots, x_{2 \lambda-1}\right), \\
x_{1}\left[x_{2}, x_{3}, x_{4}\right], x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right],
\end{gathered}
$$

for some positive integer $\lambda \leqslant k-1$.
Proof. It is well known that over a field F of characteristic 0 each T-ideal in $F\langle X\rangle$ can be generated by its multilinear polynomials. It is easy to check that the same is true for each T-subspace in $F\langle X\rangle$. Over an infinite field F of characteristic $p>0$ each T-ideal in $F\langle X\rangle$ can be generated by all its
multihomogeneous polynomials $f\left(x_{1}, \ldots, x_{n}\right)$ such that, for each $i, 1 \leqslant i \leqslant n, \operatorname{deg}_{x_{i}} f=p^{s_{i}}$ for some integer s_{i} (see, for instance, [2]). Again, the same is true for each T-subspace in $F\langle X\rangle$.

Let $f\left(x_{1}, \ldots, x_{2 k}\right) \in W \backslash C_{2 k}$ be an arbitrary multihomogeneous polynomial such that, for each i $(1 \leqslant i \leqslant 2 k)$, we have either $\operatorname{deg}_{x_{i}} f=p^{s_{i}}$ or $\operatorname{deg}_{x_{i}} f=0$. We may assume that $\operatorname{deg}_{x_{i}} f=p^{s_{i}}$ for $i=$ $1, \ldots, l$ and $\operatorname{deg}_{x_{i}} f=0$ for $i=l+1, \ldots, 2 k$ (that is, $f=f\left(x_{1}, \ldots, x_{l}\right)$). Then we have

$$
f+T_{2 k}^{(3)}=\alpha m+\sum_{1 \leqslant i_{1}<\cdots<i_{2 t} \leqslant l} \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \frac{m}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right]+T_{2 k}^{(3)}
$$

where $\alpha, \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \in F, m=x_{1}^{p^{s_{1}}} \cdots x_{l}^{p^{s_{l}}}$.
If $s_{i}>0$ for all $i=1, \ldots, l$ then it can be easily seen that $f \in C(G)$ so $f \in C_{2 k}$, a contradiction with the choice of f. Thus, $s_{i}=0$ for some $i, 1 \leqslant i \leqslant l$. Let L_{f} be the T-subspace of $F\langle X\rangle$ generated by f, [x_{1}, x_{2}] and $T^{(3)}$. By Lemma 12, we have either $L_{f}=F\langle X\rangle$ or

$$
L_{f}=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}
$$

for some $\theta<k$ (since $f \notin C_{2 k}$, we have $L_{f} \neq\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}$). Note that if $k=1$ (that is, $f=$ $\left.f\left(x_{1}, x_{2}\right)\right)$ then the only possible case is $L_{f}=F\langle X\rangle$.

It is clear that if $L_{f}=F\langle X\rangle$ for some $f \in W \backslash C_{2 k}$ then $x_{1} \in W$ so $W=F\left\langle X_{2 k}\right\rangle$. Suppose that $W \neq F\left\langle X_{2 k}\right\rangle$; then $k>1$ and $L_{f} \neq F\langle X\rangle$ for all $f \in W \backslash C_{2 k}$. For each $f \in W \backslash C_{2 k}$ satisfying the conditions of Lemma 12, the T-subspace L_{f} in $F\langle X\rangle$ can be generated, by Lemma 12, by the polynomials

$$
\begin{equation*}
\left[x_{1}, x_{2}\right], x_{1}\left[x_{2}, x_{3} x_{4}\right] \text { and } x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] \tag{17}
\end{equation*}
$$

for some $\theta=\theta_{f}<k$. Since the polynomials (17) belong to $F\left\langle X_{2 k}\right\rangle$ (recall that $k>1$), the T-subspace in $F\left\langle X_{2 k}\right\rangle$ generated by $f,\left[x_{1}, x_{2}\right]$ and $T^{(3)}$ is also generated (as a T-subspace in $F\left\langle X_{2 k}\right\rangle$) by the polynomials (17). Note that $\left[x_{1}, x_{2}\right]$ and $x_{1}\left[x_{2}, x_{3}, x_{4}\right]$ belong to $C_{2 k}$ so the T-subspace V_{f} in $F\left\langle X_{2 k}\right\rangle$ generated by f and $C_{2 k}$ can be generated by $C_{2 k}$ and $x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]$ for some $\theta=\theta_{f}<k$.

Let $\lambda=\min \left\{\theta \mid x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] \in W\right\}$. Since W is the sum of the T-subspaces V_{f} for all suitable multihomogeneous polynomials $f \in W \backslash C_{2 k}$ and each V_{f} is generated by $C_{2 k}$ and $x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]$ for some $\theta=\theta_{f}<k$, W can be generated as a T-subspace in $F\left\langle X_{2 k}\right\rangle$ by $C_{2 k}$ and $x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right]$. Now it follows easily from Proposition 6 that W can be generated by the polynomials

$$
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{\lambda-1}\left(x_{2}, \ldots, x_{2 \lambda-1}\right)
$$

together with the polynomials

$$
x_{1}\left[x_{2}, x_{3}, x_{4}\right] \text { and } x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right]
$$

where we note that $\lambda<k$.
This completes the proof of Proposition 13.

Proposition 10 follows immediately from Proposition 13. The proof of Theorem 3 is completed.

5. Proof of Theorem 4

Proposition 14. For each $k \geqslant 1, R_{k}$ is not finitely generated as a T-subspace in $F\langle X\rangle$.

Proof. Recall that R_{k} is the T-subspace in $F\langle X\rangle$ generated by $C_{2 k}$ and $T^{(3, k+1)}$. By Proposition $7, C_{2 k}$ is generated as a T-subspace in $F\left\langle X_{2 k}\right\rangle$ by $T_{2 k}^{(3)}$ together with the polynomials (9) and the polynomials $\left\{q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right) \mid l=1,2, \ldots\right\}$. Since $T_{2 k}^{(3)} \subset T^{(3)} \subset T^{(3, k+1)}$, we have

$$
R_{k}=U^{(k-1)}+\sum_{l \geqslant 1} Q^{(k, l)}+T^{(3, k+1)}
$$

where $U^{(k-1)}$ and $Q^{(k, l)}$ are the T-subspaces in $F\langle X\rangle$ generated by the polynomials (9) and by the polynomial $q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right)$, respectively.

Let $V_{l}=U^{(k-1)}+\sum_{i \leqslant l} Q^{(k, i)}+T^{(3, k+1)}$. Then

$$
\begin{equation*}
R_{k}=\bigcup_{l \geqslant 1} V_{l} \tag{18}
\end{equation*}
$$

and $V_{1} \subseteq V_{2} \subseteq \cdots$. Recall that, by (8), $\sum_{i \leqslant l} Q^{(k, i)}=Q^{(k, l)}$ so $V_{l}=U^{(k-1)}+Q^{(k, l)}+T^{(3, k+1)}$. By Proposition $11, Q^{(k, l+1)} \nsubseteq V_{l}$ for all $l \geqslant 1$ so

$$
\begin{equation*}
V_{1} \varsubsetneqq V_{2} \varsubsetneqq \cdots \tag{19}
\end{equation*}
$$

The result follows immediately from (18) and (19).

Lemma 15. Let $f=f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ be a multihomogeneous polynomial of the form

$$
\begin{equation*}
f=\alpha x_{1}^{p^{s_{1}}} \cdots x_{n}^{p^{s_{n}}}+\sum_{i_{1}<\cdots<i_{2 t}} \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \frac{x_{1}^{p^{s_{1}}} \cdots x_{n}^{p^{s_{n}}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right] \tag{20}
\end{equation*}
$$

where $\alpha, \alpha_{\left(i_{1}, \ldots, i_{2 t}\right)} \in F, s_{i} \geqslant 0$ for all i. Let $L=\langle f\rangle^{T S}+R_{k}, k \geqslant 1$. Then one of the following holds:

1. $L=F\langle X\rangle$;
2. $L=R_{k}$;
3. $L=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+R_{k}$ for some $\theta, 1 \leqslant \theta \leqslant k$;
4. $L=\left\langle x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+R_{k}$ for some $s \geqslant 1$.

Proof. Note that each multihomogeneous polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ of degree $p^{s_{i}}$ in $x_{i}(1 \leqslant$ $i \leqslant n$) can be written, modulo $T^{(3)}$, in the form (20). Hence, we can assume without loss of generality (permuting the free generators x_{1}, \ldots, x_{n} if necessary) that $s_{1} \leqslant s_{i}$ for all i. Write $s=s_{1}$.

Suppose that $s=0$. Then, by Lemma 12, we have either

$$
\langle f\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}=F\langle X\rangle
$$

or

$$
\langle f\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}=\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}
$$

or

$$
\langle f\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)}
$$

for some θ. Since $\left\langle\left[x_{1}, x_{2}\right]\right\rangle^{T S}+T^{(3)} \subset R_{k}$ and $x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] \in R_{k}$ if $\theta>k$, we have either $L=F\langle X\rangle$ or $L=R_{k}$ or

$$
L=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+R_{k}
$$

for some $\theta \leqslant k$.
Now suppose that $s>0$; then $s_{i}>0$ for all $i, 1 \leqslant i \leqslant n$. It can be easily seen that, by (7), $x_{1}^{p^{s_{1}}} \cdots x_{n}^{p^{s_{n}}} \in\left(\left\langle x_{1}^{p}\right\rangle^{T S}+T^{(3)}\right) \subset R_{k}$ and, for all $t<k$,

$$
\frac{x_{1}^{p^{s_{1}} \cdots x_{n}^{p_{n}}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right] \in\left(\left\langle x_{1}^{p} q_{t}\left(x_{2}, \ldots, x_{2 t+1}\right)\right\rangle^{T S}+T^{(3)}\right) \subset R_{k}
$$

Also we have $\frac{x_{1}^{p^{s_{1}} \cdots x_{n}^{p_{n}}}}{x_{i_{1}} \cdots x_{i_{2 t}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 t-1}}, x_{i_{2 t}}\right] \in T^{(3, k+1)} \subset R_{k}$ for each $t>k$. It follows that we can assume without loss of generality that the polynomial f is of the form

$$
\begin{equation*}
f=\sum_{1 \leqslant i_{1}<\cdots<i_{2 k} \leqslant n} \alpha_{\left(i_{1}, \ldots, i_{2 k}\right)} \frac{x_{1}^{p^{s_{1}}} \cdots x_{n}^{p^{s_{n}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right] . \tag{21}
\end{equation*}
$$

Note that if $n<2 k$ then $f=0$ and if $n=2 k$ then

$$
f=\alpha_{(1,2, \ldots, 2 k)} \frac{x_{1}^{p^{s_{1}}} \cdots x_{2 k}^{p^{s_{2 k}}}}{x_{1} x_{2} \cdots x_{2 k}}\left[x_{1}, x_{2}\right] \cdots\left[x_{2 k-1}, x_{2 k}\right]
$$

so, by Lemma 8, we have $f \in Q^{(k, s)}+T^{(3)}$, where $s=s_{1}>0$. In both cases we have $f \in R_{k}$ and $L=R_{k}$.

Suppose that $n>2 k$. We claim that we may assume that f is of the form

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{p^{s}} g\left(x_{2}, \ldots, x_{n}\right) \tag{22}
\end{equation*}
$$

where

$$
g=\sum_{2 \leqslant i_{1}<\cdots<i_{2 k} \leqslant n} \alpha_{\left(i_{1}, \ldots, i_{2 k}\right)} \frac{x_{2}^{p^{s_{2}} \cdots x_{n}^{p^{s_{n}}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right]
$$

Indeed, consider a term $m=\frac{x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right]$ in (21). If $i_{1}>1$ then

$$
\begin{equation*}
m=x_{1}^{p^{s}} \frac{x_{2}^{p^{s_{2}}} \cdots x_{n}^{p^{s_{n}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right] \tag{23}
\end{equation*}
$$

Suppose that $i_{1}=1$. Let $a_{i}=p^{s_{i}}$ for all i. Then

$$
\begin{aligned}
m+T^{(3, k+1)} & =x_{1}^{p^{s}-1} \frac{x_{2}^{p^{s_{2}}} \cdots x_{n}^{p^{s_{n}}}}{x_{i_{2}} \cdots x_{i_{2 k}}}\left[x_{1}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right]+T^{(3, k+1)} \\
& =x_{j_{1}}^{a_{j_{1}}} \cdots x_{j_{l}}^{a_{j_{l}}} x_{1}^{a_{1}-1} \cdots x_{i_{2 k}}^{a_{i_{2 k}}-1}\left[x_{1}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right]+T^{(3, k+1)} \\
& =x_{1}^{a_{1}-1} x_{j_{1}}^{a_{j_{1}}} \cdots x_{j_{l}}^{a_{j_{l}}}\left[x_{1}, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}}-1} m^{\prime}+T^{(3, k+1)}
\end{aligned}
$$

where

$$
\left.m^{\prime}=x_{i_{3}}^{a_{i_{3}}-1}\left[x_{i_{3}}, x_{i_{4}}\right] x_{i_{4}}^{a_{i_{4}}-1} \cdots x_{i_{2 k-1}}^{a_{i_{2 k-1}}-1}{ }_{\left[x_{i_{2 k-1}}\right.}, x_{i_{2 k}}\right] x_{i_{2 k}}^{a_{i_{2 k}-1}}
$$

$\left\{j_{1}, \ldots, j_{l}\right\}=\{1, \ldots, n\} \backslash\left\{1, i_{2}, \ldots, i_{2 k}\right\}, l=n-2 k>0$. Suppose that

$$
a_{1}=a_{j_{1}}=a_{j_{2}}=\cdots=a_{j_{z}} \quad \text { and } \quad a_{j_{z+1}}, a_{j_{z+2}}, \ldots, a_{j_{l}}>a_{1}
$$

Let

$$
u=x_{1} x_{j_{1}} \cdots x_{j_{z}} x_{j_{z+1}}^{a_{j_{z+1}}^{\prime}} \cdots x_{j_{l}}^{a_{j_{l}}^{\prime}}
$$

where $a_{i}^{\prime}=a_{i} / p^{s}$ for all i. Let

$$
h=h\left(x_{1}, \ldots, x_{2 k}\right)=x_{1}^{a_{1}-1}\left[x_{1}, x_{2}\right] x_{2}^{a_{i_{2}}-1} \cdots x_{2 k-1}^{a_{i_{2 k-1}}-1}\left[x_{2 k-1}, x_{2 k}\right] x_{2 k}^{a_{i_{2 k}-1}}
$$

By (4), $h \in C(G)$; hence, $h \in C_{2 k} \subset R_{k}$. It follows that $h\left(u, x_{i_{2}}, \ldots, x_{i_{2 k}}\right) \in R_{k}$, that is,

$$
\begin{equation*}
u^{p^{s}-1}\left[u, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}}-1} m^{\prime} \in R_{k} \tag{24}
\end{equation*}
$$

Since, by (7), $\left[v_{1}^{p}, v_{2}\right] \in T^{(3)} \subset T^{(3, k+1)}$ for all $v_{1}, v_{2} \in F\langle X\rangle$, we have

$$
\begin{aligned}
& u^{p^{s}-1}\left[u, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}}-1} m^{\prime}+T^{(3, k+1)} \\
&=\left(x_{1} x_{j_{1}} \cdots x_{j_{z}}\right)^{p^{s}-1} x_{j_{z+1}}^{a_{j_{z+1}}} \cdots x_{j_{l}}^{a_{j_{l}}}\left[x_{1} x_{j_{1}} \cdots x_{j_{z}}, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}}-1} m^{\prime}+T^{(3, k+1)} \\
&=\left(x_{1} x_{j_{1}} \cdots x_{j_{z}}\right)^{p^{s}-1} x_{j_{z+1}}^{a_{j_{z+1}}} \cdots x_{j_{l}}^{a_{j_{l}}}\left[x_{1}, x_{i_{2}}\right] x_{j_{1}} \cdots x_{j_{z}} x_{i_{2}}^{a_{i_{2}}-1} m^{\prime} \\
&+\left(x_{1} x_{j_{1}} \cdots x_{j_{z}}\right)^{p^{s}-1} x_{j_{z+1}}^{a_{j_{z+1}}} \cdots x_{j_{l}}^{a_{j_{l}}} x_{1}\left[x_{j_{1}} \cdots x_{j_{z}}, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}-1}} m^{\prime}+T^{(3, k+1)} \\
&= m+x_{1}^{p^{s}} x_{j_{1}}^{p^{s}-1} \cdots x_{j_{z}}^{p^{s}-1} x_{j_{z+1}}^{a_{j_{z+1}}} \cdots x_{j_{l}}^{a_{j_{l}}}\left[x_{j_{1}} \cdots x_{j_{z}}, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}-1}} m^{\prime}+T^{(3, k+1)}
\end{aligned}
$$

where the second summand is not present if $z=0$ (that is, if $a_{j_{i}}>a_{1}$ for all i), in which case $m \in R_{k}$. Since

$$
\begin{aligned}
& x_{1}^{p^{s}} x_{j_{1}}^{p^{s}-1} \cdots x_{j_{z}}^{p^{s}-1} x_{j_{z+1}}^{a_{j_{z+1}}} \cdots x_{j_{l}}^{a_{j_{l}}}\left[x_{j_{1}} \cdots x_{j_{z}}, x_{i_{2}}\right] x_{i_{2}}^{a_{i_{2}}-1} m^{\prime}+T^{(3, k+1)} \\
& \quad=x_{1}^{p^{s}} \sum_{2 \leqslant i_{1}<\cdots<i_{2 k}} \beta_{\left(i_{1}, \ldots, i_{2 k}\right)} \frac{x_{2}^{p^{s_{2}}} \cdots x_{n}^{p^{s_{n}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right]+T^{(3, k+1)}
\end{aligned}
$$

for some $\beta_{\left(i_{1}, \ldots, i_{2 k}\right)} \in F$, we have

$$
\begin{equation*}
m+x_{1}^{p^{s}} \sum_{2 \leqslant i_{1}<\cdots<i_{2 k}} \beta_{\left(i_{1}, \ldots, i_{2 k}\right)} \frac{x_{2}^{p^{s_{2}} \cdots x_{n}^{p^{s n}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right] \in R_{k} \tag{25}
\end{equation*}
$$

It is clear that, using (23) and (25), we can write $f=f_{1}+f_{2}$, where

$$
f_{1}=x_{1}^{p^{s}}\left(\sum_{2 \leqslant i_{1}<\cdots<i_{2 k}} \gamma_{\left(i_{1}, \ldots, i_{2 k}\right)} \frac{x_{2}^{p^{s_{2}} \cdots x_{n}^{p^{s_{n}}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right]\right)
$$

is of the form (22) and $f_{2} \in R_{k}$. Then we have $\langle f\rangle^{T S}+R_{k}=\left\langle f_{1}\right\rangle^{T S}+R_{k}$. Thus, we can assume (replacing f with f_{1}) that the polynomial f is of the form (22), as claimed.

If $f=0$ then $L=R_{k}$. Suppose that $f \neq 0$. Then we can assume without loss of generality that $\alpha_{(2,3, \ldots, 2 k+1)} \neq 0$. It follows that the T-subspace $\langle f\rangle^{T S}$ contains the polynomial

$$
\begin{aligned}
h\left(x_{1}, \ldots, x_{2 k+1}\right) & =\alpha_{(2,3, \ldots, 2 k+1)}^{-1} f\left(x_{1}, \ldots, x_{2 k+1}, 1,1, \ldots, 1\right) \\
& =x_{1}^{p^{s}} x_{2}^{p^{s_{2}-1}} \cdots x_{2 k+1}^{p^{s_{2 k+1}-1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 k}, x_{2 k+1}\right]}
\end{aligned}
$$

Then $\langle f\rangle^{T S}+R_{k}$ also contains the homogeneous component of the polynomial $h\left(x_{1}+1, \ldots, x_{2 k+1}+1\right)$ of degree p^{s} in each variable $x_{i}(i=1,2, \ldots, 2 k+1)$, that is equal, modulo $T^{(3)}$, to

$$
\gamma x_{1}^{p^{s}} x_{2}^{p^{s}-1} \cdots x_{2 k+1}^{p^{s}-1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 k}, x_{2 k+1}\right]
$$

where $\gamma=\prod_{i=2}^{2 k+1}\binom{p^{s_{i}}-1}{p^{s}-1} \equiv 1(\bmod p)$. It follows that

$$
x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right) \in\langle f\rangle^{T S}+R_{k}
$$

On the other hand, for all $i_{1}, \ldots, i_{2 k}$ such that $2 \leqslant i_{1}<\cdots<i_{2 k} \leqslant n$, we have

$$
x_{1}^{p^{s}} \frac{x_{2}^{p^{s_{2}}} \cdots x_{n}^{p^{s_{n}}}}{x_{i_{1}} \cdots x_{i_{2 k}}}\left[x_{i_{1}}, x_{i_{2}}\right] \cdots\left[x_{i_{2 k-1}}, x_{i_{2 k}}\right] \in\left\langle x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+T^{(3, k+1)}
$$

(recall that $s_{i} \geqslant s$ for all i) so

$$
f \in\left\langle x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+R_{k}
$$

Thus,

$$
\langle f\rangle^{T S}+R_{k}=\left\langle x_{1}^{p^{S}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+R_{k}
$$

where $s \geqslant 1$. The proof of Lemma 15 is completed.
Proposition 16. Let W be a T-subspace of $F\langle X\rangle$ such that $R_{k} \varsubsetneqq W$. Then one of the following holds:

1. $W=F\langle X\rangle$.
2. W is generated as a T-subspace by the polynomials

$$
\begin{gathered}
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{\lambda-1}\left(x_{2}, \ldots, x_{2 \lambda-1}\right) \\
x_{1}\left[x_{2}, x_{3}, x_{4}\right], x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right]
\end{gathered}
$$

for some $\lambda \leqslant k$.
3. W is generated as a T-subspace by the polynomials

$$
\begin{gathered}
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{k-1}\left(x_{2}, \ldots, x_{2 k-1}\right), \\
\left\{q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right) \mid 1 \leqslant l \leqslant \mu-1\right\}, x_{1}^{p^{\mu}} q_{k}^{(\mu)}\left(x_{2}, \ldots, x_{2 k+1}\right), \\
x_{1}\left[x_{2}, x_{3}, x_{4}\right], x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 k+2}, x_{2 k+3}\right]
\end{gathered}
$$

for some $\mu \geqslant 1$.
Proof. Let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be an arbitrary polynomial in $W \backslash R_{k}$ satisfying the conditions of Lemma 15, that is, an arbitrary multihomogeneous polynomial such that $\operatorname{deg}_{x_{i}} f=p^{s_{i}}$ for some $s_{i} \geqslant 0$ $(1 \leqslant i \leqslant n)$. Let $L_{f}=\langle f\rangle^{T S}+R_{k}$. By Lemma 15 , we have either $L_{f}=F\langle X\rangle$ or

$$
L_{f}=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+R_{k}
$$

for some $\theta \leqslant k$ or

$$
L_{f}=\left\langle x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+R_{k}
$$

for some $s \geqslant 1$.
Note that W is generated as a T-subspace in $F\langle X\rangle$ by R_{k} together with the polynomials $f \in W \backslash R_{k}$ satisfying the conditions of Lemma 15 . It follows that $W=\sum L_{f}$, where the sum is taken over all the polynomials $f \in W \backslash R_{k}$ satisfying these conditions.

It is clear that if $L_{f}=F\langle X\rangle$ for some $f \in W \backslash R_{k}$ then $W=F\langle X\rangle$. Suppose that $L_{f} \neq F\langle X\rangle$ for all $f \in W \backslash R_{k}$. Let, for some $f \in W \backslash R_{k}$, we have $L_{f}=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right]\right\rangle^{T S}+R_{k}, \theta \leqslant k$. Define $\lambda=\min \left\{\theta \mid x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] \in W\right\}$; note that $\lambda \leqslant k$. We have

$$
x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \theta}, x_{2 \theta+1}\right] \in\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right]\right\rangle^{T S}
$$

for all $\theta \geqslant \lambda$ and

$$
x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right) \in\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right]\right\rangle^{T S}+T^{(3)}
$$

for all s. Hence, $W=\left\langle x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right]\right\rangle^{T S}+R_{k}$, where $\lambda \leqslant k$. It follows that W is generated as a T-subspace by the polynomials

$$
\begin{gathered}
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{\lambda-1}\left(x_{2}, \ldots, x_{2 \lambda-1}\right), \\
x_{1}\left[x_{2}, x_{3}, x_{4}\right], x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 \lambda}, x_{2 \lambda+1}\right],
\end{gathered}
$$

$\lambda \leqslant k$.
Now suppose that, for all $f \in W \backslash R_{k}$ satisfying the conditions of Lemma 15 , we have

$$
L_{f}=\left\langle x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+R_{k}
$$

for some $s=s_{f} \geqslant 1$. Note that if $s \leqslant r$ then

$$
x_{1}^{p^{r}} q_{k}^{(r)}\left(x_{2}, \ldots, x_{2 k+1}\right) \in\left\langle x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}+T^{(3)}
$$

Take $\mu=\min \left\{s \mid x_{1}^{p^{s}} q_{k}^{(s)}\left(x_{2}, \ldots, x_{2 k+1}\right) \in W\right\}$. Then we have $W=R_{k}+\left\langle x_{1}^{p^{\mu}} q_{k}^{(\mu)}\left(x_{2}, \ldots, x_{2 k+1}\right)\right\rangle^{T S}$ and it is straightforward to check that W can be generated as a T-subspace in $F\langle X\rangle$ by the polynomials

$$
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{k-1}\left(x_{2}, \ldots, x_{2 k-1}\right)
$$

and the polynomials $\left\{q_{k}^{(l)}\left(x_{1}, \ldots, x_{2 k}\right) \mid 1 \leqslant l \leqslant \mu-1\right\}, x_{1}^{p^{\mu}} q_{k}^{(\mu)}\left(x_{2}, \ldots, x_{2 k+1}\right)$ together with the polynomials

$$
x_{1}\left[x_{2}, x_{3}, x_{4}\right] \text { and } x_{1}\left[x_{2}, x_{3}\right] \cdots\left[x_{2 k+2}, x_{2 k+3}\right]
$$

This completes the proof of Proposition 16.

Proposition 16 immediately implies the following corollary.

Corollary 17. Let W be a T-subspace of $F\langle X\rangle$ such that $R_{k} \varsubsetneqq W(k \geqslant 1)$. Then W is a finitely generated T-subspace in $F\langle X\rangle$.

Proposition 18. If $k \neq l$ then $R_{k} \neq R_{l}$.

Proof. Suppose, in order to get a contradiction, that $R_{k}=R_{l}$ for some $k, l, k<l$. Then we have $C(G) \subseteq R_{l}$.

Indeed, by Theorem 5, the T-subspace $C(G)$ is generated by the polynomial $x_{1}\left[x_{2}, x_{3}, x_{4}\right]$ and the polynomials $x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{n}\left(x_{2}, \ldots, x_{2 n+1}\right), \ldots$ Clearly,

$$
x_{1}\left[x_{2}, x_{3}, x_{4}\right] \in T^{(3)} \subset R_{l} .
$$

Further,

$$
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{l-1}\left(x_{2}, \ldots, x_{2 l-1}\right) \in R_{l}
$$

by the definition of R_{l} and

$$
x_{1}^{p} q_{k+1}\left(x_{2}, \ldots, x_{2 k+3}\right), x_{1}^{p} q_{k+2}\left(x_{2}, \ldots, x_{2 k+5}\right), \ldots \in T^{(3, k+1)} \subseteq R_{k}=R_{l}
$$

by the definition of $T^{(3, k+1)}$. Since $k<l$, we have

$$
x_{1}^{p}, x_{1}^{p} q_{1}\left(x_{2}, x_{3}\right), \ldots, x_{1}^{p} q_{k}\left(x_{2}, \ldots, x_{2 k+1}\right), x_{1}^{p} q_{k+1}\left(x_{2}, \ldots, x_{2 k+3}\right), \ldots \in R_{l} .
$$

Hence, all the generators of the T-subspace $C(G)$ belong to R_{l} so $C(G) \subseteq R_{l}$, as claimed.
Note that $T^{(3, k+1)} \subseteq R_{l}$ and $T^{(3, k+1)} \nsubseteq C(G)$ so $C(G) \varsubsetneqq R_{l}$. By Theorem $1, C(G)$ is a limit T-subspace so each T-subspace W such that $C(G) \varsubsetneqq W$ is finitely generated. In particular, R_{l} is a finitely generated T-subspace. On the other hand, by Proposition 14 , the T-subspace R_{l} is not finitely generated. This contradiction proves that $R_{k} \neq R_{l}$ if $k \neq l$, as required.

Theorem 4 follows immediately from Proposition 14, Corollary 17 and Proposition 18.

Acknowledgments

This work was partially supported by DPP/UnB and by CNPq-FAPDF PRONEX grant 2009/00091-0 (193.000.580/2009). The work of the second and the third authors was partially supported by CNPq; the work of the third author was also partially supported by FEMAT. Thanks are due to the referee whose remarks and suggestions improved the paper.

References

[1] E.V. Aladova, A.N. Krasilnikov, Polynomial identities in nil-algebras, Trans. Amer. Math. Soc. 361 (2009) 5629-5646.
[2] Yu.A. Bahturin, Identical Relations in Lie Algebras, VNU Science Press, b.v., Utrecht, 1987 (translated from the Russian).
[3] C. Bekh-Ochir, S.A. Rankin, The central polynomials of the finite dimensional unitary and nonunitary Grassmann algebras, Asian-Eur. J. Math. 3 (2010) 235-249.
[4] C. Bekh-Ochir, S.A. Rankin, The central polynomials of the infinite dimensional unitary and nonunitary Grassmann algebras, J. Algebra Appl. 9 (2010) 687-704.
[5] A.Ya. Belov, On non-Specht varieties, Fundam. Prikl. Mat. 5 (1999) 47-66.
[6] A.Ya. Belov, Counterexamples to the Specht problem, Sb. Math. 191 (2000) 329-340.
[7] A.Ya. Belov, The local finite basis property and the local representability of varieties of associative rings, Izv. Math. 74 (2010) 1-126.
[8] A. Brandão Jr., P. Koshlukov, A. Krasilnikov, E.A. Silva, The central polynomials for the Grassmann algebra, Israel J. Math. 179 (2010) 127-144.
[9] V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer, Singapore, 1999.
[10] V. Drensky, E. Formanek, Polynomial Identity Rings, Adv. Courses Math. CRM Barcelona, Birkhäuser-Verlag, Basel, 2004.
[11] A. Giambruno, P. Koshlukov, On the identities of the Grassmann algebras in characteristic $p>0$, Israel J. Math. 122 (2001) 305-316.
[12] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., vol. 122, American Mathematical Society, Providence, RI, 2005.
[13] A.V. Grishin, Examples of T-spaces and T-ideals of characteristic 2 without the finite basis property, Fundam. Prikl. Mat. 5 (1999) 101-118.
[14] A.V. Grishin, On non-Spechtianness of the variety of associative rings that satisfy the identity $x^{32}=0$, Electron. Res. Announc. Amer. Math. Soc. 6 (2000) 50-51 (electronic).
[15] A.V. Grishin, On the structure of the centre of a relatively free Grassmann algebra, Russian Math. Surveys 65 (2010) 781782.
[16] A.V. Grishin, L.M. Tsybulya, On the multiplicative and T-space structure of the relatively free Grassmann algebra, Sb. Math. 200 (2009) 1299-1338.
[17] A.V. Grishin, V.V. Shchigolev, T-spaces and their applications, J. Math. Sci. (N. Y.) 134 (2006) 1799-1878.
[18] A. Kanel-Belov, L.H. Rowen, Computational Aspects of Polynomial Identities, A K Peters, Ltd., Wellesley, MA, 2005.
[19] A.R. Kemer, Finite basability of identities of associative algebras, Algebra Logic 26 (1987) 362-397.
[20] A.R. Kemer, Ideal of Identities of Associative Algebras, Transl. Math. Monogr., vol. 87, American Mathematical Society, Providence, RI, 1991.
[21] P. Koshlukov, A. Krasilnikov, E.A. Silva, The central polynomials for the finite dimensional Grassmann algebras, Algebra Discrete Math. 3 (2009) 69-76.
[22] D. Krakowski, A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973) $429-438$.
[23] V.N. Latyshev, On the choice of basis in a T-ideal, Sibirsk. Mat. Zh. 4 (1963) 1122-1126.
[24] A. Regev, Grassmann algebras over finite fields, Comm. Algebra 19 (1991) 1829-1849.
[25] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, 1980.
[26] V.V. Shchigolev, Examples of infinitely based T-ideals, Fundam. Prikl. Mat. 5 (1999) 307-312.
[27] V.V. Shchigolev, Examples of infinitely basable T-spaces, Sb. Math. 191 (2000) 459-476.
[28] V.V. Shchigolev, Finite basis property of T-spaces over fields of characteristic zero, Izv. Math. 65 (2001) 1041-1071.

[^0]: * Corresponding author.

 E-mail addresses: dimas@mat.unb.br (D.J. Gonçalves), alexei@unb.br (A. Krasilnikov), irina@mat.unb.br (I. Sviridova).

