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Let F 〈X〉 be the free unitary associative algebra over a field F
on the set X = {x1, x2, . . .}. A vector subspace V of F 〈X〉 is
called a T -subspace (or a T -space) if V is closed under all
endomorphisms of F 〈X〉. A T -subspace V in F 〈X〉 is limit if every
larger T -subspace W � V is finitely generated (as a T -subspace)
but V itself is not. Recently Brandão Jr., Koshlukov, Krasilnikov and
Silva have proved that over an infinite field F of characteristic
p > 2 the T -subspace C(G) of the central polynomials of the
infinite dimensional Grassmann algebra G is a limit T -subspace.
They conjectured that this limit T -subspace in F 〈X〉 is unique, that
is, there are no limit T -subspaces in F 〈X〉 other than C(G). In the
present article we prove that this is not the case. We construct
infinitely many limit T -subspaces Rk (k � 1) in the algebra F 〈X〉
over an infinite field F of characteristic p > 2. For each k � 1,
the limit T -subspace Rk arises from the central polynomials in 2k
variables of the Grassmann algebra G .

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let F be a field, X a non-empty set and let F 〈X〉 be the free unitary associative algebra over F on
the set X . Recall that a T -ideal of F 〈X〉 is an ideal closed under all endomorphisms of F 〈X〉. Similarly,
a T -subspace (or a T -space) is a vector subspace in F 〈X〉 closed under all endomorphisms of F 〈X〉.

Let I be a T -ideal in F 〈X〉. A subset S ⊂ I generates I as a T -ideal if I is the minimal T -ideal in
F 〈X〉 containing S . A T -subspace of F 〈X〉 generated by S (as a T -subspace) is defined in a similar
way. It is clear that the T -ideal (T -subspace) generated by S is the ideal (vector subspace) generated
by all the polynomials f (g1, . . . , gm), where f = f (x1, . . . , xm) ∈ S and gi ∈ F 〈X〉 for all i.
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Note that if I is a T -ideal in F 〈X〉 then T -ideals and T -subspaces can be defined in the quotient
algebra F 〈X〉/I in a natural way. We refer to [9,10,12,18,20,25] for the terminology and basic results
concerning T -ideals and algebras with polynomial identities and to [4,8,16–18] for an account of the
results concerning T -subspaces.

From now on we write X for {x1, x2, . . .} and Xn for {x1, . . . , xn}, Xn ⊂ X . If F is a field of charac-
teristic 0 then every T -ideal in F 〈X〉 is finitely generated (as a T -ideal); this is a celebrated result of
Kemer [19,20] that solves the Specht problem. Moreover, over such a field F each T -subspace in F 〈X〉
is finitely generated; this has been proved more recently by Shchigolev [28]. Very recently Belov [7]
has proved that, for each Noetherian commutative and associative unitary ring K and each n ∈ N,
each T -ideal in K 〈Xn〉 is finitely generated.

On the other hand, over a field F of characteristic p > 0 there are T -ideals in F 〈X〉 that are not
finitely generated. This has been proved by Belov [5], Grishin [13] and Shchigolev [26] (see also [6,
14,18]). The construction of such T -ideals uses the non-finitely generated T -subspaces in F 〈X〉 con-
structed by Grishin [13] for p = 2 and by Shchigolev [27] for p > 2 (see also [14]). Shchigolev [27]
also constructed non-finitely generated T -subspaces in F 〈Xn〉, where n > 1 and F is a field of charac-
teristic p > 2.

A T -subspace V ∗ in F 〈X〉 is called limit if every larger T -subspace W � V ∗ is finitely generated
as a T -subspace but V ∗ itself is not. A limit T -ideal is defined in a similar way. It follows easily from
Zorn’s lemma that if a T -subspace V is not finitely generated then it is contained in some limit
T -subspace V ∗ . Similarly, each non-finitely generated T -ideal is contained in a limit T -ideal. In this
sense limit T -subspaces (T -ideals) form a “border” between those T -subspaces (T -ideals) which are
finitely generated and those which are not.

By [5,13,26], over a field F of characteristic p > 0 the algebra F 〈X〉 contains non-finitely generated
T -ideals; therefore, it contains at least one limit T -ideal. No example of a limit T -ideal is known
so far. Even the cardinality of the set of limit T -ideals in F 〈X〉 is unknown; it is possible that, for
a given field F of characteristic p > 0, there is only one limit T -ideal. The non-finitely generated
T -ideals constructed in [1] come closer to being limit than any other known non-finitely generated
T -ideal. However, it is unlikely that these T -ideals are limit.

About limit T -subspaces in F 〈X〉 we know more than about limit T -ideals. Recently Brandão Jr.,
Koshlukov, Krasilnikov and Silva [8] have found the first example of a limit T -subspace in F 〈X〉 over
an infinite field F of characteristic p > 2. To state their result precisely we need some definitions.

For an associative algebra A, let Z(A) denote the centre of A,

Z(A) = {z ∈ A | za = az for all a ∈ A}.
A polynomial f (x1, . . . , xn) is a central polynomial for A if f (a1, . . . ,an) ∈ Z(A) for all a1, . . . ,an ∈ A.
For a given algebra A, its central polynomials form a T -subspace C(A) in F 〈X〉. However, not every
T -subspace can be obtained as the T -subspace of the central polynomials of some algebra.

Let V be the vector space over a field F of characteristic �= 2, with a countable infinite basis
e1, e2, . . . and let V s denote the subspace of V spanned by e1, . . . , es (s = 2,3, . . .). Let G and Gs
denote the unitary Grassmann algebras of V and V s , respectively. Then as a vector space G has a
basis that consists of 1 and of all monomials ei1 ei2 · · · eik , i1 < i2 < · · · < ik , k � 1. The multiplication
in G is induced by eie j = −e jei for all i and j. The algebra Gs is the subalgebra of G generated
by e1, . . . , es , and dim Gs = 2s . We refer to G and Gs (s = 2,3, . . .) as to the infinite dimensional
Grassmann algebra and the finite dimensional Grassmann algebras, respectively.

The result of [8] concerning a limit T -subspace is as follows:

Theorem 1. (See [8].) Let F be an infinite field of characteristic p > 2 and let G be the infinite dimensional
Grassmann algebra over F . Then the vector space C(G) of the central polynomials of the algebra G is a limit
T -space in F 〈X〉.

It was conjectured in [8] that a limit T -subspace in F 〈X〉 is unique, that is, C(G) is the only limit
T -subspace in F 〈X〉. In the present article we show that this is not the case. Our first main result is
as follows.
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Theorem 2. Over an infinite field F of characteristic p > 2 the algebra F 〈X〉 contains infinitely many limit
T -subspaces.

Let F be an infinite field of characteristic p > 0. In order to prove Theorem 2 and to find infinitely
many limit T -subspaces in F 〈X〉 we first find limit T -subspaces in F 〈Xn〉 for n = 2k, k � 1. Let Cn =
C(G) ∩ F 〈Xn〉 be the set of the central polynomials in at most n variables of the unitary Grassmann
algebra G . Our second main result is as follows.

Theorem 3. Let F be an infinite field of characteristic p > 2. If n = 2k, k � 1, then Cn is a limit T -subspace
in F 〈Xn〉. If n = 2k + 1, k > 1, then Cn is finitely generated as a T -subspace in F 〈Xn〉.

Remark. We do not know whether the T -subspace C3 is finitely generated.

Define [a,b] = ab − ba, [a,b, c] = [[a,b], c]. For k � 1, let T (3,k) denote the T -ideal in F 〈X〉 gen-
erated by [x1, x2, x3] and [x1, x2][x3, x4] · · · [x2k−1, x2k] and let Rk denote the T -subspace in F 〈X〉
generated by C2k and T (3,k+1) . Theorem 2 follows immediately from our third main result that is
as follows.

Theorem 4. Let F be an infinite field of characteristic p > 2. For each k � 1, Rk is a limit T -subspace in F 〈X〉.
If k �= l then Rk �= Rl.

Now we modify the conjecture made in [8].

Problem 1. Let F be an infinite field of characteristic p > 2. Is each limit T -subspace in F 〈X〉 equal
to either C(G) or Rk for some k? In other words, are C(G) and Rk (k � 1) the only limit T -subspaces
in F 〈X〉?

In the proof of Theorems 3 and 4 we will use the following theorem that has been proved inde-
pendently by Bekh-Ochir and Rankin [4], by Brandão Jr., Koshlukov, Krasilnikov and Silva [8] and by
Grishin [15]. Let

q(x1, x2) = xp−1
1 [x1, x2]xp−1

2 , qk(x1, . . . , x2k) = q(x1, x2) · · ·q(x2k−1, x2k).

Theorem 5. (See [4,8,15].) Over an infinite field F of a characteristic p > 2 the vector space C(G) of the central
polynomials of G is generated (as a T -space in F 〈X〉) by the polynomial

x1[x2, x3, x4]

and the polynomials

xp
1 , xp

1 q1(x2, x3), xp
1 q2(x2, x3, x4, x5), . . . , xp

1 qn(x2, . . . , x2n+1), . . . .

In order to prove Theorems 3 and 4 we need some auxiliary results. Define, for each l � 0,

q(l)(x1, x2) = xpl−1
1 [x1, x2]xpl−1

2 ,

q(l)
k (x1, . . . , x2k) = q(l)(x1, x2) · · ·q(l)(x2k−1, x2k).

Recall that Cn = C(G) ∩ F 〈Xn〉. To prove Theorem 3 we need the following assertions that are also of
independent interest.



D.J. Gonçalves et al. / Journal of Algebra 371 (2012) 156–174 159
Proposition 6. If n = 2k, k > 1, then Cn is generated as a T -subspace in F 〈Xn〉 by the polynomials

x1[x2, x3, x4], xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qk−1(x2, . . . , x2k−1)

together with the polynomials

{
q(l)

k (x1, . . . , x2k)
∣∣ l = 1,2, . . .

}
.

If n = 2k + 1, k > 1, then Cn is generated as a T -subspace in F 〈Xn〉 by the polynomials

x1[x2, x3, x4], xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qk(x2, . . . , x2k+1).

Let T (3) denote the T -ideal in F 〈X〉 generated by [x1, x2, x3]. Define T (3)
n = T (3) ∩ F 〈Xn〉. We deduce

Proposition 6 from the following.

Proposition 7. If n = 2k, k � 1, then Cn/T (3)
n is generated as a T -subspace in F 〈Xn〉/T (3)

n by the polyno-
mials

xp
1 + T (3)

n , xp
1 q1(x2, x3) + T (3)

n , . . . , xp
1 qk−1(x2, . . . , x2k−1) + T (3)

n (1)

together with the polynomials

{
q(l)

k (x1, . . . , x2k) + T (3)
n

∣∣ l = 1,2, . . .
}
. (2)

If n = 2k + 1, k � 1, then the T -subspace Cn/T (3)
n in F 〈Xn〉/T (3)

n is generated by the polynomials

xp
1 + T (3)

n , xp
1 q1(x2, x3) + T (3)

n , . . . , xp
1 qk(x2, . . . , x2k+1) + T (3)

n . (3)

Remarks. 1. For each k � 1, the limit T -subspace Rk does not coincide with the T -subspace C(A) of
all central polynomials of any algebra A.

Indeed, suppose that Rk = C(A) for some A. Let T (A) be the T -ideal of all polynomial identities
of A. Then, for each f ∈ C(A) and each g ∈ F 〈X〉, we have [ f , g] ∈ T (A). Since [x1, x2] ∈ Rk = C(A),
we have [x1, x2, x3] ∈ T (A). It follows that T (3) ⊆ T (A).

It is well known that if a T -ideal T in the free unitary algebra F 〈X〉 over an infinite field F con-
tains T (3) then either T = T (3) or T = T (3,n) for some n (see, for instance, [11, Proof of Corollary 7]).
Hence, either T (A) = T (3) or T (A) = T (3,n) for some n. Note that T (3) = T (G) and T (3,n) = T (G2n−1)

(see, for example, [11]) so we have either T (A) = T (G) or T (A) = T (G2n−1) for some n.
For an associative algebra B , we have f (x1, . . . , xr) ∈ C(B) if and only if [ f (x1, . . . , xr), xr+1] ∈ T (B).

It follows that if B1, B2 are algebras such that T (B1) = T (B2) then C(B1) = C(B2). In particular, if
T (A) = T (G) then C(A) = C(G), and if T (A) = T (G2n−1) then C(A) = C(G2n−1).

However,

x1[x2, x3] · · · [x2k+2, x2k+3] ∈ Rk \ C(G)

so Rk �= C(G). Furthermore, the T -subspaces C(Gs) of the central polynomials of the finite di-
mensional Grassmann algebras Gs (s = 2,3, . . .) have been described recently by Bekh-Ochir and
Rankin [3] and by Koshlukov, Krasilnikov and Silva [21]; these T -subspaces are finitely generated
and do not coincide with Rk . This contradiction proves that Rk �= C(A) for any algebra A, as claimed.

2. For an associative unitary algebra A, let Cn(A) and Tn(A) denote the set of the central poly-
nomials and the set of the polynomial identities in n variables x1, . . . , xn of A, respectively; that is,
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Cn(A) = C(A) ∩ F 〈Xn〉 and Tn(A) = T (A) ∩ F 〈Xn〉. Then Cn(A) is a T -subspace and Tn(A) is a T -ideal
in F 〈Xn〉.

Note that, by Belov’s result [7], the T -ideal Tn(A) is finitely generated for each algebra A over a
Noetherian ring and each positive integer n. On the other hand, there exist unitary algebras A over an
infinite field F of characteristic p > 2 such that, for some n > 1, the T -subspace Cn(A) of the central
polynomials of A in n variables is not finitely generated. Moreover, such an algebra A can be finite
dimensional. Indeed, take A = Gs , where s � n. It can be checked that C(Gs) ∩ F 〈Xn〉 = Cn if s � n. By
Proposition 9, the T -subspace C2k(Gs) in F 〈X2k〉 is not finitely generated provided that s � 2k.

However, the following problem remains open.

Problem 2. Does there exist a finite dimensional algebra A over an infinite field F of characteristic
p > 0 such that the T -subspace C(A) of all central polynomials of A in F 〈X〉 is not finitely generated?

Note that a similar problem for the T -ideal T (A) of all polynomial identities of a finite dimensional
algebra A over an infinite field F of characteristic p > 0 remains open as well; it is one of the most
interesting and long-standing open problems in the area.

2. Preliminaries

Let 〈S〉T S denote the T -subspace generated by a set S ⊆ F 〈X〉. Then 〈S〉T S is the span of all
polynomials f (g1, . . . , gn), where f ∈ S and gi ∈ F 〈X〉 for all i. It is clear that for any polynomials
f1, . . . , f s ∈ F 〈X〉 we have 〈 f1, . . . , f s〉T S = 〈 f1〉T S + · · · + 〈 f s〉T S .

Recall that a polynomial f (x1, . . . , xn) ∈ F 〈X〉 is called a polynomial identity in an algebra A over F
if f (a1, . . . ,an) = 0 for all a1, . . . ,an ∈ A. For a given algebra A, its polynomial identities form a
T -ideal T (A) in F 〈X〉 and for every T -ideal I in F 〈X〉 there is an algebra A such that I = T (A), that
is, I is the ideal of all polynomial identities satisfied in A. Note that a polynomial f = f (x1, . . . , xn) is
central for an algebra A if and only if [ f , xn+1] is a polynomial identity of A.

Let f = f (x1, . . . , xn) ∈ F 〈X〉. Then f = ∑
0�i1,...,in f i1...in , where each polynomial f i1...in is multiho-

mogeneous of degree is in xs (s = 1, . . . ,n). We refer to the polynomials f i1...in as to the multihomo-
geneous components of the polynomial f . Note that if F is an infinite field, V is a T -ideal in F 〈X〉 and
f ∈ V then f i1...in ∈ V for all i1, . . . , in (see, for instance, [2,9,12,25]). Similarly, if V is a T -subspace
in F 〈X〉 and f ∈ V then all the multihomogeneous components f i1...in of f belong to V .

Over an infinite field F the T -ideal T (G) of the polynomial identities of the infinite dimensional
unitary Grassmann algebra G coincides with T (3) . This was proved by Krakowski and Regev [22] if F
is of characteristic 0 (see also [23]) and by several authors in the general case, see for example [11].

It is well known (see, for example, [22,23]) that over any field F we have

[g1, g2][g1, g3] + T (3) = T (3);
[g1, g2][g3, g4] + T (3) = −[g3, g2][g1, g4] + T (3);[

gm
1 , g2

] + T (3) = mgm−1
1 [g1, g2] + T (3) (4)

for all g1, g2, g3, g4 ∈ F 〈X〉. Also it is well known (see, for instance, [8,17]) that a basis of the vector
space F 〈X〉/T (3) over F is formed by the elements of the form

xm1
i1

· · · xmd
id

[x j1 , x j2 ] · · · [x j2s−1 , x j2s ] + T (3), (5)

where d, s � 0, i1 < · · · < id , j1 < · · · < j2s .
Define T (3)

n = T (3) ∩ F 〈Xn〉. We claim that if n < 2i then

T (3,i) ∩ F 〈Xn〉 = T (3)
n . (6)
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Indeed, a basis of the vector space (F 〈Xn〉+ T (3))/T (3) is formed by the elements of the form (5) such
that 1 � i1 < · · · < id � n, 1 � j1 < · · · < j2s � n. In particular, we have 2s � n. On the other hand, it
can be easily checked that T (3,i)/T (3) is contained in the linear span of the elements of the form (5)
such that s � i. Since n < 2i, we have

((
F 〈Xn〉 + T (3)

)
/T (3)

) ∩ (
T (3,i)/T (3)

) = {0},

that is, T (3,i) ∩ F 〈Xn〉 ⊆ T (3) . It follows immediately that T (3,i) ∩ F 〈Xn〉 ⊆ T (3)
n . Since T (3)

n ⊆ T (3,i) ∩
F 〈Xn〉 for all i, we have T (3,i) ∩ F 〈Xn〉 = T (3)

n if n < 2i, as claimed.
Let F be a field of characteristic p > 2. It is well known (see, for example, [24,4,8,16]) that, for

each g, g1, . . . , gn ∈ F 〈X〉, we have

g p + T (3) is central in F 〈X〉/T (3);
(g1 · · · gn)

p + T (3) = g p
1 · · · g p

n + T (3);
(g1 + · · · + gn)

p + T (3) = g p
1 + · · · + g p

n + T (3). (7)

Let F be an infinite field of characteristic p > 2. Let Q (k,l) be the T -subspace in F 〈X〉 generated
by q(l)

k (l � 0), Q (k,l) = 〈q(l)
k (x1, . . . , x2k)〉T S . Note that the multihomogeneous component of the poly-

nomial

q(l)
k (1 + x1, . . . ,1 + x2k)

= (1 + x1)
pl−1[x1, x2](1 + x2)

pl−1 · · · (1 + x2k−1)
pl−1[x2k−1, x2k](1 + x2k)

pl−1

of degree pl−1 in all the variables x1, . . . , x2k is equal to

γ q(l−1)

k (x1, . . . , x2k) = γ xpl−1−1
1 [x1, x2]xpl−1−1

2 · · · xpl−1−1
2k−1 [x2k−1, x2k]xpl−1−1

2k ,

where γ = ( pl−1
pl−1−1

)2k ≡ 1 (mod p). It follows that q(l−1)

k ∈ Q (k,l) for all l > 0 so Q (k,l−1) ⊆ Q (k,l) .
Hence, for each l > 0 we have

l∑
i=0

Q (k,i) = Q (k,l). (8)

The following lemma is a reformulation of a result of Grishin and Tsybulya [16, Theorem 1.3,
item 1)].

Lemma 8. Let F be an infinite field of characteristic p > 2. Let k � 1, ai � 1 for all i = 1,2 . . . ,2k and let

m = xa1−1
1 xa2−1

2 · · · xa2k−1
2k [x1, x2] · · · [x2k−1, x2k] ∈ F 〈X〉.

Suppose that, for some i0 , 1 � i0 � 2k, we have ai0 = plb, where l � 0 and b is coprime to p. Suppose also
that, for each i, 1 � i � 2k, we have ai ≡ 0 (mod pl). Then

〈m〉T S + T (3) = Q (k,l) + T (3).
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3. Proof of Propositions 6 and 7

In the rest of the paper, F will denote an infinite field of characteristic p > 2.

3.1. Proof of Proposition 7

Let U be the T -subspace of F 〈Xn〉 defined as follows:

(i) T (3)
n ⊂ U ;

(ii) the T -subspace U/T (3)
n of F 〈Xn〉/T (3)

n is generated by the polynomials (1) and (2) if n = 2k and
by the polynomials (3) if n = 2k + 1.

To prove the proposition we have to show that Cn/T (3)
n = U/T (3)

n (equivalently, Cn = U ). It can be eas-
ily seen that U/T (3)

n ⊆ Cn/T (3)
n . Thus, it remains to prove that Cn/T (3)

n ⊆ U/T (3)
n (equivalently, Cn ⊆ U ).

Let h be an arbitrary element of Cn . We are going to check that h + T (3)
n ∈ U/T (3)

n .
Since h ∈ C(G), it follows from Theorem 5 that

h =
∑

j

α j v p
j +

∑
i, j

αi j w p
i jqi

(
f (i j)

1 , . . . , f (i j)
2i

) + h′,

where v j, wij, f (i j)
s ∈ F 〈X〉, α j,αi j ∈ F , h′ ∈ T (3) . Note that h ∈ F 〈Xn〉 so we may assume that v j, wij,

f (i j)
s ,h′ ∈ F 〈Xn〉 for all i, j, s. It follows that

h + T (3)
n =

∑
j

α j v p
j +

∑
i, j

αi j w p
i jqi

(
f (i j)

1 , . . . , f (i j)
2i

) + T (3)
n .

Recall that T (3,i) is the T -ideal in F 〈X〉 generated by the polynomials [x1, x2, x3] and
[x1, x2] · · · [x2i−1, x2i]. By (6), we have T (3,i) ∩ F 〈Xn〉 = T (3)

n for each i such that 2i > n. Since, for
each i, j,

w p
ijqi

(
f (i j)

1 , . . . , f (i j)
2i

) ∈ T (3,i),

we have

∑
i> n

2

∑
j

αi j w p
i jqi

(
f (i j)

1 , . . . , f (i j)
2i

) ∈ T (3,i) ∩ F 〈Xn〉 = T (3)
n .

It follows that

h + T (3)
n =

∑
j

α j v p
j +

∑
i� n

2

∑
j

αi j w p
i jqi

(
f (i j)

1 , . . . , f (i j)
2i

) + T (3)
n .

If n = 2k + 1 (k � 1) then we have

h + T (3)
n =

∑
j

α j v p
j +

k∑
i=1

∑
j

αi j w p
i jqi

(
f (i j)

1 , . . . , f (i j)
2i

) + T (3)
n

so h + T (3)
n ∈ U/T (3)

n , as required.



D.J. Gonçalves et al. / Journal of Algebra 371 (2012) 156–174 163
If n = 2k (k � 1) then we have

h + T (3)
n = h1 + h2 + T (3)

n ,

where

h1 =
∑

j

α j v p
j +

k−1∑
i=1

∑
j

αi j w p
i jqi

(
f (i j)

1 , . . . , f (i j)
2i

)

and

h2 =
∑

j

αkj w p
kjqk

(
f (kj)

1 , . . . , f (kj)
2k

)
.

It is clear that h1 + T (3)
n belongs to the T -subspace generated by the polynomials (1); hence, h1 +

T (3)
n ∈ U/T (3)

n . On the other hand, it can be easily seen that h2 + T (3)
n is a linear combination of

polynomials of the form m + T (3)
n , where

m = xb1
1 · · · xb2k

2k [x1, x2] · · · [x2k−1, x2k].

We claim that, for each m of this form, the polynomial m + T (3)

2k belongs to U/T (3)

2k .

Indeed, by Lemma 8, we have 〈m〉T S + T (3) = 〈q(l)
k 〉T S + T (3) for some l � 0. Since both m and q(l)

k

are polynomials in x1, . . . , x2k , this equality implies that m + T (3)

2k belongs to the T -subspace of

F 〈X2k〉/T (3)

2k that is generated by q(l)
k + T (3)

2k for some l � 0. If l � 1 then m + T (3)

2k ∈ U/T (3)

2k because, for

l � 1, q(l)
k + T (3)

2k is a polynomial of the form (2). If l = 0 then m + T (3)

2k belongs to the T -subspace of

F 〈X2k〉/T (3)

2k generated by q(1)

k + T (3)

2k . Indeed, in this case m + T (3)

2k belongs to the T -subspace gener-

ated by q(0)

k + T (3)

2k and the latter T -subspace is contained in the T -subspace generated by q(1)

k + T (3)

2k

because q(0)

k is equal to the multilinear component of q(1)

k (1 + x1, . . . ,1 + x2k). It follows that, again,

m + T (3)

2k ∈ U/T (3)

2k . This proves our claim.

It follows that h2 + T (3)
n ∈ U/T (3)

n and, therefore, h + T (3)
n ∈ U/T (3)

n , as required.
Thus, Cn ⊆ U for each n. This completes the proof of Proposition 7.

3.2. Proof of Proposition 6

It is clear that the polynomial x1[x2, x3, x4]x5 generates T (3) as a T -subspace in F 〈X〉. Since
g1[g2, g3, g4]g5 = g1[g2, g3, g4, g5] + g1 g5[g2, g3, g4] for all gi ∈ F 〈X〉, the polynomial x1[x2, x3, x4]
generates T (3) as a T -subspace in F 〈X〉 as well. It follows that x1[x2, x3, x4] generates T (3)

n as a
T -subspace in F 〈Xn〉 for each n � 4. Proposition 6 follows immediately from Proposition 7 and the
observation above.

4. Proof of Theorem 3

If n = 2k + 1, k > 1, then Theorem 3 follows immediately from Proposition 6.
Suppose that n = 2k, k � 1. Then Theorem 3 is an immediate consequence of the following two

propositions.

Proposition 9. For all k � 1, C2k is not finitely generated as a T -subspace in F 〈X2k〉.
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Proposition 10. Let k � 1 and let W be a T -subspace of F 〈X2k〉 such that C2k � W . Then W is a finitely
generated T -subspace in F 〈X2k〉.

4.1. Proof of Proposition 9

The proof is based on a result of Grishin and Tsybulya [16, Theorem 3.1].
By Proposition 7, C2k is generated as a T -subspace in F 〈X2k〉 by T (3)

2k together with the polyno-
mials

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qk−1(x2, . . . , x2k−1) (9)

and

{
q(l)

k (x1, . . . , x2k)
∣∣ l = 1,2, . . .

}
.

Let Vl be the T -subspace of F 〈X2k〉 generated by T (3)

2k together with the polynomials (9) and the

polynomials {q(i)
k (x1, . . . , x2k) | i � l}. Then we have

C2k =
⋃
l�1

Vl. (10)

Also, it is clear that V 1 ⊆ V 2 ⊆ · · · .
Let U (k−1) be the T -subspace in F 〈X〉 generated by the polynomials (9). The following proposition

is a particular case of [16, Theorem 3.1].

Proposition 11. (See [16].) For each l � 1,

(
Q (k,l+1) + T (3)

)
/T (3) �

(
U (k−1) + Q (k,l) + T (3,k+1)

)
/T (3).

Remark. The T -subspaces (U (k−1) + T (3))/T (3) , (Q (k,l) + T (3))/T (3) and T (3,k+1)/T (3) are denoted
in [16] by

∑
i<k C D(i)

p , C (k)

pl and C (k+1) , respectively.

Since the T -subspace Q (k,l+1) is generated by the polynomial q(l+1)

k and T (3) ⊂ T (3,k+1) , Proposi-
tion 11 immediately implies that

q(l+1)

k /∈ U (k−1) + Q (k,l) + T (3,k+1).

Further, since T (3)

2k ⊂ T (3) ⊂ T (3,k+1) , we have

Vl ⊂ U (k−1) +
∑
i�l

Q (k,i) + T (3,k+1) = U (k−1) + Q (k,l) + T (3,k+1)

(recall that, by (8),
∑

i�l Q (k,i) = Q (k,l)). It follows that q(l+1)

k /∈ Vl for all l � 1; on the other hand,

q(l+1)

k ∈ Vl+1 by the definition of Vl+1. Hence,

V 1 � V 2 � · · · . (11)

It follows immediately from (10) and (11) that C2k is not finitely generated as a T -subspace in F 〈X2k〉.
The proof of Proposition 9 is completed.
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4.2. Proof of Proposition 10

For all integers i1, . . . , it such that 1 � i1 < · · · < it � n and all integers a1, . . . ,an � 0 such that

ai1 , . . . ,ait � 1, define
x

a1
1 x

a2
2 ···xan

n
xi1 xi2 ···xit

to be the monomial

xa1
1 xa2

2 · · · xan
n

xi1 xi2 · · · xit

= xb1
1 xb2

2 · · · xbn
n ∈ F 〈X〉,

where b j = a j − 1 if j ∈ {i1, i2, . . . , it} and b j = a j otherwise.

Lemma 12. Let f (x1, . . . , xn) ∈ F 〈X〉 be a multihomogeneous polynomial of the form

f = αxa1
1 · · · xan

n +
∑

1�i1<···<i2t�n

α(i1,...,i2t )

xa1
1 · · · xan

n

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ] (12)

where α,α(i1,...,i2t ) ∈ F . Let L = 〈 f 〉T S + 〈[x1, x2]〉T S + T (3) .
Suppose that ai = 1 for some i, 1 � i � n. Then either L = F 〈X〉 or L = 〈[x1, x2]〉T S + T (3) or L =

〈x1[x2, x3] · · · [x2θ , x2θ+1]〉T S + 〈[x1, x2]〉T S + T (3) for some θ � n−1
2 .

Proof. Note that each multihomogeneous polynomial f (x1, . . . , xn) ∈ F 〈X〉 can be written, mod-
ulo T (3) , in the form (12). Hence, we can assume without loss of generality (permuting the free
generators x1, . . . , xn if necessary) that a1 = 1.

Note that if α �= 0, then f (x1,1, . . . ,1) = αx1 ∈ L so L = 〈x1〉T S = F 〈X〉. Suppose that α = 0.
We claim that we may assume without loss of generality that f is of the form f (x1, . . . , xn) =

x1 g(x2, . . . , xn), where

g =
∑

2�i1<···<i2t�n
t�1

α(i1,...,i2t )

xa2
2 · · · xan

n

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ]. (13)

Indeed, consider a term m = x
a1
1 ···xan

n
xi1 ···xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ] in (12). If i1 > 1 then

m = x1
xa2

2 · · · xan
n

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ]. (14)

Suppose that i1 = 1; then m = m′[x1, xi2 ] · · · [xi2t−1 , xi2t ], where m′ = x
a2
2 ···xan

n
xi2 ···xi2t

. We have

m + T (3) = m′[x1, xi2 ] · · · [xi2t−1 , xi2t ] + T (3)

= [
m′x1, xi2

] · · · [xi2t−1 , xi2t ] − x1
[
m′, xi2

] · · · [xi2t−1 , xi2t ] + T (3)

= [
m′x1[xi3 , xi4 ] · · · [xi2t−1 , xi2t ], xi2

] − x1
[
m′, xi2

] · · · [xi2t−1 , xi2t ] + T (3).

Hence,

m = −x1
[
m′, xi2

] · · · [xi2t−1 , xi2t ] + h, (15)

where h ∈ 〈[x1, x2]〉T S + T (3) .
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It follows easily from (14) and (15) that there exists a multihomogeneous polynomial g1 =
g1(x2, . . . , xn) ∈ F 〈X〉 such that f = x1 g1 +h1, where h1 ∈ 〈[x1, x2]〉T S + T (3) . Further, there is a multi-
homogeneous polynomial g of the form (13) such that g ≡ g1 (mod T (3)); then f = x1 g + h2, where
h2 ∈ 〈[x1, x2]〉T S + T (3) . It follows that L = 〈x1 g(x2, . . . , xn)〉T S + 〈[x1, x2]〉T S + T (3) . Thus, we can as-
sume without loss of generality that f = x1 g(x2, . . . , xn), where g is of the form (13), as claimed.

If f = 0 then L = 〈[x1, x2]〉T S + T (3) . Suppose that f �= 0. Let θ = min{t | α(i1,...,i2t ) �= 0}. It is clear
that 2θ + 1 � n so θ � n−1

2 . We can assume that α(2,...,2θ+1) �= 0; then

f = x1

(
α(2,...,2θ+1)

xa2
2 · · · xan

n

x2 · · · x2θ+1
[x2, x3] · · · [x2θ , x2θ+1]

+
∑

2�i1<···<i2t�n
t�θ, i2t>2θ+1

α(i1,...,i2t )

xa2
2 · · · xan

n

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ]
)

. (16)

Let f1(x1, . . . , x2θ+1) = f (x1, x2, . . . , x2θ+1,1, . . . ,1) ∈ L; then

f1 = α(2,...,2θ+1)x1
xa2

2 · · · xan
n

x2 · · · x2θ+1
[x2, x3] · · · [x2θ , x2θ+1].

It can be easily seen that the multihomogeneous component of degree 1 in the variables x1, x2, . . . ,

x2θ+1 of the polynomial f1(x1, x2 + 1, . . . , x2θ+1 + 1) is equal to

α(2,...,2θ+1)x1[x2, x3] · · · [x2θ , x2θ+1].

It follows that x1[x2, x3] · · · [x2θ , x2θ+1] ∈ L; hence,

〈
x1[x2, x3] · · · [x2θ , x2θ+1]

〉T S + 〈[x1, x2]
〉T S + T (3) ⊆ L.

On the other hand, it is clear that the polynomial f of the form (16) belongs to the T -subspace
of F 〈X〉 generated by x1[x2, x3] · · · [x2θ , x2θ+1]; it follows that 〈 f 〉T S ⊆ 〈x1[x2, x3] · · · [x2θ , x2θ+1]〉T S

and, therefore,

L ⊆ 〈
x1[x2, x3] · · · [x2θ , x2θ+1]

〉T S + 〈[x1, x2]
〉T S + T (3).

Thus, L = 〈x1[x2, x3] · · · [x2θ , x2θ+1]〉T S + 〈[x1, x2]〉T S + T (3) . The proof of Lemma 12 is com-
pleted. �
Proposition 13. Let W be a T -subspace of F 〈X2k〉 such that C2k � W . Then W = F 〈X2k〉 or W is generated
as a T -subspace by the polynomials

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qλ−1(x2, . . . , x2λ−1),

x1[x2, x3, x4], x1[x2, x3] · · · [x2λ, x2λ+1],

for some positive integer λ� k − 1.

Proof. It is well known that over a field F of characteristic 0 each T -ideal in F 〈X〉 can be generated
by its multilinear polynomials. It is easy to check that the same is true for each T -subspace in F 〈X〉.
Over an infinite field F of characteristic p > 0 each T -ideal in F 〈X〉 can be generated by all its
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multihomogeneous polynomials f (x1, . . . , xn) such that, for each i, 1 � i � n, degxi
f = psi for some

integer si (see, for instance, [2]). Again, the same is true for each T -subspace in F 〈X〉.
Let f (x1, . . . , x2k) ∈ W \ C2k be an arbitrary multihomogeneous polynomial such that, for each i

(1 � i � 2k), we have either degxi
f = psi or degxi

f = 0. We may assume that degxi
f = psi for i =

1, . . . , l and degxi
f = 0 for i = l + 1, . . . ,2k (that is, f = f (x1, . . . , xl)). Then we have

f + T (3)

2k = αm +
∑

1�i1<···<i2t�l

α(i1,...,i2t )

m

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ] + T (3)

2k ,

where α,α(i1,...,i2t ) ∈ F , m = xps1

1 · · · xpsl

l .
If si > 0 for all i = 1, . . . , l then it can be easily seen that f ∈ C(G) so f ∈ C2k , a contradiction with

the choice of f . Thus, si = 0 for some i, 1 � i � l. Let L f be the T -subspace of F 〈X〉 generated by f ,
[x1, x2] and T (3) . By Lemma 12, we have either L f = F 〈X〉 or

L f = 〈
x1[x2, x3] · · · [x2θ , x2θ+1]

〉T S + 〈[x1, x2]
〉T S + T (3)

for some θ < k (since f /∈ C2k , we have L f �= 〈[x1, x2]〉T S + T (3)). Note that if k = 1 (that is, f =
f (x1, x2)) then the only possible case is L f = F 〈X〉.

It is clear that if L f = F 〈X〉 for some f ∈ W \ C2k then x1 ∈ W so W = F 〈X2k〉. Suppose that
W �= F 〈X2k〉; then k > 1 and L f �= F 〈X〉 for all f ∈ W \ C2k . For each f ∈ W \ C2k satisfying the con-
ditions of Lemma 12, the T -subspace L f in F 〈X〉 can be generated, by Lemma 12, by the polynomials

[x1, x2], x1[x2, x3x4] and x1[x2, x3] · · · [x2θ , x2θ+1] (17)

for some θ = θ f < k. Since the polynomials (17) belong to F 〈X2k〉 (recall that k > 1), the T -subspace
in F 〈X2k〉 generated by f , [x1, x2] and T (3) is also generated (as a T -subspace in F 〈X2k〉) by the
polynomials (17). Note that [x1, x2] and x1[x2, x3, x4] belong to C2k so the T -subspace V f in F 〈X2k〉
generated by f and C2k can be generated by C2k and x1[x2, x3] · · · [x2θ , x2θ+1] for some θ = θ f < k.

Let λ = min{θ | x1[x2, x3] · · · [x2θ , x2θ+1] ∈ W }. Since W is the sum of the T -subspaces V f for
all suitable multihomogeneous polynomials f ∈ W \ C2k and each V f is generated by C2k and
x1[x2, x3] · · · [x2θ , x2θ+1] for some θ = θ f < k, W can be generated as a T -subspace in F 〈X2k〉 by C2k
and x1[x2, x3] · · · [x2λ, x2λ+1]. Now it follows easily from Proposition 6 that W can be generated by
the polynomials

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qλ−1(x2, . . . , x2λ−1)

together with the polynomials

x1[x2, x3, x4] and x1[x2, x3] · · · [x2λ, x2λ+1],

where we note that λ < k.
This completes the proof of Proposition 13. �
Proposition 10 follows immediately from Proposition 13. The proof of Theorem 3 is completed.

5. Proof of Theorem 4

Proposition 14. For each k � 1, Rk is not finitely generated as a T -subspace in F 〈X〉.
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Proof. Recall that Rk is the T -subspace in F 〈X〉 generated by C2k and T (3,k+1) . By Proposition 7, C2k is
generated as a T -subspace in F 〈X2k〉 by T (3)

2k together with the polynomials (9) and the polynomials

{q(l)
k (x1, . . . , x2k) | l = 1,2, . . .}. Since T (3)

2k ⊂ T (3) ⊂ T (3,k+1) , we have

Rk = U (k−1) +
∑
l�1

Q (k,l) + T (3,k+1),

where U (k−1) and Q (k,l) are the T -subspaces in F 〈X〉 generated by the polynomials (9) and by the
polynomial q(l)

k (x1, . . . , x2k), respectively.
Let Vl = U (k−1) + ∑

i�l Q (k,i) + T (3,k+1) . Then

Rk =
⋃
l�1

Vl (18)

and V 1 ⊆ V 2 ⊆ · · · . Recall that, by (8),
∑

i�l Q (k,i) = Q (k,l) so Vl = U (k−1) + Q (k,l) + T (3,k+1) . By Propo-

sition 11, Q (k,l+1) � Vl for all l � 1 so

V 1 � V 2 � · · · . (19)

The result follows immediately from (18) and (19). �
Lemma 15. Let f = f (x1, . . . , xn) ∈ F 〈X〉 be a multihomogeneous polynomial of the form

f = αxps1

1 · · · xpsn

n +
∑

i1<···<i2t

α(i1,...,i2t )

xps1

1 · · · xpsn

n

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ], (20)

where α,α(i1,...,i2t ) ∈ F , si � 0 for all i. Let L = 〈 f 〉T S + Rk, k � 1. Then one of the following holds:

1. L = F 〈X〉;
2. L = Rk;
3. L = 〈x1[x2, x3] · · · [x2θ , x2θ+1]〉T S + Rk for some θ , 1 � θ � k;

4. L = 〈xps

1 q(s)
k (x2, . . . , x2k+1)〉T S + Rk for some s � 1.

Proof. Note that each multihomogeneous polynomial f (x1, . . . , xn) ∈ F 〈X〉 of degree psi in xi (1 �
i � n) can be written, modulo T (3) , in the form (20). Hence, we can assume without loss of generality
(permuting the free generators x1, . . . , xn if necessary) that s1 � si for all i. Write s = s1.

Suppose that s = 0. Then, by Lemma 12, we have either

〈 f 〉T S + 〈[x1, x2]
〉T S + T (3) = F 〈X〉

or

〈 f 〉T S + 〈[x1, x2]
〉T S + T (3) = 〈[x1, x2]

〉T S + T (3)

or

〈 f 〉T S + 〈[x1, x2]
〉T S + T (3) = 〈

x1[x2, x3] · · · [x2θ , x2θ+1]
〉T S + 〈[x1, x2]

〉T S + T (3)
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for some θ . Since 〈[x1, x2]〉T S + T (3) ⊂ Rk and x1[x2, x3] · · · [x2θ , x2θ+1] ∈ Rk if θ > k, we have either
L = F 〈X〉 or L = Rk or

L = 〈
x1[x2, x3] · · · [x2θ , x2θ+1]

〉T S + Rk

for some θ � k.
Now suppose that s > 0; then si > 0 for all i, 1 � i � n. It can be easily seen that, by (7),

xps1

1 · · · xpsn

n ∈ (〈xp
1 〉T S + T (3)) ⊂ Rk and, for all t < k,

xps1

1 · · · xpsn

n

xi1 · · · xi2t

[xi1 , xi2 ] · · · [xi2t−1 , xi2t ] ∈ (〈
xp

1 qt(x2, . . . , x2t+1)
〉T S + T (3)

) ⊂ Rk.

Also we have
xps1

1 ···xpsn
n

xi1 ···xi2t
[xi1 , xi2 ] · · · [xi2t−1 , xi2t ] ∈ T (3,k+1) ⊂ Rk for each t > k. It follows that we can

assume without loss of generality that the polynomial f is of the form

f =
∑

1�i1<···<i2k�n

α(i1,...,i2k)

xps1

1 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ]. (21)

Note that if n < 2k then f = 0 and if n = 2k then

f = α(1,2,...,2k)

xps1

1 · · · xps2k

2k

x1x2 · · · x2k
[x1, x2] · · · [x2k−1, x2k]

so, by Lemma 8, we have f ∈ Q (k,s) + T (3) , where s = s1 > 0. In both cases we have f ∈ Rk and
L = Rk .

Suppose that n > 2k. We claim that we may assume that f is of the form

f (x1, . . . , xn) = xps

1 g(x2, . . . , xn), (22)

where

g =
∑

2�i1<···<i2k�n

α(i1,...,i2k)

xps2

2 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ].

Indeed, consider a term m = xps1
1 ···xpsn

n
xi1 ···xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ] in (21). If i1 > 1 then

m = xps

1

xps2

2 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ]. (23)

Suppose that i1 = 1. Let ai = psi for all i. Then

m + T (3,k+1) = xps−1
1

xps2

2 · · · xpsn

n

xi2 · · · xi2k

[x1, xi2 ] · · · [xi2k−1 , xi2k ] + T (3,k+1)

= x
a j1
j1

· · · x
a jl
jl

xa1−1
1 · · · x

ai2k
−1

i2k
[x1, xi2 ] · · · [xi2k−1 , xi2k ] + T (3,k+1)

= xa1−1
1 x

a j1
j · · · x

a jl
j [x1, xi2 ]x

ai2 −1
i m′ + T (3,k+1),
1 l 2
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where

m′ = x
ai3 −1
i3

[xi3 , xi4 ]x
ai4 −1
i4

· · · x
ai2k−1

−1

i2k−1
[xi2k−1 , xi2k ]x

ai2k
−1

i2k
,

{ j1, . . . , jl} = {1, . . . ,n} \ {1, i2, . . . , i2k}, l = n − 2k > 0. Suppose that

a1 = a j1 = a j2 = · · · = a jz and a jz+1 ,a jz+2 , . . . ,a jl > a1.

Let

u = x1x j1 · · · x jz x
a′

jz+1
jz+1

· · · x
a′

jl
jl

,

where a′
i = ai/ps for all i. Let

h = h(x1, . . . , x2k) = xa1−1
1 [x1, x2]xai2 −1

2 · · · x
ai2k−1

−1

2k−1 [x2k−1, x2k]xai2k−1

2k .

By (4), h ∈ C(G); hence, h ∈ C2k ⊂ Rk . It follows that h(u, xi2 , . . . , xi2k ) ∈ Rk , that is,

ups−1[u, xi2 ]x
ai2 −1
i2

m′ ∈ Rk. (24)

Since, by (7), [v p
1 , v2] ∈ T (3) ⊂ T (3,k+1) for all v1, v2 ∈ F 〈X〉, we have

ups−1[u, xi2 ]x
ai2 −1
i2

m′ + T (3,k+1)

= (x1x j1 · · · x jz )
ps−1x

a jz+1
jz+1

· · · x
a jl
jl

[x1x j1 · · · x jz , xi2 ]x
ai2 −1
i2

m′ + T (3,k+1)

= (x1x j1 · · · x jz )
ps−1x

a jz+1
jz+1

· · · x
a jl
jl

[x1, xi2 ]x j1 · · · x jz x
ai2 −1
i2

m′

+ (x1x j1 · · · x jz )
ps−1x

a jz+1
jz+1

· · · x
a jl
jl

x1[x j1 · · · x jz , xi2 ]x
ai2 −1
i2

m′ + T (3,k+1)

= m + xps

1 xps−1
j1

· · · xps−1
jz

x
a jz+1
jz+1

· · · x
a jl
jl

[x j1 · · · x jz , xi2 ]x
ai2 −1
i2

m′ + T (3,k+1)

where the second summand is not present if z = 0 (that is, if a ji > a1 for all i), in which case m ∈ Rk .
Since

xps

1 xps−1
j1

· · · xps−1
jz

x
a jz+1
jz+1

· · · x
a jl
jl

[x j1 · · · x jz , xi2 ]x
ai2 −1
i2

m′ + T (3,k+1)

= xps

1

∑
2�i1<···<i2k

β(i1,...,i2k)

xps2

2 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ] + T (3,k+1)

for some β(i1,...,i2k) ∈ F , we have

m + xps

1

∑
2�i <···<i

β(i1,...,i2k)

xps2

2 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ] ∈ Rk. (25)

1 2k
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It is clear that, using (23) and (25), we can write f = f1 + f2, where

f1 = xps

1

( ∑
2�i1<···<i2k

γ(i1,...,i2k)

xps2

2 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ]
)

is of the form (22) and f2 ∈ Rk . Then we have 〈 f 〉T S + Rk = 〈 f1〉T S + Rk . Thus, we can assume
(replacing f with f1) that the polynomial f is of the form (22), as claimed.

If f = 0 then L = Rk . Suppose that f �= 0. Then we can assume without loss of generality that
α(2,3,...,2k+1) �= 0. It follows that the T -subspace 〈 f 〉T S contains the polynomial

h(x1, . . . , x2k+1) = α−1
(2,3,...,2k+1)

f (x1, . . . , x2k+1,1,1, . . . ,1)

= xps

1 xps2 −1
2 · · · xps2k+1 −1

2k+1 [x2, x3] · · · [x2k, x2k+1].

Then 〈 f 〉T S + Rk also contains the homogeneous component of the polynomial h(x1 +1, . . . , x2k+1 +1)

of degree ps in each variable xi (i = 1,2, . . . ,2k + 1), that is equal, modulo T (3) , to

γ xps

1 xps−1
2 · · · xps−1

2k+1[x2, x3] · · · [x2k, x2k+1],

where γ = ∏2k+1
i=2

(psi −1
ps−1

) ≡ 1 (mod p). It follows that

xps

1 q(s)
k (x2, . . . , x2k+1) ∈ 〈 f 〉T S + Rk.

On the other hand, for all i1, . . . , i2k such that 2 � i1 < · · · < i2k � n, we have

xps

1

xps2

2 · · · xpsn

n

xi1 · · · xi2k

[xi1 , xi2 ] · · · [xi2k−1 , xi2k ] ∈ 〈
xps

1 q(s)
k (x2, . . . , x2k+1)

〉T S + T (3,k+1)

(recall that si � s for all i) so

f ∈ 〈
xps

1 q(s)
k (x2, . . . , x2k+1)

〉T S + Rk.

Thus,

〈 f 〉T S + Rk = 〈
xps

1 q(s)
k (x2, . . . , x2k+1)

〉T S + Rk,

where s � 1. The proof of Lemma 15 is completed. �
Proposition 16. Let W be a T -subspace of F 〈X〉 such that Rk � W . Then one of the following holds:

1. W = F 〈X〉.
2. W is generated as a T -subspace by the polynomials

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qλ−1(x2, . . . , x2λ−1),

x1[x2, x3, x4], x1[x2, x3] · · · [x2λ, x2λ+1]

for some λ� k.
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3. W is generated as a T -subspace by the polynomials

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qk−1(x2, . . . , x2k−1),{

q(l)
k (x1, . . . , x2k)

∣∣ 1 � l �μ − 1
}
, xpμ

1 q(μ)

k (x2, . . . , x2k+1),

x1[x2, x3, x4], x1[x2, x3] · · · [x2k+2, x2k+3]
for some μ� 1.

Proof. Let f = f (x1, . . . , xn) be an arbitrary polynomial in W \ Rk satisfying the conditions of
Lemma 15, that is, an arbitrary multihomogeneous polynomial such that degxi

f = psi for some si � 0
(1 � i � n). Let L f = 〈 f 〉T S + Rk . By Lemma 15, we have either L f = F 〈X〉 or

L f = 〈
x1[x2, x3] · · · [x2θ , x2θ+1]

〉T S + Rk

for some θ � k or

L f = 〈
xps

1 q(s)
k (x2, . . . , x2k+1)

〉T S + Rk

for some s � 1.
Note that W is generated as a T -subspace in F 〈X〉 by Rk together with the polynomials f ∈ W \ Rk

satisfying the conditions of Lemma 15. It follows that W = ∑
L f , where the sum is taken over all the

polynomials f ∈ W \ Rk satisfying these conditions.
It is clear that if L f = F 〈X〉 for some f ∈ W \ Rk then W = F 〈X〉. Suppose that L f �= F 〈X〉 for all

f ∈ W \ Rk . Let, for some f ∈ W \ Rk , we have L f = 〈x1[x2, x3] · · · [x2θ , x2θ+1]〉T S + Rk , θ � k. Define
λ = min{θ | x1[x2, x3] · · · [x2θ , x2θ+1] ∈ W }; note that λ� k. We have

x1[x2, x3] · · · [x2θ , x2θ+1] ∈ 〈
x1[x2, x3] · · · [x2λ, x2λ+1]

〉T S

for all θ � λ and

xps

1 q(s)
k (x2, . . . , x2k+1) ∈ 〈

x1[x2, x3] · · · [x2λ, x2λ+1]
〉T S + T (3)

for all s. Hence, W = 〈x1[x2, x3] · · · [x2λ, x2λ+1]〉T S + Rk , where λ � k. It follows that W is generated
as a T -subspace by the polynomials

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qλ−1(x2, . . . , x2λ−1),

x1[x2, x3, x4], x1[x2, x3] · · · [x2λ, x2λ+1],
λ� k.

Now suppose that, for all f ∈ W \ Rk satisfying the conditions of Lemma 15, we have

L f = 〈
xps

1 q(s)
k (x2, . . . , x2k+1)

〉T S + Rk

for some s = s f � 1. Note that if s � r then

xpr

1 q(r)
k (x2, . . . , x2k+1) ∈ 〈

xps

1 q(s)
k (x2, . . . , x2k+1)

〉T S + T (3).

Take μ = min{s | xps

1 q(s)
k (x2, . . . , x2k+1) ∈ W }. Then we have W = Rk + 〈xpμ

1 q(μ)

k (x2, . . . , x2k+1)〉T S and
it is straightforward to check that W can be generated as a T -subspace in F 〈X〉 by the polynomials
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xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qk−1(x2, . . . , x2k−1)

and the polynomials {q(l)
k (x1, . . . , x2k) | 1 � l � μ − 1}, xpμ

1 q(μ)

k (x2, . . . , x2k+1) together with the poly-
nomials

x1[x2, x3, x4] and x1[x2, x3] · · · [x2k+2, x2k+3].

This completes the proof of Proposition 16. �
Proposition 16 immediately implies the following corollary.

Corollary 17. Let W be a T -subspace of F 〈X〉 such that Rk � W (k � 1). Then W is a finitely generated
T -subspace in F 〈X〉.

Proposition 18. If k �= l then Rk �= Rl .

Proof. Suppose, in order to get a contradiction, that Rk = Rl for some k, l, k < l. Then we have
C(G) ⊆ Rl .

Indeed, by Theorem 5, the T -subspace C(G) is generated by the polynomial x1[x2, x3, x4] and the
polynomials xp

1 , xp
1 q1(x2, x3), . . . , xp

1 qn(x2, . . . , x2n+1), . . . . Clearly,

x1[x2, x3, x4] ∈ T (3) ⊂ Rl.

Further,

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 ql−1(x2, . . . , x2l−1) ∈ Rl

by the definition of Rl and

xp
1 qk+1(x2, . . . , x2k+3), xp

1 qk+2(x2, . . . , x2k+5), . . . ∈ T (3,k+1) ⊆ Rk = Rl

by the definition of T (3,k+1) . Since k < l, we have

xp
1 , xp

1 q1(x2, x3), . . . , xp
1 qk(x2, . . . , x2k+1), xp

1 qk+1(x2, . . . , x2k+3), . . . ∈ Rl.

Hence, all the generators of the T -subspace C(G) belong to Rl so C(G) ⊆ Rl , as claimed.
Note that T (3,k+1) ⊆ Rl and T (3,k+1) � C(G) so C(G) � Rl . By Theorem 1, C(G) is a limit T -subspace

so each T -subspace W such that C(G) � W is finitely generated. In particular, Rl is a finitely gener-
ated T -subspace. On the other hand, by Proposition 14, the T -subspace Rl is not finitely generated.
This contradiction proves that Rk �= Rl if k �= l, as required. �

Theorem 4 follows immediately from Proposition 14, Corollary 17 and Proposition 18.

Acknowledgments

This work was partially supported by DPP/UnB and by CNPq-FAPDF PRONEX grant 2009/00091-0
(193.000.580/2009). The work of the second and the third authors was partially supported by CNPq;
the work of the third author was also partially supported by FEMAT. Thanks are due to the referee
whose remarks and suggestions improved the paper.



174 D.J. Gonçalves et al. / Journal of Algebra 371 (2012) 156–174
References

[1] E.V. Aladova, A.N. Krasilnikov, Polynomial identities in nil-algebras, Trans. Amer. Math. Soc. 361 (2009) 5629–5646.
[2] Yu.A. Bahturin, Identical Relations in Lie Algebras, VNU Science Press, b.v., Utrecht, 1987 (translated from the Russian).
[3] C. Bekh-Ochir, S.A. Rankin, The central polynomials of the finite dimensional unitary and nonunitary Grassmann algebras,

Asian-Eur. J. Math. 3 (2010) 235–249.
[4] C. Bekh-Ochir, S.A. Rankin, The central polynomials of the infinite dimensional unitary and nonunitary Grassmann algebras,

J. Algebra Appl. 9 (2010) 687–704.
[5] A.Ya. Belov, On non-Specht varieties, Fundam. Prikl. Mat. 5 (1999) 47–66.
[6] A.Ya. Belov, Counterexamples to the Specht problem, Sb. Math. 191 (2000) 329–340.
[7] A.Ya. Belov, The local finite basis property and the local representability of varieties of associative rings, Izv. Math. 74

(2010) 1–126.
[8] A. Brandão Jr., P. Koshlukov, A. Krasilnikov, E.A. Silva, The central polynomials for the Grassmann algebra, Israel J. Math. 179

(2010) 127–144.
[9] V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer, Singapore, 1999.

[10] V. Drensky, E. Formanek, Polynomial Identity Rings, Adv. Courses Math. CRM Barcelona, Birkhäuser-Verlag, Basel, 2004.
[11] A. Giambruno, P. Koshlukov, On the identities of the Grassmann algebras in characteristic p > 0, Israel J. Math. 122 (2001)

305–316.
[12] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., vol. 122, American Math-

ematical Society, Providence, RI, 2005.
[13] A.V. Grishin, Examples of T -spaces and T -ideals of characteristic 2 without the finite basis property, Fundam. Prikl. Mat. 5

(1999) 101–118.
[14] A.V. Grishin, On non-Spechtianness of the variety of associative rings that satisfy the identity x32 = 0, Electron. Res. An-

nounc. Amer. Math. Soc. 6 (2000) 50–51 (electronic).
[15] A.V. Grishin, On the structure of the centre of a relatively free Grassmann algebra, Russian Math. Surveys 65 (2010) 781–

782.
[16] A.V. Grishin, L.M. Tsybulya, On the multiplicative and T-space structure of the relatively free Grassmann algebra, Sb. Math.

200 (2009) 1299–1338.
[17] A.V. Grishin, V.V. Shchigolev, T -spaces and their applications, J. Math. Sci. (N. Y.) 134 (2006) 1799–1878.
[18] A. Kanel-Belov, L.H. Rowen, Computational Aspects of Polynomial Identities, A K Peters, Ltd., Wellesley, MA, 2005.
[19] A.R. Kemer, Finite basability of identities of associative algebras, Algebra Logic 26 (1987) 362–397.
[20] A.R. Kemer, Ideal of Identities of Associative Algebras, Transl. Math. Monogr., vol. 87, American Mathematical Society,

Providence, RI, 1991.
[21] P. Koshlukov, A. Krasilnikov, E.A. Silva, The central polynomials for the finite dimensional Grassmann algebras, Algebra

Discrete Math. 3 (2009) 69–76.
[22] D. Krakowski, A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973) 429–438.
[23] V.N. Latyshev, On the choice of basis in a T-ideal, Sibirsk. Mat. Zh. 4 (1963) 1122–1126.
[24] A. Regev, Grassmann algebras over finite fields, Comm. Algebra 19 (1991) 1829–1849.
[25] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, 1980.
[26] V.V. Shchigolev, Examples of infinitely based T -ideals, Fundam. Prikl. Mat. 5 (1999) 307–312.
[27] V.V. Shchigolev, Examples of infinitely basable T -spaces, Sb. Math. 191 (2000) 459–476.
[28] V.V. Shchigolev, Finite basis property of T -spaces over fields of characteristic zero, Izv. Math. 65 (2001) 1041–1071.


	Limit T-subspaces and the central polynomials in n variables of the Grassmann algebra
	1 Introduction
	2 Preliminaries
	3 Proof of Propositions 6 and 7
	3.1 Proof of Proposition 7
	3.2 Proof of Proposition 6

	4 Proof of Theorem 3
	4.1 Proof of Proposition 9
	4.2 Proof of Proposition 10

	5 Proof of Theorem 4
	Acknowledgments
	References


