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In this paper we consider the chord length distribution w,(t) for a plane 
domain S (see Santalo [4 p. 481, Sulanke [5]). Sulanke has shown that when 
S is convex as(t) is a continuous function of t, the chord length. We 
generalize this to non-convex S with a restriction on the differentiability of 
the boundary of S. The main goal of this paper is not, however, to prove 
continuity in t, but rather in S. Thus we define a metric y( ., a) on plane 
domains such that y(S,,S) + 0 guarantees that ws converges uniformly to 
ws. We also consider a function B,(t) equivalent to the associated function 
of S (see Pohl[3]) and prove the analygous results for B,(t); in this case we 
show that S + B, is a Lipschutz continuous mapping from a metric space 
of domains into L’[O, D] where D is the diameter of a large disc containing 
the domains. 

The main method of the paper is the analysis of glance functions which 
describe how a line meets a domain, they relate such quantities as the 
number of components of the intersection, the sum of the lengths of the 
components, and the diameter of the intersection. These were studied by 
the author in [6]. In the conclusion we make some remarks about how these 
ideas could be generalized to R” for n > 2. 

1. PRELIMINARY DEFINITIONS AND GLANCE FUNCTIONS 

Let D > 0 be the diameter of an open disc Sz c R2, and let o(Q) = the 
set algebra finitely generated by unions and differences of subsets of Q 
which are the closures of convex open sets with piecewise twice differentia- 
ble (C2) boundaries. Let G = the group of Euclidean motions (rigid 
translations, reflections and rotations of R2) and for g E G and S c R2 let 
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Sg denote the result of moving S by the motion g. We will be primarily 
interested in the set. 

Y(D) = {S = interior (closure (Aa))lA E a(Q), g E G}. This set con- 
sists of open sets with C* boundaries made up of finitely many arcs on 
which the curvature does not change sign. After applying a Euclidean 
motion, an element of Y(D) can be contained in 52, and in particular, for 
S E Y(D), letting 

diameter(S) = sup d(x, y), 
X, .!JGS 

where d( a, .) is the Euclidean distance, we have that diameter (S) < D. 
We let DLp= the set of all oriented lines in R* equipped with the G-invariant 

measure dX (see Santalo [4, p. 28 where dX is called dG]) normalized so 
that Crofton’s formula holds for convex S: 

x{lEL?~lns# 0} =2 (perimeter (S)). (1.1) 

Remarks. The points of the boundary of S (denoted 8s) at which the 
boundary is not twice differentiable are called vertices and we let P”(S) = 
the set of all lines tangent to S or meeting a vertex of S. We have 

(1.2) A(9’( S)) = 0 because L?‘(S) is a finite union of l-parameter 
(differentiable) families of lines. 

Further, we have 

(1.3) If 1 e Y’(S) and 1 n S Z 0, then 1 meets 8s in a finite number 
of points that vary continuously as we move 1 or S. 

For 1 E L?, S E Y(D), view 1 n S as an oriented l-dimensional open 
submanifold of 1 and let 

(1) n(1 n S) = the number of components of 1 n S, and 

(2) a(1 n S) = the sum of the lengths of the components of 1 n S. The 
definition of Y(D) guarantees that both n(1 n S) and a(1 n S) are 
uniformly bounded on 2. Also they are continuous functions of 1 for 
1 4 9yg. 

(3) If 1 n S consists of intervals (a,, b,), ( a2, b2), . . . , (a,, b,J, where 
ai c bi I u,+~ in the order induced on 1 by its orientation, 

DEFINITION (1.4). 

T(Ui, bj) = 7(bi, Uj) = +1 
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where t is a variable such that 0 I t I D. This function H, o s is called a 
glance junction. 

EXAMPLES. (1) If n(l fl S) = 1 and a(1 n S) = CY (for example, if S is 
convex and 1 f~ S # 0) then H,, s is the Heavyside function: 

1 ifcuIt 
Ha(t)=(O ift<a. 

(2)IfInS= 0, H,,s=O. 

(3) If 1 n S consists of components of lengths (in order) (Ye, (Ye,. . . , (Yk, 
separated (respectively) by gaps of lengths &, fi2,. . . , fik-l, where pi > 0, 
one calculates that 

H,,,,(t) = Ha, - H~,+,Y, + &,+,~,+a~ - *** +&x,+,31+ ... +ak 

+Hs, - &,+a, + HB,+a,+p2 - * * * -Hs,+oz+ ... +ak 

a complicated sum of k(2k - 1) Heavyside functions where k = n(1 n S). 

Remark (1.4.1). By our definitions the possibility of a line where some 
pi = 0 can occur (if some bj = aj+l). For example, along the major axis of 
a domain bounded by a Fig. 8. Since bj = aj+l must be a vertex, the line in 
question must be in U’(S). Otherwise, if I (Z P’(S) then H,, s(O) = 0. 

Continuity and Measurability Properties of Glance Functions 

(1.5) Hlns is a step function with all steps in [0, D] and is bounded by 
k(2k - 1) where k = n(1 n S). Thus Hlns(t) is in L’[O, D]. 

(1.6) Since n(1 n S) is uniformly bounded as a function of I, H,, s(t) 
is uniformly bounded over 3’. 

(1.7) If 14 5?“(S) the lengths of intervals of 1 n S vary continuously 
with 1 or with S; since a Heavyside function varies continuously in L’[O, D] 
with continuous variation of its jumps, HI o s varies continuously in L’[O, D] 
with 1 or with S. Since Y’(S) has measure zero it follows that IlH,, J and 
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IIH,,S - H,, r]] are X-measurable for S, T E Y(D), where ]I . ]I denote the 
L’[O, D] norm. 

(1.8) If we fix t, H,,s(t) is X-measurable. 

Proof. P’(S) has measure zero, we show below (in the proof of (3.4)) 
that the set { 1 E Ppll n S has a component of length = t } also has measure 
zero; on the remainder of Y, H, o s( t) is locally constant. Thus H,, s( t) is 
X-measurable. 

Geometric Properties of Glance Functions 

(1.9) The quantity 7(x, y), defined above, can be identified [3, p. lo] as 
the sign of the Jacobian at (x, y) of the mapping sending (x, y) to the line 
oriented from x to y. The glance function is just the sum over inverse 
images of a line, where the map is restricted to pairs (x, y) with d(x, y) I t. 
Thus for example, H ,o s( t) appears naturally in the change of variables 
formulas relating integration on aS x aS (the Cartesian product) to in- 
tegration on 2. 

(1-W 4,s can be transformed to yield n(Z fl S), a(Z n S), and other 
quantities (see Waksman [6]). In particular, 

4 f-J 9 = %sW and a(/ f7 S) = n(/ 17 S) . D - j,DH,,,(t) dt. 

PROPOSITION (1.11). Let S, T E Y(D), then there is an E > 0 depending 
on diameter (S) and diameter (T) such that 

IWns - H,n7-II < E * n(l n S) = n(l n T) 

Iu(I n s) - ~(f n T) 1 -C E. 

Proof: Let max{diam( S), diam(T)} = D - 6 for some S > 0. Since 
H,,,(r) is constant at n(l n S) for t 2 D - 6 and HInT(t) is constant at 
n( I n T), we must have 

Iw/ns - HInTI 2 S(n(l n S) - n(l n T) 1. 

Thus if E < 6 and llHIns - H,nTll < E we must have n(l n S) = n(l n T). 
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For such E we then also have 

2. THE METRIC ON Y(D) 

DEFINITION (2.1). For S, T E Y(D) let 

YN T) = jy-hns - 4n,lld~; 

y is well defined since the integrand is measurable. 

THEOREM (2.2). y(. , .) is a metric on Y(D) 

ProojI (1) That y(S, T) < cc follows from (1.6); 

(2) that y(S, T) = y(T, S) follows from the symmetry of the norm 
IIH,ns - H,nrlL 

(3) for S, T, R E Y’(D) and every line 1, we have 

IIHlns - H,ndl 5 ll4ns - H,ndl + llH,n~ - H,n~ll. 

Integrating both sides with respect to dX yields the triangle inequality. 

(4) To show y(S, T) = 0 iff S = T: 
(+) if S = T then H,,,s = H,,, for all lines I, so y(S, T) = 0; 
(a) if y(S, T) = 0 then 

/ II4ns - H,nTll dX = 0 and so IIff/ns - Knrll = 0 2 

for almost all lines 1. For these lines: H ,ns(t) = H,,,(t) for almost all t, 

which implies (for simple jump functions) that H, n s( t) = H, n r( t) for all 
t, thus H,,&D) = H,,T(D) SO n(l n S) = n(l n T) thus, 

~(1 n S) = n(l n S) . D - /DH,,S(f) dt 
0 

= n(f n T) . D - lDHlnT(t) dt = ~(1 n T). 
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Thus the characteristic functions xs and xT have the same Radon trans- 
forms for almost all lines. Since these transforms are continuous except at 
lines meeting the boundary of S or T in a line segment-which are finite in 
number- these transforms are equal except possibly on a finite number of 
lines. Thus xs = xr in L’(R2) (see Helgason [l, p. 521). Thus since S and T 
are both open sets: S = T. 

For S E 9’(D) let [S] = {P]g E G} and consider the quotient space 

y(@/G = {[SllS E Y(@). 

It is natural to define 

as a distance function on Y(D)/G. That it is not a pseudo-distance 
function is guaranteed by 

THEOREM (2.3). inf, y(S, Tg) = 0 ITS = Tg for some g E G. 

Proof: ( e) Trivial. 
( 3 ) Choose g, E G such that y( S, Tgn) + 0 as n + cc. We will show 

below that the g, have a limit point g. For the moment make this 
assumption, then we can choose a converging subsequence and reindex so 
that g,, --, g as n --, cc. If 1 @P’(S) u 9’(Tg) then by (1.7) HlnTgn + 
H,, .g in L’[O, D], and the convergence is uniformly bounded on A?‘\ 
(9’(S) U Y’(Tg)). Thus llH,n ,g, - H,,TglJ + 0, and by dominated con- 
vergence on P’\ (-Ep’( S) u 9’( Tg)) we have 

J l(H,nTg, - H,,TglldX + 0; that is, y(Tgn, Tg) + 0. 
2 

Now since y(S, Tg) Z y(S, Tgn) + y(T”, Tg), and since both right-hand 
terms go to zero, we must have y(S, Tg) = 0, so S = Tg for some g. 

To show that the g, have a limit, we will show that there is a large disc 
containing S such that for sufficiently large n: Tgn is contained in the disc. 
The set of h E G such that Th is contained in a fixed disc is relatively 
compact, so the g, must have a limit point. To show there is such a disc: 

LEMMA (2.4). For all E > 0, there is a closed disc V containing S such that 
Th C V implies 

Y(& T”) 2 ~~IH,nsll + IIHln&ld~ - ~0 

Proof. We let Q be an upper bound for IIH,nsll and llHInrll indepen- 
dent of 1. The same bound works I( H,, Th(l for any h E G. If we move T 
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by h so that Th is farther and farther away from S, then the set of lines 
meeting both Th and S has increasingly small measure. Thus we choose a 
closed disc Y so large that Th Q V implies that the measure of the set of 
lines meeting both Th and S is I &/2Q. Assuming that Th C V, let A, 
be the set of lines meeting both Th and S; note that for 1 E Y\M, either 
H , n s or H, n ,h is identically zero so that 

IW/,S - H,,&l = IIH,nsll + IIH,,T~ 

Now 

~6, Th) = jJI%s - HI~TW~ 

= kwtl14nsll + IIH,n,~ll)~~ + &4ns - H,n,WX 
c e 

2 J ~,~ (II%sll + IlH,,,M)~~. 
c 

Also 

j-$IH,,sll + IIf4,~~ll)~~ 2 ~,~(llH,,sll + IIfhn~4l)~~ + 2Q( $). 
c 

Thus 

Y(& Th) 2 j$lH,nsll + II4mM)~~ - E. 

This proves the lemma, and we have 

COROLLARY (2.5). Zf y(S, Tgn) + 0 then there is a large closed disc V, 
containing S, such that for sujiciently large n: Tsn c V. 

Proof. We choose E > 0 so small that 

J IlH,,slld~ - E ’ 0. 
9 

Now let V be as in the lemma so that 

Y& Th) 2 j9(llH,nsll + IIf&,hll)dX - E ’ 0 

for any Th Q V. Since y(S, Tgn) + 0 we have that for sufficiently large 
n : Tgn c V. 

This finishes the proof of the theorem. 

Remark. A modification of this argument shows that T([S], [T]) = 
y(S, Ts) for some g. Showing r is a metric follows easily from this. 
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3. CONTINUITY RESULTS 

We consider the following functions of t for 0 I t < D: 

o,(t) = A{ 1 E 910 < ~(1 n s) I t} 

B,(t) = j-~f4nsw. 

(3.1) 

(3.2) 

Remarks. (1) By (1.8) H,, s(t) is measurable for each I, so B,(t) is 
well defined. Similarly, a(1 n S) is continuous off of 9”(S) and so is 
measurable, thus o,(t) is also well defined. 

(2) If S is convex then B,(t) = us(t). 

(3) The set 9(S) of lines meeting S is identical with the set of lines 
meeting the convex hull of S, when S is connected. Making this assumption 
h(S(S)) = twice the perimeter of the convex hull of S. L? could be 
replaced by Z(S) in the above definitions, and (Y(S), dX/X(Z(S))) is a 
probability space. If we divide B, or os by this factor A(Y(S)), they 
become familiar objects from geometric probability: 

(a) dividing by A(d;p(S)), ws becomes the distribution of chord 
lengths (Santalo [4, p. 481, Sulanke [5]) or the probability distribution of the 
Radon transform of xs. 

(b) For each t, H,,,s(t) is an integer-valued random variable on 
9(S); letting t vary, it is a stochastic process (Waksman [6]). After 
dividing by X( DEp( S)), B,(t) is the expected value of the process as function 
of t. Without dividing by X(9(S)), B, is equivalent to the associated 
function of S (Pohl[3]) by the formula B, = 2(perimeter of S) - (associated 
function). 

(4) Since the measure X is G-invariant, we see that B, = B,g, us = wsg 
for any g E G. 

THEOREM 3.3. For S, T E Y(D): llBs - Brll I y(S, T) where, again, 
II * II is the L’[O, D] norm. 

ProojY 

= y-h / - H,,,W = ~$5 T), 
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where the use of Fubini’s theorem is justified since the integrand is 
bounded, measurable, and has finite integral either over 10, D] or .5?. 

REMARKS. (1) Since Bs = B,g for any g E G, the theorem remains true 
for all positions of S and T. 

(2) The theorem says that the association S -+ B, is a Lipschutz 
continuous mapping from the metric space (Y(D), y) to L’[O, D] and this 
answers a question of Pohl’s. 

A theorem, the proof of which is essentially that of Pohl, is 

THEOREM 3.4. B,(t) is continuous for t E 10, 01. 

Prooj Let C, = {(x, y) E 8s x aS]O < d(x, y) I ‘} and let 7r: C, -+ 
Y(S) be the mapping sending a pair x # y to the line joining x and y 
oriented from x to y. If r, is the restriction of rr to C, then by Remark 
(1.9) 

f4nsw = c sign of Jacobian ( 7r) ; 
(x,.v)En,-?o 

thus by integration over the fibre (see [3, p. 1328]), 

B,(t) = ~(s,H,,-,~(f) dX = /,,,,( c 
n,-‘(l) 

sign of Jacobian (r)) dh 

= a*(dX) 
J C, 

where m*(dX) is the pull-back to C, of dX. (This shows that B,(t) can 
also be interpreted as the “probability distribution” of the distance between 
points of aS with respect to a signed measure.) 

One sees from Santalo’s formula 3.30 [4, p. 371 that Ir*(dX) is absolutely 
continuous with respect to the product measure dxdy on C,, where x and y 
are viewed as arc-length parameters on as. Thus it is enough to show that 
d-‘(t) = {(x, v) E aS x aSld(x, y) = t} has product measure zero. 

The mapping d on C, has degenerate critical points whenever, ad/ax = 
0 = ad/ay, but this can only happen if Q(X, r) is normal to aS at x andy. 
The set of normal lines (not even necessarily double normals), and also the 
corresponding set of pairs of points in aS X aS is of measure zero, so the 
degenerate critical points of d are of (product) measure zero. Now, let 
E > 0 be given and let 0 be an open subset of C, of measure < E which 
contains all the degenerate critical points of d. If t > 0, d-‘(t) and 
d-‘(t) \ 0 are compact. By the implicit function theorem, each regular 
point of d-‘(t) has a neighborhood intersecting d-‘(t) in an open differen- 
tially embedded interval; since d-‘(t) \ 0 is compact and consists of 
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regular points, it is a union of closed intervals. If there were infinitely many 
such intervals they would have a limit point in d-‘(t) \ 0, contradicting the 
implicit function theorem at the limit point. Thus there are finitely many 
closed intervals in d-‘(t) \ B, so its measure is zero. Thus d-‘(t) has 
measure < E, but E is arbitrary so d-‘(t) has zero product measure. 

If t = 0, C, = 0 and we must show B,(O) = 0. By (1.4.1) for I 4 S’(S): 
H, ,, s(O) = 0; it follows that 

Therefore B,(t) is continuous for t E 10, D]. 
We now prove analygous results for w,(t), but we prove continuity in t 

first because it is needed for the proof of continuity in S. This modifies a 
results of Sulanke’s [5, p. 551. 

THEOREM (3.5). For S E sP( D): os( t) is continuous for t E [0, D]. 

Proc$ We consider u: Z(S) + R given by a( I) = o(f n S). Thus 
us(t) = X(1 E P(S)]a(l) I t}. Again, to prove continuity it is enough to 
show A{ I E Y(S)]a(l) = t} = 0. Let p and f3 be the usual coordinates on 
3 (see Santalo [4, p. 271) and write a( p, (3) = u(l( p, r9)). Claim: The set of 
lines where du/dp = 0 and au/a8 = 0 has measure zero. 

Case 1. Assume aS contains no straight line segments. We call a line 
meeting aS in two points with parallel tangents a special transuersal. Let &’ 
be the set of such special tranversals. Since S is a union and difference of 
(in this case) strictly convex sets, there are at most finitely many tangent 
lines with the same reference angle, and so only finitely many special 
transversals joining the different possible pairs of points of tangency. As we 
change the reference angle these special transversals vary differentiably 
except when they meet a vertex of S, disappear or appear at these vetices; 
but in any case .M is a finite union of l-parameter families of lines, and so 
X(.&Y) = 0. 

If I = I( p, 6) is in P(S) \ (P’(S) U A) then I is not a tangent, does 
not meet a vertex, and is not a special transversal; thus if we,set u(l) = q 
+ (Ye + . . . + q, where q, CQ, . . . ,LQ are the lengths, in aider, of the 
components of 1 n S, then the tangent lines to endpoints of the interval of 
length (pi are not parallel. 

An elementary computation with polar coordinates shows a fact used 
below: that if ( a/dp)al # 0 the (a/M)a, # 0 if the center of rotation on I 
is outside the interval of length q (we use the notation a/H freely to 
denote rotation about different centers lying on I); furthermore ( a/h’p)al 
and (a/M)q are of like or opposite signs depending on the location of the 
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center of rotation relative to the interval of length q and the orientation of 
1. Also this remains true if q is replaced by a sum of lengths of intervals as 
long as the center of rotation lies outside of the convex hull of these 
intervals on the line 1. Since the tangents to endpoints of the interval of 
length q are not parallel, we can assume without loss of generality that 
(8/ap)q > 0, and can assume that the center of rotation lies on I between 
the first interval and the others of I n S. If au/ap = 0 then we must have 
(a/ap)(ci,,cyi) < 0. Assuming (a/se) (pi is of the same (opposite) sign 
as (a/ap)~l it f0110ws that (a/ae)(c,,, a.) is of opposite (same) sign as , 
(a/ap)(&, iai). Thus either 

au a a 
Zi- ae --ff,+z ,pi >o i 1 I>1 

or 

aa a a 
Xi- ae - -q + 3 ,& ai < 0, i i I>1 

and in any case au/ap = 0 implies that &r/a9 # 0. This is true for a 
particular center of rotation, but it follows that it holds for any rotation. 
Thus in this case, the degenerate critical points of u are contained in 
P’(S) U .A, a set of measure zero. 

Case 2. When aS contains straight line segments the argument is 
slightly more complicated. When aS contains no parallel pairs of straight 
line segments the same argument as above applies, but if there are pairs of 
parallel straight line segments and I E Y(S) \2’(S) traverses some pair 
of parallel segments, then we write u = au + a, where uU is the sum of 
lengths of all intervals of I n S bounded by pairs of parallel segments and 
uU is the sum of length of intervals of I n S that are bounded by curves or 
straight line segments that are not parallel. Observe that a, is always 
independent of p so (a/ap)u, = 0. 

Extending uU. Extend out to infinity the parallel lines bounding the 
segments of total length q,, and note that they provide an extension of u, to 
all lines I = ,( p, 0) where the center of the coordinate system is chosen to 
not lie on any of the parallel lines. Note also that 

(1) u, is a combination of trigonometric functions of 8. 

(2) uU is unbounded, because it is infinite when B is such that I( p, 0) is 
parallel to one of the extended parallel lines. 

It follows that u, is a non-constant analytic function of 8 between poles, 
so its derivative has finitely many zeros. That is (a/iM)u, = 0 for only 
finitely many angles. Let N be the set of lines with these special reference 
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angles, so X(N) = 0. For a line 1 E L?(S) \ (.5?‘(S) U N) we have 
(a/Jp)u, = 0 and (J/M)u, # 0 where we rotate about any point of 1. 
Choose a center of rotation outside of the convex hull of the intervals of 
total length a, and we have: (J/Jp) uu = 0, (f?/ae)u, # 0; so if au/de = 0 
we must have ( ~/M)u, # 0. Also (a/ap) au is of the same or opposite sign 
from (LJ/ae)u,,, and so (a/ap)u, # 0. Thus 

au a a -= -u, + -a, = 0 + (non zero) # 0. 
ap ap ap 

Thus in this case au/d8 = 0 implies au/dp Z 0, and the degenerate 
critical points of u are contained in Y’(S) u .N, a set of measure zero. 
This proves the claim. 

To finish the proof of the theorem we consider u-‘(t) for t > 0. It is 
relatively compact and we can apply the implicit function theorem except 
on a set of measure zero; by the same argument as above where the 
degenerate critical points are contained in an open set of measure < E, we 
show that u-‘(t) has measure zero. For t = 0, u-‘(O) = 0 and there is 
nothing to prove. Thus as(t) is continuous for t E 10, D 1. 

For S E Y’(D) we extend as(t) to be constant for t outside of (0, D), 
that is, 

os(t) = 
0 if t 5 0, 
X(2?(S)) if t 2 D; 

then the following makes sense for E > 0: 

m = $& + 4 - 4) I? 
and since ws is uniformly continuous on 10, D] we have that liliaK( .s) = 0. 
We are now ready to prove 

THEOREM (3.6). If y(S,, S) 
to ws on 10, D]. 

--) 0 as n + 00 then us,, converges uniformly 

Prooj: Since 

general measure theory guarantees that for all 6, E > 0 there is an N such 
that for all n 2 N, 

A{ 1 E 21 IMns, - H,nsll ’ E) < 812. 
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Similarly, for v > 0 let 

d4r i I 
n(l n S,) # n(l n S) and 

Y.” = ‘EL? Idiam(ln S,) - diam(Zn S)l > v 

and claim: for all 8, v > 0 there is an M such that for all n 2 M: 

To see this, suppose not: then there exist S, v > 0 such that for arbitrarily 
large n, A(&, J 2 S/2. If /diam( I n S,) - diam( 1 n S) I> v then n(f n 
S,) # n( I n S j implies that lH,o s, - H, ,, sj > 1 over a t interval of length 
greater than Y, so 

IWlflS, - Hlnsll ’ v* 

Since the measure of such lines goes to zero as n + cc there cannot be such 
a 6. 

Rephrasing these statements with v = E we have: for all 6, E > 0 there is 
an N such that for all n 2 N. 

For a line not in this set we have 11 H, o s, - H, n sll I E and either 

Idiam(l n S,) - diam(I n S) 1 I E or n(r n S,) # n(l n S). 

Case 1. If IIH,ns, - H,,,J I E and n(l n S,) = n(l n S) then 

5 II%s, - H~nsll 2 E. 

Case 2. We assume E -C (D - diam(S))/2; if 11 H,, s, - H,, J I E and 
Idiam(ln S,,) - diam(ln S)ll E th en we cannot have n(Z n S,,) # 
n( 1 n S) because then H, ,, s, and H, o s differ by more than 1 on a t 
interval of length 2 E. Thus in any case we have 

[a(/ n s,) - ~(1 n S) 1 I E. (*) 
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Except on a set of lines of measure -C 6 we may assume an N such that 
for all n 2 N, (*) holds. On this set of lines we have, independently of t, 

~(f n s) I t - ~(f n s,) 5 t + E 

~(f n S,) I t * ~(f n s) 5 t + E. 

Thus we have 

and 

q.(t) * 6 I ws,(t + E) 

Thus w,(t) + 6 I us,(t + E) I us( t + 2~) + 6. Since us is increasing it 

follows that 

los”(t ;t E) - ws(t + E) ( i K(24 + 28, 

where K is as defined above. 
Given 9 > 0, choose 6, E > 0 such that K(2e) + 26 < f then there is an 

N such that for all n 2 N: 1 osn( t + E) - ws( t + E) I< 11, and this is inde- 
pendent of t E R. This finishes the proof that ws. converges uniformly to 
ws on 10, D]. 

CONCLUSION 

We have seen that the metric y(. , *) is well adapted to the study of 
quantities defined in terms of how lines meet the domains in 9’(D), 
so-called “stereological” quantities. y induces the metric I on 9(0)/G, 
and so is also adapted to studying quantities which are invariant under 
Euclidean motions. Identifying the metric completion of Y(D)/G and 
characterizing its compact subsets is an important goal for further study. 

If we wish to generalize these ideas to R3, it is natural to replace lines I 
by planes m and to let B,,, ,, U or w, ,, ,,, play the role, for a domain U c R3, 
that is played here by H,, s for a domain S c R2; thus there will be a 
hierarchy of metrics and an interesting interplay between the functions. 
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