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We describe a rational algorithm for finding the denominator of any solution of a
linear ordinary differential equation in its coefficient field. As a consequence, there
is now a rational algorithm for finding all such solutions when the coefficients can be
built up from the rational functions by finitely many algebraic and primitive adjunc-
tions. This also eliminates one of the computational bottlenecks in algorithms that
either factor or search for Liouvillian solutions of such equations with Liouvillian
coeflicients.

INTRODUCTION

A fundamental problem in the theory of differential equations is to determine
whether a given differential equation of a certain kind has a “closed form” solution,
where the term “closed form” can take on a variety of meanings. In this paper, we
consider the following specific subproblem in this area: given a differential field k,
g € k, and a linear ordinary differential operator L with coefficients in &, can we
decide in a finite number of steps whether L(y) = g has a solution in k, and in the
affirmative, can we find one (or all) such solution(s)?

More precisely, we consider the particular case where % is a simple monomial
extension of an underlying differential field. This problem was already solved for
elementary and (a certain class of) Liouvillian function fields by Singer (1991). In
this paper, we make that algorithm rational for towers of algebraic and primitive
extensions.

As applications we get,

(i) there is now a rational algorithm for solving Risch differential equations on
algebraic curves over algebraic/primitive function fields. That algorithm is
an effective alternative to the ones presented in Risch (1968), Davenport
(1984) and Bronstein (1990¢);

(ii) the linear differential operator factoring algorithm of Schwarz (1989) is now

more effective, and can thus be used with more general constant fields.

To get the most general result possible, we use the language of monomial ex-
tensions introduced in (Bronstein, 19905). In some sense, this paper continues the
theory introduced there by studying the relations between the orders at various
places of y and L(y), where L is a linear ordinary differential operator.
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1. VALUATIONS

Let k& be a field of characteristic 0, and = be transcendental over k. In this
section, we recall the notions of order and local ring at a “point” of k(z).

Let P € k[z]\ k. We define the order at P to be the map vp : k(z) — ZU{+00}
defined by:

(@) for @ € k[z]\ {0},vp(Q) = n 2> 0 such that P* | Q and P+ fQ,
(ii) for f € k(z)\ {0}, vp(f) = vp(A)—vp(B), where for A, B € k[z], (A,B) =
(1) and f = A/B,

(ii1) »p(0) = +o0.

Note that in general, this order function does not satisfy the logarithmic multi-
plicative identity that valuations satisfy. For example, vg24,(z) = vp24.(x +1) =
0, but vy245(z(z+1)) = 1. If P is irreducible, then vp is called the P-valuation,
and it satisfies the following properties:

(1) for @ € Klal,vp(@) > 0= vp(32) = vp(Q) 1,

(2) for A, B € k[z] \ {0},vp(ged(4, B)) = min(vp(4), vp(B)),

(8) for f,g € k(z),vp(fg) = vr(f) + vr(9),

(4) for(f,)g € k(z),vp(f+g) > min(vp(f),vp(g)), and equality holds if vp(f) #
vplg)-

Recall also that the co-valuation is a map v : k(z) — Z U {+00} defined by

ym(%) = deg(B) — deg(A) for A,B € k[z] \ {0}, and v(0) = +oo. It satisfies
the following properties:

i/

(1) for Q € k[z], deg(Q) > 0= uoo(%) = Veo(Q) +1,

(2) for A, B € k[z] \ {0}, voo(ged(A4, B)) = max(Voo(A), Voo(B)),

(8) for f,9 € k(2), Voo (f9) = veo(f) + veo(9),

(4) for f,9 € k(z),vo0(f + ¢9) > min(veo(f) ¥eo(9)), and equality holds if

Voo (f) # veo(9).

Let P € k{z] \ {0}. We write ¢p for the canonical homomorphism from k[z]
onto k[z]/(P) (the reduction modulo P). If P is irreducible, then the local ring at
Pis

Op = {f € k(z) such that vp(f) > 0}.
If P is not irreducible, we define the local ring at P to be

Op=()0q
QIP

where the intersection is taken over all the irreducible factors of P in k[z]. ¢p
can be extended to a ring-homomorphism from Op onto k[z]/(P) as follows: let
f € Op and write f = A/B where A, B € k[z] and (4, B) = (1). By definition
of Op, (B,Q) = (1) for any irreducible factor @ of P. Hence, (B, P) = (1), so
we can compute (by the extended Euclidean algorithm) C,R € k[z] such that
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B(C + PR =1. We then define ¢p(f) to be ¢p(AC). It is easily checked that ¢p
is well-defined on Op and is a ring-homomorphism.
For an analogue of ¢p at infinity, we define the local ring at infinity to be

Oc = {f € k() such that v, (f) > 0}.

(z~1) is a maximal ideal of O, 50 Ooo/(z~1) is a fleld. It is isomorphic to k,
and, for any f € O, we define the value of f at infinity to be the image of f
under the canonical map from O, onto Oy /(z7!) = k, and we denote it poo(f).
We note that if we write f € k(z) as

apz™+ -+ ag

f=bm(1,‘m+"'+bo

where a;,b; € k, ap # 0, and by, # 0, then, if f € Oy, m 2 n, and doo(f) is given
by

In fm=n
¢oo(f)={ b’
0, if m > n.

It is easily checked that ¢ is a ring-homomorphism from O, onto k.

2. BALANCED FACTORIZATION

We present in this section Abramov’s (1989) algorithm for computing balanced
factorizations. Let k be a field of characteristic 0, and z be transcendental over k.

DEFINITION 2.1, Let A,B € k[z]. We say that A is balanced with respect to B
if either B = 0 or vp(B) = vg(B) for any two irreducible factors P € k[z] \ k and
Q € kz]\k of A. We also say that A = 4,°' -.- Ap*" is a balanced factorization
of A with respect to B, if A; is balanced w.r.t. B and squarefree fori = 1...n,
and (A;,Aj)=(1) fori #j.

We can make the following immediate remarks:

(i) If A is balanced w.r.t. B, then so is every factor of A.
(ii) If (A, B) = (1), then A is balanced w.r.t. B.
(iii) Any A € k[z] is balanced w.r.t. 0.
(iv) A squarefree factorization of A is a balanced factorization of 4 w.r.t. A.
The following Lemma shows that we can test whether a polynomial is balanced
without computing its irreducible factors.

LEMMA 2.2, Let A, B € k[z]. The following are equivalent:

(1) A is balanced w.r.t. B,
(ii) Let C be a squarefree factor of A, then vp(B) = vo(B) for any irreducible
factor P € k[z] of C,
(iif) vp(B) = vq(B) for any two squarefree factors P and Q of A.
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PROOF: (i) == (ii): Suppose that A is balanced w.r.t. B, and let C be a
squarefree factor of A. Let C = P;--. P, be a prime factorization of C'. Then,
for any 4, in {1,...,n} we have vp,(B) = vp,(B), so vg(B) =vp(B) = -+ =
vp, (B)

(ii) == (iii): Let P and Q be any squarefree factors of A. Let G = gcd(P, Q)
and write P = GP, Q = GQ. Since P and Q are squarefree, we have G, P, () are
squarefree, and (P, @) = (@,G) = (P,Q) = (1). Thus, C = GPQ is squarefree,
Let P= Py.-+ P, and @ = Q1+ Qm be prime factorizations of P and Q. Then,
for any ¢ in {1,...,n} and any j in {1,...,m} we have P; | C and Q; | C, s0, by
(ii), vp,(B) = vo(B) = vg;(B). Thus, vp(B) = vg(B) = vgo(B).

(iii) = (i): if vp(B) = vp(A) for any two squarefree factors P and Q of A,
then it is also true for any two irreducible factors, so A is balanced w.r.t. B.

We now show how to compute a balanced factorization of a squarefree polyno-
mial w.r.t. any polynomial.

LEMMA 2.3. Let A € k[z] be squarefrece and B € k[z]. Then, using only gcd
computations in k[z)], one can compute a balanced factorization of A w.r.t. B in
finitely many steps.

ProoOF: If B = 0, then A = A is a balanced factorization of A w.r.t. B. Otherwise,
we proceed by induction on deg(B).

deg(B) = 0: Then, A = A is balanced w.r.t B since (4, B) = (1).

deg(B) > 0: If (A, B) = (1), then A = A is balanced w.r.t. B. Otherwise, let
G = gcd(A, B), and write A = GA and B = GPB where 8 = vg(B) > 0. Since
deg(G) > 0, then deg(B) < deg(B), so let G = Gy --- Gy, be a balanced factor-
ization of G w.r.t. B by induction. Let : € {1,... ,m} and P, Q be irreducible
factors of G;. Since G; is balanced w.r.t. B, we have vp(B) = vg(B). Therefore,
vp(B) = B+ vp(B) = B + vo(B) = vg(B), so G; is balanced w.r.t. B. Since A
is squarefree, (G, A) = (1), so (Gi, A) = (1). We also have (4,B) = (1), so A is
balanced w.r.t. B, so A= AG; -+ Gp, is a balanced factorization of A w.r.t. B.

DEFINITION 2.4. Let A € k[z] and § C k[z]. We say that A is balanced with
respect to S if A is balanced w.r.t. B for any B € §. We also say that A =
A % ... A, is a balanced factorization of A with respect to S, if A; is balanced
w.r.t. § and squarefree fori=1...n, and (A;,A;) = (1) fori #j.

Obviously, if A € k{z] is balanced w.rt. & C k[z], and A is balanced w.r.t.
T C k[z], then A isbalanced w.r.t. SUT. We now show how to compute a balanced
factorization of a squarefree polynomial w.r.t. any finite set of polynomials.

LEMMA 2.5. Let A € k[z] be squarefree and § C k[z] be finite. Then, using only
ged computations in k[z], one can compute a balanced factorization of A w.r.t. &
in finitely many steps,

PROOF: If § is empty, then A = A is a balanced factorization of 4 w.rt. S.
Otherwise, we proceed by induction on |§].
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|S| = 1: Then, S = {B} for some B € k[z], so Lemma 2.3 gives us a balanced
factorization of A w.r.t. 8.

|S| > 1: Let B€ S and T = 8 \ {B}. Since |T| < |S|, we compute a balanced
factorization A = A; --- A4,, of A w.r.t. T by induction. Now, for i = 1...m,
compute (using Lemma 2.3) a balanced factorization A; = A;1 -+ Ajm; of A; w.r.t.
B. For any 1,j, we have A;; is balanced w.r.t. B. But A;; | A; and A; is balanced
w.r.t. T, so A;j is balanced w.r.t. T, so A;; is balanced w.r.t. §. Thus,

m m;

A=]TTI 4

i=1j=1

is a balanced factorization of A w.r.t. S.

We can finally show how to compute a balanced factorization of a polynomial
w.r.t. any finite set of polynomials.

THEOREM 2.6. Let A € k[z] and & C k[z] be finite. Then, using only gcd
computations in k[z], one can compute a balanced factorization of A w.r.t. § in
finitely many steps.

PROOF: Let A = A; 4,2+ A,"™ be a squarefree factorization of A. Fori=1...n,
compute (using Lemma 2.5) a balanced factorization A; = A1« ++ Ajn,; of A; w.r.t.
S. Then,

n T

a=11I4"

i=1 j=1
is a balanced factorization of A w.r.t, S.

We can extend the notion of balanced to fractions in the natural way.

DEFINITION 2.7. Let A € klz], f € k(z), and § C k(z). We say that A is
balanced with respect to f if A is balanced w.r.t. B and C, where B,C € k[z],
(B,C) = (1) and f = B/C. We say that A is balanced with respect to S if
A is balanced w.r.t. f for any f € S. We also say that A = A,*' ... A,°" is a
balanced factorization with respect to f (resp. §), if A; is balanced w.r.t. f
(resp. §) and squarefree for i = 1...n, and (A;, A;) = (1) for ¢ # 3.

This definition is motivated by the following property.

LEMMA 2.8. Let A € k[z] and f € k(z). The following are equivalent:
(i) A is balanced w.r.t. f.

(ii) vp(f) = vo(f) for any two squarefree factors P and @ of A.
(iii) »p(f) = vq(f) for any two irreducible factors P and Q of A.

PROOF: Let f € k(z) and write f = B/C where B,C € k[z] and (B, C) = (1).

(1) = (i1): Suppose that A is balanced w.r.t. f, and let P and Q be
squarefree factors of A. By Lemma 2.2, vp(B) = vq(B) and vp(C) = vo(C).
Hence, vp(f) = vo(f).
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(i) => (1) I vp(f) = vo(f) for any two squarefree factors P and Q of A,
then it is also true for any two irreducible factors of A.

(ii1) = (i): Suppose that A is not balanced w.r.t. f. Then A is not balanced
w.r.t. to at least one of B or C, say B. Thus, there exist two irreducible factors
P and Q of A such that vp(B) # vg(B). Then, at least one of vp(B),vq(B)
is non-zero, say vp(B) > 0. Since (B,C) = (1), we must have vp(C) = 0, so
vp(f) = ve(B) > 0. If vg(B) = 0, then vq(f) < 0, so vp(f) # vq(f). Otherwise,
vo(B) > 0, so vg(C) = 0, so va(f) = vg(B) # vp(B). Thus vp(f) # vg(f) in
both cases.

The algorithm of Theorem 2.6 can be used to compute balanced factorizations
w.r.t." any finite set of fractions.

COROLLARY 2.9. Let A € k[z] be monic and § C k(z) be finite. Then, using only
gcd computations in k[z], one can compute a balanced factorization of A w.r.t. S
in finitely many steps.

PROOF: Write each f € § as f = By/Cy where By, Cy € k[z] and (By,Cy) = (1).
Using Theorem 2.6, compute a balanced factorization of A w.r.t. Jses{By,Cr}.
This factorization is then balanced w.r.t. § by definition.

The reason for requiring the factors to be squarefree in a balanced factorization
is that non-trivial squarefree balanced polynomials have the following additional
properties.

LEMMA 2.10. Let P € k{z] \ k be squarefree and f, g € k(z) \ {0}. Then,

(i) P balanced w.r.t. f <= vo(fP~¥P(f)) = 0 for any irreducible factor Q
of P in k[z],
(i) P balanced w.r.t. f = fP~'»(f) ¢ Op,
(ili) P balanced w.r.t. {f,g9} = vp(fg) = vp(f) + vr(g).

PROOF: Let Q be any irreducible factor of P. Since P is squarefree, vg(P) =1,
so vo(fP7"* ) = vo(f) — vp(Fve(P) = vo(f) — vr(f).

(¢): Suppose that P is balanced w.r.t. f. Then, by Lemma 2.8, vo(f) = vp(f).
Hence, vo(fP~"F () = 0. Conversely, suppose that vo(fP~*#»(N) = 0. Then,
vo(f) = vp(f). Since this holds for any irreducible factor @ of P, P is balanced
w.r.t. f by Lemma 2.8.

(i3): Suppose that P is balanced w.r.t. f. Then, by (¢), vo(fP~**(9) =0, so
fP-vr(f) € Og. Since this holds for any irreducible factor @ of P, f € Op.

(i42): Let @ € k[z] be any irreducible factor of P. Then @ is squarefree, and
since P is balanced w.r.t. {f,g}, we have vo(f) = vp(f) and vg(g) = vp(g) by
Lemma 2.8. But @Q is irreducible, so vo(fg) = vq(f) + vq(g). Hence, vo(fg) =
vp(f)+vp(g). Since this holds for any irreducible factor of P and P is squarefree,
we have vp(fg) = vp(f) + vp(g).

The converses of (i¢) and (¢i¢) do not always hold: let P = z(z — 1) which is
squarefree, and f = ¢%(z —~ 1). Then, vp(f) = 1 and fP~! = z € Op, but P
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is not balanced w.r.t. f since vz(f) = 2 and v,—1(f) = 1. Also, vp(f?) =2 =
vp(f) + vp(f), while P is not balanced w.r.t. {f}.

Also, Lemma 2.10 is not true for non-squarefree polynomials: let P = z?(x + 1)
and f = 27 %(z + 1)~2. Then, vp(f) = —1 and P is balanced w.r.t. f, but
fP = (2 +1)7" 80 vz41(fP) = -1, so (4) does not hold. Let P = 22 and
f = g = . Then P is balanced w.r.t. {f,g} and vp(f) = vp(g) = 0, but
vp(fg) = 1, so (4i¢) does not hold.

The notion of a balanced factorization is connected to the notion of a square-
free-gcd-free basis for a set of polynomials.

DEFINITION 2.11. Let 8 C k{z] be finite. A square-free-gcd-free (s.f.g.f.} basis
for 8 is a finite subset B of k[z] such that:

(i) every B € B is squarefree,
(ii) (A4,B)=(1) for A,B € B, A# B,
(iii) every A € S can be written as A = a[[ g B® where a € k and the eg’s
are non-negative integers.

The following Theorem shows that computing a s.f.g.f. basis for a set § yields
a balanced factorization of any element of § w.r.t. S.

THEOREM 2.12. Let S C k{z| be finite and B C k[z] be a square-free-gcd-free
basis for S. Then, for any B € B, B is squarefree and balanced w.r.t. S.

ProoF: Let B € B, then B is squarefree by definition. Let A € §. Then,
A = B* HC’GB\{B} C*®. Let P and @ be irreducible factors of B. Since B is
squarefree, then vp(B) = vo(B) = 1. For C € B\ {B} we have (B,C) = (1),
hence vp(C) = vg(C) = 0, so vp(A) = vg(A) = e, so B is balanced w.r.t. A.
Hence, B is balanced w.r.t. S.

Thus, s.f.g.f. bases are at least as fine as balanced factorizations, so they can
be used instead of balanced factorizations in the algorithms of this paper: given
A € k[z] and S C k[z] be finite, one can compute a s.f.g.f. basis B for {A} U S
and the expression of A as a product of elements of B is a balanced factorization
of A w.r.t. S by Theorem 2.12. On the other hand, the following example shows
that computing a s.f.g.f. basis requires in general more gcd computations when
only one balanced factorization is needed.

Example: Let £ = Q be the rational number field, z be an indeterminate over
k,and A =2? —z, B = 2% — 22 — 2¢ and C = 2% + 2¢? — z — 2. .Computing a
balanced factorization of A w.r.t. B we get: G = gcd(4,B) =2, A =G(z ~ 1)
and B = G(z? — 2 — 2). Since ged(G,2? —z — 2) = 1, G is balanced w.r.t.
z? — 2~ 2,50 A = z(z — 1) is a balanced factorization of A w.r.t. B. Since
ged(z,C) = 1, z is balanced w.r.t. C, and computing a balanced factorization of
x—1wrt C weget: G=ged(z —1,C) =z —1and C = G(z* + 3z + 2). Since
ged(G,z? + 3z + 2) = 1, G is balanced w.r.t. 22 + 3z + 2 so z — 1 is balanced
w.r.t. C so the above factorization is a balanced factorization of A w.r.t. {B,C}.
But {z,z — 1,22 — z — 2,22 + 3z + 2} is not a s.f.gf. basis for {A,B,C} since
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ged(z? —z — 2,22 + 3z 4+ 2) = x 4 1. In fact, a minimal s.f.g.f. basis for {4, B, C}
is {z,z -1,z -2,z + 1,z + 2}.

3. MoNOMIAL EXTENSIONS

We summarize in this section the basic definitions and results of (Bronstein,
1990b) regarding menomial extensions that will be used in this paper. We refer to
the above paper for the proofs of all the results stated in this section.

A differential field is a field k with a given map a — o' from k into k, satisfying
(a+b) =da' 4V and (adb)’ = ¢'b+ ab'. Such a map is called a derivation on k. An
element a € k which satisfles a' = 0 is called a constant. The constants of k£ form
a subfield of k.

A differential field K is a differential extension of k if k C K, and the derivation
on K extends the one on k.

DEFINITION 3.1. Let k be a differential field and K be a differential extension of
k. z € K is a monomial over k (with respect to '), if

(i) = is transcendental over k,
(i1) k(z) and k have the same subfield of constants,
(iil) ' = H(z) for some H € k[z].
If z is a monomial over k, then the degree of z is d(z) = deg(H), and the leading
coeflicient of « is lc(z) = coefficient of z%(%) in H.

If £ is a monomial over k, then

(1) k must be of characteristic 0,

(2) z is also a monomial over any algebraic extension of k,

(8) k[z] is closed under '

In the rest of this section, (k,') is a differential field of characteristic 0 and z is
a monomial over k.

DEFINITION 3.2. P € k[z] is normal with respect to' if (P, P') = (1). Otherwise,
P is special (with respect to').

A split-factorization of P is a factorization of the form P = PgPyn where
Pg,PN € k[z), every irreducible factor of Pg is special, and every irreducible
factor of Py is normal.

There is an algorithm that, given P € k[z], computes a split factorization of P
using only ged computations (Bronstein, 19904),

Let f = A/D € k(z), where (A,D) = (1), and D is monic. Let D = DsDy
be a split-factorization of D with Dg and Dy monic. We can then compute
P, B,C € k(] such that deg(B) < deg(Ds), deg(C) < deg(Dy), and

A B C
=—==P4 =+ .
f=5 +Ds+DN

This decomposition is unique and is called it the canonical representation of f.
We write fp = P (the polynomial part of f), f, = B/Ds (the special part of f),
and f, = C/Dn (the normal part of f).



Solutions of Linear Ordinary Differential Equations 421

DEFINITION 3.3. Let f € k(z), and let f = f, + fa + fn be its canonical repre-
sentation. We say that

(i) f is simple if f, has a squarefree (hence normal) denominator,
(ii) f is reduced if f, = 0.

In the language of poles, f € k(z) is simple if it has only simple poles at normal
places, and reduced if it has no poles at normal places.

4., REMAINDERS

Let (k,') be a differential field of characteristic 0, and & be a monomial over k.

Notation: for f € k(z), we write f', f", f(3), ... for the successive derivatives
of f. We also use f(®, (1) and f® for f, f' and f”. In addition, we write 8 for

and &' represents the operation of applying / 1 times. Also, for any quantity Z
and any non-negative integer n, we write Z{"} as a shorthand for [[}5 (Z - i).
In particular, Z{°} = 1.

Let P € k[z]. We define the balance of P to be

Bp = {f € k(z) such that P is balanced w.r.t. f}.

We can now define an analogue of the residue defined in (Bronstein, 19905) which
will be helpful in computing P-adic expansions and indicial equations. With the
following definition, we show in this section that the n**-remainder of f at P is
essentially the leading coefficient of the P-adic expansion of f(*) at P. Recall that
#p denotes the residue modulo P for elements of Op.

DEFINITION 4.1. Let P € k[z] \ {0} be squarefree, and n 2 0 be an integer. We

define the nth-remainder at P to be the map ,7p : Bp \ {0} — k[z]/(P) given
p

by n7e(f) = ¢p(f momiy)-

By Lemma 2.10, f € Bp implies that fP~#*(f) € Op, so fP"P~*¢(f) € Op,
s0 ,Tp is well defined. We note that for an irreducible P, Bp = k(z), so »7p is
defined on ¥(z) \ {0} in that case.

The remainders satisfy the following multiplicative formula.

LEMMA 4.2. Let P € k[z] be squarefree. Then Bp is closed under multiplication
and for any integers n,m > 0 and f,g € Bp, we have

nTP(F)m7e(9) = nym7pP(f9)-

PROOF: Let f,g € Bp and Q, R € k{z] be any 2 irreducible factors of P. Then

vo(fg) = vo(f) + vqlg) = vr(f) + vr(9) = vr(fg), so fg € Bp by Lemma
2.8. Since P is squarefree, vp(fg) = vp(f) + vp(g) by Lemma 2.10, and ¢p is a
ring-homomorphism, so

nm(Hm7r(g) = $p(FP'" P77 D)pp(gP'™ Pvr (o))
= ¢P(fgpm+mP-uP(f.9)) = ntmTP(f9)-
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LEMMA 4.3. Let P € k[z] be normal andn > 0. Then o7p(f) # 0 for any f € Bp.

PROOF: Let f € Bp and Q be any irreducible factor of P. Since P is normal,
P is squarefree, so, by Lemma 2.10, vo(fP~*?{9)) = 0. Also, since P is normal,
(P,P") = (1), s0 (Q,P’) = (1), so vo(P'") = 0. Hence, vo(fP'"P~*(N) =0, so
vp(fP'"P=ve{f)) =0, s0 ,rp(f) # 0.

The next Lemma links the n'#-remainders and P-adic expansions.

LEMMA 4.4. Let P € k[z] be monic normal irreducible. Let y € k(z) \ {0} and
n = vp(y). Let w be +o0 if n < 0 andn+1 otherwise. Then the P-adic expansion

of y() is of the form ‘ _
y(') - n{'}iTP(y)Pn—' + “es

for any integer 1 such that 0 <1 < w.

Proo¥F: By induction on :.
i = 0: Let the P-adic expansion of y = 3(®) be of the form

Y= BnPn R
where B, € k[z], Bn # 0, and deg(B,) < deg(P). Then, the P-adic expansion of

yP™" is
yP™" =Bn+ Bpy P+

so B, = ¢p(yP~") = n{"¥gp(yP'"P~") = g7p(y).
0 < i < w: Assume that the P-adic expansion of y(i-1) is of the form

yli=1 = pli-tygpn—i+1 4 (1)

where B = ;_37p(y). By Lemma 4.3, B # 0. Also, n —¢ + 1 # 0 since ¢ < w, so
applying ' to both sides of (1), we get

y() = nli-1Y(n -4+ 1)BP'P"~i ...
so the P-adic expansion of y(¥) is
y = nlilgp(BPYP " + ...
We have
$p(BP') = ¢p(i17P(y)P') < ¢p(¢p(yP""" P~™)P') = ¢p(yP"'P™") = i7p(y),
so the P-adic expansion of ¥(i) is

y(') :""n{i}iTP(y)Pn_i + e,
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5. THE REDUCTION AT THE NORMAL SINGULARITIES

Let (k,') be a differential field of characteristic 0, and = be a monomial over k
Let fo,... ,fn~1 € k(z) and L = 8" + f,~10™" 1 + .-+ + f18 + fo be a linear

differential operator over k(z). For convenience, we write L = 3 1. f;0° where
fa=1

DEFINITION 5.1. Let P € k[x] be squarefree, and z be an indeterminate. We
define the order drop of L at P to be:

pp(L) = ofél'ﬁisxn(i —vp(fi))
and the leading set of L at P to be:
AP(L) ={i € {0,... ,n} such that 1 — :Up(_f,') = ,up(L)}.

Note that up(L) > n since vp(fa) = 0. If P is balanced w.r.t. {f; fori € Ap(L)},
then we define the indicial equation of L at P to be:

Ep(L) = resultant.(P, Y irp(fi)z') € k[2].
i€Ap (L)

We note that |A\p(L)| > 1, so, by Lemma 4.3, Ep(L) is not identically O for any
normal P € k[z] which is balanced w.r.t. {f; for i € Ap(L)}.

LEMMA 5.2. Let C € k[z] be squarefree and balanced w.r.t. {fy,...,fa}. Then,
Ep(L) | Ec(L) for any irreducible factor P of C in k[z].

PROOF: Let P € k[z] be an irreducible factor of C. Since C is squarefree and
balanced w.r.t. {fo,...,fm}, we have vp(fi) = vc(fi) for i =0...m by Lemma
2.8. Hence, pp(L) = pe(L) and Ap(L) = Ac(L). Write C = PD where (P,D) =
(1) since C is squarefree, and let ¢ € A¢(L). Then,

$p(i7o(f1)) = ¢p(do(fCI'C77eU)))
= ¢p(f(P'D + PD") P=vrUd p=vr(fidy
—_ ¢P(fP'iP—VP(ff)Di—vp(fa))
= ¢p(itp(fi)D*r D)
50
ire(fi) = D**Pirp(f;)  (mod P).
Let k be the algebraic closure of k. For any a € k we have:

Z ire(fi)alil = pre®) Z ip(f)al? (mod P).

i€Ac(L) i€Ap(L)
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If Ep(L) € k, then Ep(L) | Ec(L). Otherwise, let a € k be such that Ep(L)(a) =
0. Then, since P is irreducible,

> wp(fi)ell =0 (mod P),
i€Ap(L)
hence

Z ,-rc(f,-)a{"} =0 (mod P),

i€Ac (L)

hence P | ged(C, EieAc(L) ito(fi)ali}), so Eq¢(L)(e) = 0. Since this holds for any
root of Ep(L) in k, Ep(L) | Eg(L) in k|z].

The above definition allows us to describe the relation between vp(y) and
vp(L(y)) for y € k(z).
LEMMA 5.3. Let y € k(z) and P € k[z] be monic normal irreducible. Then, either

@) ve(y) 20, 0r
(i) Ep(L)(ve(¥)) =0 (and vp(L(y)) 2 vp(y) — pp(L)), or
(iii) vp(L(y)) = ve(y) — up(L).

PROOF: Let m = vp(y), mi = vp(f;) for i = 1...n, and suppose that m < 0.
By Lemma 4.4, the P-adic expansion of v is
¥y = m{trp(y)pmi 4 ...
for any integer ¢ > 0. Also by Lemma 4.4, the P-adic expansion of f; for f; # 0 is
fi=orp(fi)P™ 4.
Hence, the P-adic expansion of fiy(® for f; # 0 is
Fy® = mBorp(f)irp(y)Pmt-m0 4.
By Lemma 4.2,
orp(fi)iTe(y) = itp(fiy) = o7r(¥)iTP(fi)
so the P-adic expansion of L(y) is

Lly) = (oTP(y) Z m{“},-rp(f,-)) pm-ep(L) 4 ...

i€EApP(L)

so vp(L(y)) = vp(y) — pp(L).
Suppose that vp(L(y)) > vp(y) — pp(L). Then
o7P(y) Z mUirp(f)=0 (mod P).
i€rp(L)
Since P is normal, o7p(y) # 0 by Lemma 4.3. P is also irreducible, so k[z]/(P) is
a field and Bp = k(z). Hence 3oic; (1 mUYrp(f;) = 0 (mod P), so Ep(L)(m) =
0.

We need to be able to find a lower bound for the integer roots of a polynomial
with coefficients in &, so, following Abramov, we call such fields admissible.
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DEFINITION 5.4. Let K be a field, and X be an indeterminate over K. We say
that K is admissible if there exists an algorithm that, given P € K[X] returns
an integer B(P) such that for any integer n, P(n) = 0 = n > B(P).

We now have a rational algorithm for reducing the normal singularities of an
ordinary linear differential equation over k(z). Recall that vp(0) = +o00 by conven-
tion. For use in recursive algorithms, we actually prove the result for parametrized
equations. Note that z denotes an arbitrary monomial and not the dependent vari-
able of the diffefential equation (i.e. ' # d/dz in general).

THEOREM 5.5. Let k be an admissible differential field of characteristic 0, C
be the constant subfield of k, and z be a monomial over k. Let n,m > 0 be
integers and fo,... , fn,91,-.. ,9m € k(x) with f, = 1. Let L = 3 I, fi0',
and for i = 0,...,n, let fi = fip + fis + fin be the canonical representation
of fi, where fin = Ai/D;, Ai,Di € klz], (4;,D;) = (1), and D; is monic.
For j =1,...,m, let also g; = gjp + gj» + gjn be the canonical representation
of gj, where gjn = Bj/E;, Bj,E; € k[z], (B;,E;) = (1), and E; is monic.
Let D = lem(Dy,... ,D,), E = lem(E,,... ,E,), G = E/gcd(E,dE/dz) and
H = G/gcd(G, D/ ged(D,dD/dx)). Let Ci**---C,° be a balanced factorization
of D with respect to {fon,... s fansgins--- ygmn}, and Hy --- H, be a balanced
factorization of H with respect to E. Let

T=Cy% ClH ... H "
where

dj = max(0, ~B(Ec; (L)), max (—vc,(6s)) — pe; (L)) for j = 1,...,4,

and
gj = max(0,vy;(E)—n) forj=1,...,r

Then, for any y € k(z) and ¢1,...,¢m € C,

L(y) = Z cjgj = yT is reduced.
i=1

PROOF: Let y € k(z), c1,...,cm € C and suppose that L(y) = g = 3 7", c;g;. If
y = 0, then yT' = 0 is reduced, so suppose from now on that y # 0.

Let P € k[z] be monic normal irreducible. If vp(y) 2 0, then vp(yT") > 0, so
suppose from now on that vp(y) <0.

Case 1: Ep(L)(vp(y)) # 0: then, by Lemma 5.3, vp(L(y)) = vp(y)—pp(L) < 0.
But L(y) =g, so g # 0, and vp(g) < 0. We also have

vp(9) 2 min (vp(9;)) = — mex (-velg;)) = — max (vp(E))) 2 —vp(E)
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80 vp(g) +vp(E) > 0, and vp(E) > —vp(g) > 0. Thus P | B, so P | G. And,
since g # 0, we have vp(yT') = vp(y) + vo(T) = vp(g) + pp(L) + ve(T).

Suppose first that (P, D) = (1). Then, vp(f;) 2 0fori =0,...,n,so up(L) = n.
Also, P | H (since P | G), so P | Hj, for some jo € {1,...,7}. We have (Hj,,C;) =
(1) for any j (since (P,D) = (1)), and (Hj,,H;) = (1) for j # jo, and Hj, is
squarefree, so vp(T) = vy, (T) = gj, > vm; (E) —n. But Hj, is balanced w.r.t.
E,sovp(E) = vy, (E), hencevp(T) 2 vp(E)~n, sovp(yT) = vp(g)+ve(E) 2 0.

Suppose now that P | D. Then, P | Cj, for some j, € {1,...,9}. We
write C for C;,. We have (C,C;) = (1) for j % jo. Since P | G and P | D,
P | gcd(G,D/ged(D,dD/dz)), so (P,H) = (1) since H is squarefree. Thus
(C, Hj) = (1) for any j, so vp(T') = vo(T) = dj, 2 —minj<jcm(ve(g;)) — re(L)
by definition of d;,. But C is squarefree and balanced w.r.t. {g1,... ,9m}, s0
min; <j<m(vP(¢;)) = minicj<m(vc(g)) by Lemma 2.8. And C is squarefree
and balanced w.r.t. {fo,...,fm}, so pp(L) = pc(L) by Lemma 2.8. Hence
vp(T) 2 — minigj<m(vp(y;)) — up(L), so vp(yT) 2 0.

Case 2: Ep(L)(vp(y)) = 0: Suppose that (P,D) = (1). Then, vp(f;) > 0 for
1=0,...,n, s0 gp(L) =n, Ap(L) = {n}, and

n—1
Ep(L) = resultant, (P, z{7) = 2480+ _ [1(z —iyreetPra

i=0

which has no negative integer roots in contradiction with vp(y) < 0. Hence, P | D.

Thus, P | C;, for some jo € {1,...,q}. We write C for C';,. By Lemma 5.2, this
implies that Ep(L)|Ec(L), so Ec(L)(vp(y)) = 0, so vp(y) = B(Ec(L)). Since
vp(y) < 0, we have B(Ec(L)) < 0, so ve(T) = dj, > —f(Ec(L)). Since P | C,
vp(T) > ve(T), hence vp(T) > ~B(Ec(L)). Therefore,

vp(yT) = vp(y) + vp(T) = B(Ec(L)) — B(Ec(L)) = 0.

Since this holds for any monic normal irreducible P € k[z], yT is reduced.

For non-parametrized inhomogeneous equations, the following criterion is a di-
rect consequence of Lemma 5.3.

THEOREM 5.6. Let k be a differential field of characteristic 0, and z be a monomial
over k. Let m > 0 be an integer and ¢, fo,... ,fm € k(z) with fm = 1. Let
L=Yn",f0 and fori = 0,...,m, let f; = fip + fis + fin be the canonical
representation of f;, where fi, = A;/Di, Ai, D; € k[z], (Ai, D;) = (1), and D;
is monic. Let also g = g, + gs + gn be the canonical representation of g, where
gn = B/E, B,E € k[z], (B,E) = (1), and E is monic. Let D = lem(Do,...,Dx),
G = E/gcd(E,dE/dz) and H = G/ ged(G, D/ ged(D,dD/dx)). Then,

L(y) = g has a solution y € k(z) = H™! | E.

PROOF: If y =0, then g =0, s0 H = E =1, so H™*+! | E, so0 suppose that y # 0.
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Let P € k[z] be an irreducible factor of H. Then P | G. so P | E, so vp(L(y)) =
vp(g) < 0. Since G is squarefree, P /| ged(G, D/ ged(D,dD/dz)), so (P,D) =
(1). Then, vp(f;) 2 0fori=0,...,m, so vp(y) < 0 (otherwise we would have
vp(L(y)) 2 0). Also, up(L) = m, Ap(L) = {m}, and Ep(L) has no negative
integer roots as in case 2 of the proof of Theorem 5.5. Hence Ep(L)(vp(y)) # 0,
so vp(E) = —vp(g) = m — vp(y) by Lemma 5.3, so vp(E) > m, so P™+! | B,
Since this holds for any irreducible factor of H and H is squarefree, we have
Hm+l |E

Example: Consider the equation

Y - A,
L(y) =Y ta,n(t)2 — 42 Y
(18t* + 24t? + 8) tan(t)? — 10t¢ ~ 8¢* — 8t2
=2 (B
tan(t)? — 2¢2 tan(t)? + ¢4 y (1)
Let k = Q(t) where t is transcendental over Q and the derivation on k be ' = d/dt.

Let  be a monomial over k with ' = 1422 (i.e. z = tan(t)). Following Theorems
55and 5.6 wehave g =2, m=2, f, =1, f; = —8¢/(z? — ¢?) and

- (121&2 +8+

_(18¢* +24¢% + 8)a? ~ 10¢° — 8¢ — 8¢°
zt — 21222 4 ¢4 |

fo=—-12t2 -8

Computing the canonical representations of the f;’s and g we get A, = B = 0,
D; =E=1, A = —8t, Dy = 2% — %, Do = z* — 2t%22 + ¢ and 4o = —(18t* +
2412 + 8)z? + 10t + 8t* + 8t2. Thus,

D= lcm(Do,Dl,Dz) = gt — 2232 +t4

and G = H = 1, so H® | E. A balanced factorization of D with respect to

{fo""flfl’qu’gn} is
D= C2 = (22 _t2)2

so we have to look at the Newton polygon of L at C. We find vc(fo) = —2,
ve(fi) = —1 and ve(f2) = 0, so pe(L) = 2 and Ag(L) = {0,1,2}. We have
C' = 22% 4 2z ~ 2t, and the 7¢’s are

70 = oTc(fo) = dc(foC?) = do(4o) = —8t° — 16t4,

n =17¢(f1) = dc(f1CC") = do(A1C") = —16¢((#* + 1)z — t)
and
72 =1270(f2) = $o(C"") = —4((24? + 2)z — ° — 2t° — 2t),
so the indicial equation of L at C is
Eo(L) = resultant,(2? — t*,7 + iz + m2(2 — 1)) =
16(% + 2t8)((2* + 2t2)2* ~ (2t* + 4¢% + 8)7°
— (384 + 612 +16)2? + (44 + 8t7 — 8)z + 4t* + 8¢%).
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We have
ged(Ec(L)(1,2), Ec(L)(2,2)) = (z +1)?

so B(Eg(L)) 2 —1. Checking for z = ~1 we find that Ec(L)(t,—1) = 0, so
B(Ec(L)) = —1. We have v¢(g) = 0, so the bound given by Theorem 5.5 for the
exponent of C is max(0,1,~2) = 1, so for any solution y € k() of equation (E;),

Y =yT = y(2* — %)

is reduced.
6. THE REDUCTION AT INFINITY

Let (k,' ) be a differential field of characteristic 0, and z be a monomial over k.

Notation: for any quantity Z, any non-negative integer n, and any integer m,
we write Z{™™} as a shorthand for [[17(Z — ém). In particular, Z{%m} =1 and
Z{n1} = 7{n}

We first define an analogue of the remainders at infinity.

DEFINITION 6.1. For any integer n > 0, we define the n**-remainder at infinity
to be the map n7eo : k(z) \ {0} — k given by n7eo(f) = (—1c(x))" doo( frV={N).

Since voo( f2 (M) = voo (f) (1 + veo(z)) = 0, nToo(f) # 0 for any f € k(z)\ {0}.
LEMMA 6.2. Suppose that ' =d/dx (i.e. ' =1 and k' = 0 or that d(2) > 2. Let
y € k(z)\{0} and n = voo(y). Let w be +o0 ifn(1—d(z)) = 0 and 1+(n/(d(z)-1))
otherwise. Then the series expansion of y() at infinity is of the form

Y = pGd@=1) 1y ~(nkiG=d@)) 4
for any integer i1 such that 0 < i < w,

Proo¥F: By induction on :.
i = 0: Let the series expansion of y = y(®) at infinity be of the form

Y= anm"" 4.
where a, € k, and a, # 0. Then, the expansion of yz™ is
Yz" = ap + appr 2T 400

80 Qp = qsoo(ymn) — n{o,d(x)—l}oq_oo(y)'
0 < i < w: Assume that the expansion of y(i—1) is of the form

Y= = pli=1d@) =1} go~(nt(i-1)(a-d=)) 4

where a = ;_17,o(y) # 0. We have n + (i — 1)(1 — d(2)) # 0 since i < w.
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If ' = d/dz, then o' = 0,d(z) = 0, and l¢e(z) = 1, so (aa:"("""(""l)))' = —(n+
(3 — 1))ag~(n+d),

Otherwise, d(z) 2 2 so the expansion of (az~(*+(i-D(1-d=))Y' ig of the form
—(n + (8 = 1)(1 — d(z)))a le(z)z=("+{1-d=)) 1 ... Thus we get in both cases

y) = pli=1d@) -1} 4 (G — 1)1 - d(z)))(~a) ;c(x)m—-(n%(l-d(z))) R
We have

(=) le(e) = =i-aTeolW)le(m) = =(=16(2))' fan(ya"=)le(2)
= (=1e(@)) oo (ya"= W) = iTeo(y),

so the expansion of y(¥) is

YD = plid®) =1}, (N =(rFiQ=da)) 4 ..

Let L=Y" , fi® where fo,...,fn € k(z) and f, = 1.
DEFINITION 6.3. Let z be an indeterminate. We define the order drop of L at

infinity to be:
peolL) = i (i(d(2) = 1) = ves( ),
the leading set of L at infinity to be:
Aoo(L) = {i € {0,...n} such that i(d(z) — 1) — veo(f) = too(L)},

and the indicial equation of L at infinity to be:

EoL)= Y iTeolfi)e 41} ¢ k[2].
i€Ao (L)

We note that |Aeo(L)| 2 1, so Ex(L) is not identically 0.
We can now describe the relation between voo(¥) and voo(L(y)) for ¥ € k(z).

LEMMA 6.4. Suppose that ' = d/dz or that d(z) > 2, and let & be 0 if d(z) 2 3,
1 — n otherwise. Let y € k(x). Then, either

(1) Uoo(y) Z «, or
(1) Eoo(L)(¥eo(y)) = 0 (and veo(L(y)) = veo(¥) — pteo(L)), or
(ii) Yoo(L(¥)) = Vooly) — HoolL).

PROOF: Let m = voo(¥), mi = veo(fi) for 1 = 1,...,n, and suppose that m < .
Then m < 0, so the w of Lemma 6.2 is +c0 if d(z) 2 2, 0r 1 -m > 1—-a =p
otherwise. Hence Lemma 6.2 is valid for 0 < < n, so the series expansion of y(i)
at infinity is

y() = m{i,fi(Z)—l}’.,,-oo(y)m-(mﬁ(l-—d(z))) R
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for 0 < ¢ < n. Also by Lemma. 6.2, the expansion of f; for f; # 0 is
fi=o0Toa(fi)z ™™ 411
Hence, the expansion of f;y( for f; # 01is
f;y(‘) — m{i,d(z)-l}u,,.oo(f’.)..1.00(y)z—(m+mi+i(1'-d(z))) N

But ,
0700 (fi)iToo(¥) = boo(fiz™ )(=1e(2)) Poo(¥Z™) = 0Too(¥)iToo(£:)

so the expansion of L(y) is

€A (L)

L{y) = (ofoo(y) Z m{",d(z)—l}‘.,,-w(f..)) g (m—Be(L)) 4 ...

80 Voo(L(Y)) 2 Voo(y) — teo(L).
Suppose that Voo(L(y)) > Veo(y) — Boo(L). Then

0Teo(y) Y miHEOir (£) =0,
i€Aoo (L)

hence, since g7co(Yy) # 0, Eco(L)(m) = 0.

When ' = d/dz or d(z) > 2, we can bound the degree of the polynomial part
of any solution of an ordinary linear differential equation over k(z). Recall that
¥eo(0) = 400 by convention, and that the degree of the polynomial part of any
f € k(z) is —voo(f). For use in recursive algorithms, we prove the bound for
parametrized equations.

THEOREM 6.5. Let k be an admissible differential field of characteristic 0, C be
the constant subfield of k, and = be a monomial over k. Suppose that ' = d/dz
or that d(z) > 2, and let n,m > 0 be integers. Let fo,..., fa,91,... ,9m € k(z)
with f, =1, and L = >_i_, fi8'. Let a be 0 if d(x) > 2, 1 — n otherwise. Then,

L(y) = Zf"g" == Veo(y) 2 min(a, B(Eoo(L)), hioo(L) + B (veo(9;)))
=

for any y € k(z) and c1,... ,em € C.

PROOF: Let M = min(e, B(Eos(L)), poo(L) + mini<jcm(voo(g5)))- Let y € k(z),
¢1,-.. ,em € C and suppose that L(y) = 377, cjg;. Let ¢ = voo(y). 1f ¢ > @, then
g> M. If Ex(L)(g) =0, then ¢ 2 B(Ew(L)), so ¢ = M. Suppose that ¢ < «
and that E.o(L)(g) # 0. Then, by Lemma 6.4, ¢ = veo(3_jo; €i95) + Hoo(L) 2
poo(L) + mini <j<m(Veo(95))s 50 ¢ 2 M.
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Example: Continuing the example of the previous section, we have &' = 1 + 22,
so d(z) = 2 and le(z) = 1. We find that veo(fo) =0, veo(f1) =2 and v(f2) = 0,
80 foo(L) =2 and Ao(L) = {2}. Also 2750(f2) = (—1)?doo(1l) = 1, so the indicial
equation at infinity is E.o(L) = z{31} = 2(z — 1) which has no negative integer
root, s0 3(E(L)) = 0, and the bound given by Theorem 6.5 for the order at
infinity is min(0,0,2) = 0, hence vo(y) > 0 for any solution y € k(z) of equation
(Er)-

Since we know from the previous section that ¥ = y(z? — #2) is reduced for any
solution y € k(z) of equation (Ej), we could also have replaced y by Y/(2? — ¢?)
in equation (E;), obtaining the following equation for Y

2 +r+1

.Z/(Y) =YY" -4 R

Y' +2(z? - 7)Y = 2(z? - t%). (E2)
Applying the algorithm of this section to Fy = G = 2(2? — 1?), F, = 1 and
Fy = —4(2® + z +1)/(2? — t?), we get voo(G) = voo(Fo) = —2, Voo(F1) = —1 and
Voo(F2) = 0, 50 poo(L) = 2 and Aoo(L) = {0,1,2}. Computing the 1o’s we get

To = 0Too(Fo) = doo(Fa/z?) = 2,

T = 1Too(F1) = —¢00(F1/:B) =4

and
T2 = 2Teo(F2) = $uo(l) =1,

so the indicial equation of L at infinity is
EBoD)=mo+mz4+mnz(z-1)=22+32+2=(2+1)(z+2).

Thus, A(Ex(L)) = —2, so the bound given by Theorem 6.5 for the order at infinity
is min(0, ~2,0) = ~2, 50 vo(Y) > —2 for any solution ¥ € k(z) of equation (Es)-
Note that the two bounds are equivalent since Y = y(22 — ¢?).

Since /=1 ¢ k(z), the only possible denominator for a reduced element of k(z)
is a power of z2 4+ 1 (Bronstein, 1990b), so any reduced solution ¥ of equation
(E2) must be of the form

Y = 2 P
= azz” + a1% + ao +W
where ag,a3,a2 € Q(t), m > 0 and P € k|z] is either 0 or deg(P) < 2m. For this
particular example, (E;) has the trivial solution ¥ = 1, so a solution in Q(t, tan(t))
of equation (E,) is
1

Y= Yen(tE — 12



432 M. Bronstein

7. ALGORITHMS FOR LIOUVILLIAN EXTENSIONS

We apply here the results of the previous sections to describe how Singer’s (1991)
algorithm for finding solutions of L(y) = ¢ in the coefficient field can be made more
effective.

Let k be a differential field of characteristic 0 and ¢ be a monomial over k. We
recall that ¢ is Liouvillian over k if either

(i) t' € k, in which case we say that ¢ is primitive over k, or

(ii) '/t € k.

Let P € kft] be squarefree. We recall from (Bronstein, 1990b) that

(i) if ¢’ € k then P is normal,

(ii) if ¢/t € k then P is normal if and only if ¢ J P.

Consequently, for any a € k(2),
(i) if t' € k, then a is reduced if and only if a € k[¢],

(i) if #/t € k, then a is reduced if and only if a € k[t,t™1].

Let k be a differential field of characteristic 0, and C' be its constant field.
Following Singer, we say that we can effectively solve parametrized linear ordinary
differential equations over K if given fo,... ,fn,90,--- :9m € k(t) with f, =1, we
can effectively find hy,... ,h, € k and a system A of m + r linear equations with
coefficients in C such that Y ., fiy) = E;’;l cjg;fory € kand ey,... ,c,n € Cif
and only if y = D], y1hs where y1,... ,y, € C and (c1,... ,Cm, ¥1,... , Yr) satisfy
A,

The following Theorem states that Singer’s algorithm can be made rational,
whenever the coefficients of the equations lie in a tower of algebraic and primitive
extensions over the rational function field.

THEOREM 7.1. Let k be an admissible differential field of characteristic 0, C be
the constant subfield of k, and x € k be such that z' = 1. Suppose that there exist
61,...,8,4 € k such that

() k= C(z,61,...,6;),

(ii) Fori = 1,...,q, 6; is either algebraic or a primitive monomial over C(z,

915"- ,0:'-—1)

Then there is a rational algorithm for effectively solving parametrized linear ordi-
nary differential equations over k.

PRoOOF: Let fo,..., fa,90,...,9m € k with f, = 1. We proceed by induction on

q.

g = 0: Then k = C(z). Let T be given by Theorem 5.5, and Y = yT. By Theo-
rem 5.5,Y € Clz]if L(y) = L7L, ¢jg;. Substitutingy =Y/Tin L(y) = Y im1¢i9i
and clearing dfnomina,tors, we get §1,... ,dm € C[z] and a linear ordinary differen-
tial operator L with coefficients in C[z] such that L(y) = 2;’;1 cig; «= L¥)=
Y=y ¢ifj and Y € C[z].

By Theorem 6.5, we get an integer B such that deg(Y) < B if f,(Y) = 2;‘:‘_:1 cidy.
Set Y = yo + 112 + - ypz® where yo,... ,yp € C. Substituting in L(Y) =
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> e1 ¢jfs, we get a system A of linear equations over C for yo,... ,¥BC1,... ,Cm.
If A has no solution in C™+B+1 then L(y) = Y7, ¢jg; has no solution in C(z).
Otherwise

B
v T
where h; = z*, is a solution of L(y) = > j-; ¢jg; for any solution (yo,... ,¥B;

Cl,+++ yCm) Of A.

g > 0: We assume by induction that we can effectively solve parametrized linear
ordinary differential equations over K = C(z,61,... ,04_1). Let t = 6,. Then ¢ is
either algebraic or a primitive monomial over K.

Case 1, t primitive monomial over k: As above, we can compute T, §1,... ,Gm €
K|t] and a linear ordinary differential operator L with coefficients in K[t] such that
L(y) = E;’;l cjg;i = L) = E;":l ¢j§; and Y = yT € K[t]. Since d(t) = 0,
Theorem 6.5 can not be used in general to get an upper bound on deg(Y). An
algorithm for computing such a bound and finding the coefficients of ¥" is contained
in Lemmas 3.8 and 3.2 (second half) of (Singer, 1991). We note that the algorithm
as described there finds a linear system £ with coefficients in K, and that one
should use the algorithm of Lemma 3.8 of (Bronstein, 1990a) in order to find a
linear system A with coefficients in C' with the same constant solution space as L.

Case 2, t algebraic over K: Thisis Proposition 3.1 of (Singer, 1991).

We note that Theorem 5.5 can be used when ¢ is monomial over k satisfying
t'/t € k as an effective rational alternative to Lemma 3.2 of (Singer, 1991). This
still does not give a rational algorithm for solving parametrized linear ordinary dif-
ferential equations with elementary (or Liouvillian) coefficients, since the bounding
procedure requires solving Ricatti-type equations in their coefficient fields. In the
next section, we show how balanced factorizations can be used to get bounds on
the singularities of solutions of such equations.

8. RICATTI-TYPE EQUATIONS

Let (k,') be a differential field of characteristic 0, and = be a monomial over
k. Let L = 3.0, f:0' where fo,..., fn1 € k() and f, = 1. In this section,
we consider the problem of finding non-zero solutions y of L(y) = 0 such that

u = y'/y € k(z) (we then write y = ef"). u € k(x) satisfies then a differential
equation which can be found as follows: differentiating y' = uy on both sides
several times, one finds that y() = P;y, where the P;'s are given by

Po =1
o p ! : : (2
Pi=P,_1 +uP;y fori>0.

Note that each P; is a differential polynomial in u of order ¢ — 1 and with integer
coefficients. Substituting for y() in L(y), we get

L) =y fiP(y,... ,ul™)

1=0
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hence, for y # 0, L(y) =0 <= R(u) = 0 where

R(u) =Y fiP(y,... ,uli™D) (3)

=0

which is a non-linear differential equation of order n — 1 in u with coefficients in
k(z). R is called the Ricatti equation associated with L. Thus, the problem of
finding non-zero solutions y of L(y) = 0 such that y'/y € k(z) reduces to the
problem of finding non-zero solutions u € k(z) of R(u) = 0.

DEFINITION 8.1. Let P € k[z]. We define the following quantities for L at P:

vp(fi) — I{P(fj)

i -]

Ap(L) = {(i,5) € {0,...,n}* such that i # j and €72},

and

_ o vp(fi) — ve(f;)
Sp(L) = max(l,  max (—=— )

The next two Lernmas are contained in the proofs of Lemma 2.2 and Proposition
2.3 of (Singer, 1991).

LEMMA 8.2. Let P € k[z] be monic normal irreducible. Let v € k(z) \ {0} and
m = vp(u). Let Py,...,P, be given by (2), and suppose that m < 0. Then the
P-adic expansion of Pi(u,... ,u"™Y) for i > 0 is of the form

op(omp(u))P™ 4 ..+ ifm< —1

X ("—1) = :
Pl {¢p(H;;i(uP—jP'))P-‘+--w ifm=-1.

PROOF: Since P is normal, (P, P') = (1), and this is then Lemma 2.2 (%) of Singer
(1991).

LEMMA 8.3. Let u € k(z) \ {0} and P € kz] be monic normal irreducible. Let
L=3",f:0 where fo,...,fn € k(z), fa =1, and R be given by (3). Then,

R(u) =0 == vp(u) > —6p(L).

PROOF: Let m = vp(u), m; = vp(f;) for i'=1...n, and suppose that m < ~1.
By Lemma. 8.2, the P-adic expansion of P; is

Pyt ,ul™V) = $p(o7p(u) )P + -+
for any integer i > 0. By Lemma 4.4, the P-adic expansion of f; for fi # 0 is

fi=orp(fi)P™ +-.-.
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Hence, the P-adic expansion of f;P; for f; # 0 is
FiPi(uy.. . ,ulD) = gp(orp(fiYorp(u) ) PmH™ 4o

¢p(orp(f.-)o7'p(u)") # 0 by Lemma 4.3. In particular, f, = 1, so the P-adic
expansion of fn Py is

FaPa(t,... ,ul® D) = ¢p(orp(u)")P"™ + - -- .

Since R(u) = 0 and nm < 0, there must exist i # j such that im +m; = jm +m;
(otherwise we would have vp(R(u)) < 0), so m = (m; — m;)/(¢ — j) = ~6p(L).

We can now find a part of the denominator of any non-zero solution u € k(z)
of R(u) =0.

THEOREM 8.4. Let k be a differential field of characteristic 0, and ¢ be a monomial
over k. Let m > 0 be an integer and fo,... ,fm € k(z) with fm = 1. Let
L =232 fi®', and fori = 0,...,m, let fi = fip + fis + fin be the canonical
representation of f;, where fin, = Ai/D;, A;,D; € kz], (Ai,D;) = (1), and D;
is monic. Let C1°' - Cy*" be a balanced factorization of D = lem(Do,...,Dy,)
with respect to {fon, ..., fmn}, and

T = Clsci(L) N Cq'scq(L).

Let y # 0 be such that L(y) =0 and u = y'/y € k(z). Then,
(i) For any normal P € k[z], vp(uT) <0 =+ (P,D) = (1).
(ii) uT is simple.
(iii) u can be written in the form R/T + Q'/Q + v where v € k(z) is reduced,
R,Q € k[z], deg(R) < deg(T'), (Q,D) = (1) and every irreducible factor of
Q@ is normal.

PROOF: Let y # 0 be such that L(y) = 0 and u = y'/y € k(z). If u = 0, then uT
is simple and vp(uT) = +oo for any normal P € k[z]. And u = 0 is of the form
given by (i13) with v = R = 0,Q = 1, so suppose that u 3 0. Since L(y) = 0, then
R(u) = 0, where R is given by (3).

(7) and (é¢): Let P € k[z] be monic normal irreducible. Then, vp(uT) =
vp(u) +vp(T) > —b6p(L) 4+ vp(T) by Lemma 8.3.

Casel: P | D: then P | Cj, for some j, € {1,...,q}. We write C for C,;,. We
have (C,C;) = (1) for j # jo, and C is squarefree, so vp(T) = vo(T) = éc(L).
But C is balanced w.r.t. {fon,...,fam}, 50 6c(L) = 6p(L) by Lemma 2.8. Hence,
vp(uT) > 0. Since this holds for any monic normal irreducible P € kx|, we have
vo(uT) <0 = (Q,D) = (1) for any normal @ € k[z}, which proves (2).

Case2: (P,D) = (1): then vp(fi) > 0for i =0,...,m. Suppose that vp(u) <
—1. Then, vp(fiP;) > svp(u) for i = 0,...,m — 1 and vp(fmPm) = mrp(u) by
Lemma 8.2. Hence vp(R(u)) = mvp(u) < 0, in contradiction with R(u) = 0.
Thus, vp(u) > —1. But vp(T) =0, so vp(uT) > —1.
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Thus, vp(uT") 2 —1 in both cases, so uT is simple.
(#43): From (i) and (41), u can be written in the form

u= e + ‘ Bi +
= @
where w € k(z) is reduced, @Q,,...,Q, € k[x] are monic normal irreducible,

(@i, D) = (1), deg(B;) < deg(Q;) and deg(R) < deg(T). Let P = Qi for
io € {1,...,s}. Then, vp(u) = —1, so by Lemmas 8.2 and 4.4, the P-adic
expansion of f;P; for f; # 0 is

i—1

fiPi(u,... ,uli™V) = ¢p (°TP(fi) [P ‘jpl) yPreUi=ip ...

=1

But vp(fi) 2 0fori =0,...,m since (P,D) = (1), and f,, = 1, so the P-adic
expansion of R(u) is

m-—1

R(u) = ¢p (H(uP—jP')) P,

i=1

Hence there exists an integer j;, € {1,...,m — 1} such that ¢p(uP) = ¢p(ji, P’).
But ¢p(uP) = Bj,, so there exists H;, € k[z] such that j; P' = H; P + B;,, so u
is of the form

R 8 '_I hd R !
u = +zj‘%T_ZH‘+w=—f+%+”
v i=1

where v = w — Y H; is reduced, and Q@ = [[i., @i" € k[z] is such that
(Q,D) = (1) and every irreducible factor of @ is normal.

Although Theorem 8.4 gives an ansatz for any solution of R(u) = 0, it does not
yield a rational algorithm. Clearly, one can set

q 56‘.' (L) R;" Q,
U= Z E -CT':_ +- a +v (4)
i=1 j=1 1

where the v € k(z) is reduced, the R;j’s are in k(z], deg(R;;) < deg(C;), and the
C;'s and b¢,(L)’s are given by Theorem 8.4. When z is a Liouvillian monomial, the
procedure of Proposition 2.3 of (Singer, 1991) can be used to find bounds for v (v)
and vo(v), and (4) can be replaced by an equivalent form with v € k. Looking
at the Ci-adic expansion of R(u) (which is well-defined) we can find a polynomial
H; € (k[z]/(C,))[Y] such that Hi(Riﬁci(L)) = 0 in k[w]/(C,), so Y — Riéc‘(L)
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must divide H; in (k[z]/(C;))[Y]. In the case where C; is irreducible over k[z],
k[£)/(C;) is a field, so (k[z]/(C;))[Y] is a unique factorization domain, so factoring
H; over k[z]/(C;) yields all its roots. When C;; is reducible, we do not have unique
factorization: Y (Y —2) = (¥ — (1+ X))(Y - (1 — X)) in (Q[X]/(X? ~ 1))[Y].
Thus, one is still forced to look at the P-adic expansions of u at all the irreducible
factors. P of each C; in order to find the Ri;’s. A rational algorithm for finding
the solutions in K = k[X]/(C) of algebraic equations with coefficients in X when
C € k[X] is squarefree would however yield a rational algorithm for finding the
solutions of R(u) = 0 in k(z).

9. EXTENDING THE CONSTANT FIELD

Let k be a differential field of characteristic 0, C be the constant field of k, L
be a linear ordinary differential operator with coefficients inn k£ and ¢ € k. The
algorithms presented in this paper do not require C to be algebraically closed, and
can be used to find either a solution of L(y) = g in k, or a basis over C for the
solutions of L(y) = 0 in k. However, algorithms for finding Liouvillian solutions
of such equations need to find either a solution in Ck of L(y) = g, or a basis over
C for the solutions of L(y) = 0 in Ck, where C is the algebraic closure of C. We
show in this section, that it is in fact sufficient to solve those problems without
extending C, since a basis over C for the solutions of L(y) = 0 in k is also a basis
over C for the solutions in Ck.

THEOREM 9.1. Let k be a differential field of characteristic 0, k be the algebraic
closure of k, C be the constant field of k, C be the algebraic closure of C, L be a
linear ordinary differential operator with coeflicients in k and g € k. Then,

(i) if L(y) = ¢ has a solution in k, then it has one in k,

(i1) let V' be the vector space generated over C' by the solutmns ink of L(y) = 0,
and V be the vector space generated over C by the solutions in Ck of
L(y) = 0. Then dimg(V) = dimg(V) and any basis for V over C is also a
basis for V over C.

PROOF: (i) Let a € k be a solution of L(y) = g. k(a) is finite algebraic over k,
so applying the trace from k(a) to k, we get

ng = Try(g) = Tril(L(e)) = LT ()

so = Tr:(a)(a)/n is a solution in k of L(y) = g, where n = dimy(k(a)).

(i¢) Let m = dimzx(V) and ax,. .., am be a basis for V over _C— Let a € C be such
that k(al,...,am) k(a), and let P=X"4u, 1 X 4. 4+ u; X 4y € k[X]
be the minimal irreducible polynomial for « over k. Then, (l,a,...,a" 1) is a
basis for k(a) over k. We have

0= P(a) = Pa) = upa" '+ +uja +up

8o, since P is minimal, u} = 0 for ¢ = 0,...,n— 1, so P € C[X]. Since P is irre-
ducible over £, it is also irreducible over C, so [C(a) : C] = n and (1, a,...,a™?)
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is also a basis for C(a) over C. Since it is a basis for k(a) = k(a,...,am) over
. -1 ; . . . .
k, write a; = E?:o aijo? for ¢ = 1,...,m where the a;;’s are in k. Since L is

C-linear, we have

n—1 n-1
0= L(a;) = L()_ aijo’) = Y L(ai)a’

=0 §=0

so L(aij) = O henceai; € Vfor 1 <i<mand 0<j<n. Let ¢ =dime(V) and
(b1,...,b4) be a basis for V over C and write a;; = 3_i—; ¢ij1b; where the ¢;ji’s are
in C. Let v € V, then there exist d,...,dy € C such that v = Yo, dia;. We
then have

m m n-—1 m n-1 ¢ q m n-~1
= E d,-a,' = E E d;a,‘joﬂ = E Zngciijza’ = E E Zdicijlaj b,
=1 =1 j=0 i=1 j=0 [=1 =1 i=1 j=0

50 (by,...,by) generates V over C.
Suppose now that .{_, ¢;b = 0 for ¢1,...,¢ € C, and write ¢; = 3
where the d;;’s are in C. Then,

q qg n-1 n—1 q
0= chbl = Z Z dzjajbl = Z (Z dljbl) a’

I=1 I=1 j=0 J=0 \l=1

n—1

j=o dija’

so > 4 dijby=0for j=0,...,n—1since (1,q,...,a"!) is a basis for k(a) over
k. But (by,...,b,) is a basis for V over C,s0 dj;y =0 for j = 0,...,n — 1 and
l=1,...,q9. Hence¢c;=0for [ =1,...,q, so (b1,...,by) is linearly independent
over C. Thus it is a basis for V over C and ¢ = m.

CONCLUSIONS

We have shown that Abramov’s (1989) notion of a balanced factorization can be
used in arbitrary monomial extensions to find the denominators of the solutions
of linear and Ricatti-type ordinary differential equations. This asnwers question
(a) from Singer’s paper (1991), making one step of his algorithm for finding so-
lutions of such equations more effective and easier to implement. We have also
shown that assuming an algebraically closed constant field is not necessary when
Ricatti-type equations do not appear, which is the case when the coefficients of
the equation do not involve exponentials. Another consequence is that solving
Risch differential equations (i.e. equations of the type ¥’ + fy = Z;’;l c;jgj) can
now be done rationally in algebraic curves over primitive extensions, thereby allow-
ing symbolic integration algorithms to handle transcendental elementary functions
over such curves. Although the theory was complete before (Bronstein, 1990a),
there has been no reported implementation of a Risch differential equation solver
over algebraic curves, even in the so-called “purely algebraic case”. A detailed
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presentation of a rational algorithm for such equations has appeared in a separate
paper (Bronstein, 1991).

There still remain effectiveness questions, in particular the number of iterations
required in Singer’s algorithm for bounding the degree of the polynomial part of
a solution in the primitive case is not known. It is hoped that experimenting with
an implementation might point to a formula for this number.

Finally, it is yet unclear whether Theorem 8.4 can be used constructively to
yield a rational algorithm for solving Ricatti-type equations. In its current state,
it only describes the structure of any solution.

I would like to thank John Abbott and Michael Singer for their attentive reading
of this paper and for their useful suggestions.
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