
Discrete Mathematics 219 (2000) 235–248
www.elsevier.com/locate/disc

Gray codes for necklaces

Takao Ueda
37-30 63rd St., 2F, Woodside, NY 11377, USA

Received 12 May 1993; revised 14 September 1998; accepted 12 July 1999

Abstract

An n-bit necklace of density m is an equivalence class of binary strings having m 1’s and
n − m 0’s with respect to the equivalence relation of rotation. An n-bit necklace is called
prime if it has n distinct elements. Construction of a kind of Gray codes for prime necklaces
and for general necklaces is presented here. That is, according to one algorithm, exactly one
representative of each prime n-bit necklace of density m appears on the generated list, and
successive representatives di�er by a single transposition of a 0 and 1. The same is also true for
general n-bit necklaces of density m according to a similar algorithm. c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Necklace; Gray code; Hamilton cycle

1. Introduction

Let Q={0; 1} and Cn;m be the subset of Qn consisting of all elements having m 1’s
and n − m 0’s. Then each element of Cn;m represents an m-combination of an n-set.
Let d(p; q) denote the Hamming distance for elements p= p1 · · ·pn and q= q1 · · · qn
of Qn, i.e. d(p; q) = |{i |pi 6= qi}|. For our purpose, it is convenient to regard Qn and
Cn;m as graphs. Formally, the graph G(Qn) is the pair of the vertex-set Qn and the
edge-set

{{p; q} |d(p; q) = 1 and p; q ∈ Qn}:
Similarly, the graph G(Cn;m) is the pair of the vertex-set Cn;m and the edge-set

{{p; q} |d(p; q) = 2 and p; q ∈ Cn;m}:
A Hamiltonian cycle in G(Qn) is called a Gray code of n-bit binary strings. A
Hamiltonian cycle in G(Cn;m) is also called a Gray code of m-combinations out of
an n-set. The existence and construction of a Gray code for both n-bit binary strings
and m-combinations of an n-set are well known [1,2,6,7,9].
Let � denote the rotation of Qn de�ned by

�(x1x2 · · · xn) = x2x3 · · · xnx1:

0012-365X/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(99)00348 -9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82439417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

236 T. Ueda /Discrete Mathematics 219 (2000) 235–248

Two vertices p; q of Qn are equivalent if one is obtained by rotation of the other, that
is, �ip = q for some integer i. An equivalence class with respect to the equivalence
relation of rotation is called an n-bit necklace. A vertex p is called periodic, if there
exists some integer 0¡i¡n such that �ip= p. An n-bit necklace is called prime, if
its constituent elements are aperiodic, i.e. if it consists of n distinct elements.
Each necklace is usually represented by its lexicographically least element. In partic-

ular, the lexicographically least element of a prime necklace is called a Lyndon word.
Algorithms for generating such representatives of all n-bit necklaces and n-bit prime
necklaces have been given by [4,5,8] and others. Further, Cummings [3] dealt with
paths of the graph consisting of the vertex-set of all Lyndon words and the edge-set
{{p; q} |d(p; q) = 1 and p; q are Lyndon words.}
If the equivalence relation of rotation is restricted to the set Cn;m, we obtain an n-bit

necklace of density m as an equivalence class. The problem of whether there exists
some kind of Gray code for n-bit necklaces of density m for any (n; m) such that
26m6n − 2 has not been previously solved. The object of the present paper is to
prove the existence by construction for both general necklaces and prime necklaces.
We start with a new Algorithm A that generates a Gray code for m-combinations of

an n-set. Algorithm A generates the same Gray code as an algorithm that selects all
vertices of Cn;m from a Gray code for Qn and its recursive version, which are already
known [1,7,9]. Next, based on Algorithm A, we de�ne a new set Pn;m of representatives
of all n-bit prime necklaces of density m and a new set Nn;m of representatives of all
n-bit necklaces of density m. The �rst main result is an Algorithm B that generates a
Hamiltonian cycle in the graph consisting of the vertex-set Pn;m and the edge-set

{{p; q} |d(p; q) = 2 and p; q ∈ Pn;m}: (1.1)

The second main result is an Algorithm C that generates a Hamiltonian cycle in the
graph consisting of the vertex-set Nn;m and the edge-set

{{p; q} |d(p; q) = 2 and p; q ∈ Nn;m}: (1.2)

Thus, these two algorithms positively solve the existence problem of Gray codes for
necklaces.

2. Gray code for combinations

For convenience, each vertex p of Cn;m is represented by an integral m-string � =
�1�2 · · · �m such that 16�1¡�2¡ · · ·¡�m6n, where if �i=j, then pj is the ith 1 of
p=p1p2 · · ·pn. For example, 11010100 ∈ C8;4 is represented by 1246. Let �n;m denote
the set consisting of the representations of all vertices of Cn;m. Let d(�; �) = d(p; q)
for vertices p and q represented by � and �, respectively.

De�nition 2.1. The level of � ∈ �n;m, denoted by L(�), is the integer k such that
�k−1 = k − 1 and �k ¿k, i.e. L(�) is the smallest k such that pk = 0 for the vertex

T. Ueda /Discrete Mathematics 219 (2000) 235–248 237

p=p1p2 · · ·pn represented by �. If there is no such k, i.e. �=12 · · ·m, then L(�)=m+1.
For example, L(1 · 2 · 3 · 4 · 7) = 5 and L(1 · 2 · 3 · 5 · 6) = 4.

De�nition 2.2. If � = (�1; �2; : : : ; �s) is a sequence in �n;m, then Length(�) = s.

De�nition 2.3. If � = (�1; �2; : : : ; �s) is a sequence in �n;m, then �−1 denotes the
sequence (�s; : : : ; �2; �1).

De�nition 2.4. If � = (�1; �2; : : : ; �s) and � = (�1; �2; : : : ; �t) are sequences in �n;m,
and 16h6s− 1, then Insert(�;�; h) is the sequence P = (�1; �2; : : : ; �s+t) de�ned by
�u= �u for 16u6h; �u= �u−h for h+16u6h+ t; �u= �u−t for h+ t+16u6s+ t.

De�nition 2.5. If � is an element of �n;m such that L(�) = k +1, then ∧+� is de�ned
as the element of �n;m such that

(∧+�)k = �k+1 − 1; (∧+�)i = �i for every i 6= k:
For example, ∧+12368 = 12568. Clearly d(∧+�; �) = 2 and L(∧+�) = L(�)− 1.

De�nition 2.6. If � is an element of �n;m such that L(�) = k +1, then ∨+� is de�ned
as the sequence (�u) in �n;m, where u= 1; 2; : : : ; �k+1 − k − 2, such that

�uk = k + u and �ui = �i for every i 6= k:
For example, ∨+1278 = (1378; 1478; 1578). ∨+� may be empty. Clearly we have
L(�u) = L(�)− 1 and d(�u; �) = d(�u; �v) = 2 for every u 6= v.

Although the existence of a Gray code for combinations and algorithms of generating
it are already known, I give the following new Algorithm A that generates a Gray code
for combinations, because our algorithms of generating Gray codes for necklaces are
obtained by modifying it. For logical clearness, these algorithms are written in pseudo
Pascal, where the curly brace { indicates begin, and the curly brace } indicates end.
Lines beginning with // are comments. In practice, some modi�cations will reduce the
running time of these programs.

Algorithm A: program Graycombination(n; m);
{ // Initial sequence is � = (�1; �2; : : : ; �n−m+1), where �j = �j1�j2 · · · �jm.

1: for j := 1 to n− m+ 1 do
2: { for i := 1 to m− 1 do �ji := i; �jm := m− 1 + j; }

// Repeat {reverse �; ∧ insertion(k); ∨ insertion(k); }.
3: for k := m− 1 downto 1

do { � := �−1; ∧ insertion(k); ∨ insertion(k); } }
procedure ∧ insertion(k);
// � = (�1; �2; : : :) is the current sequence.

238 T. Ueda /Discrete Mathematics 219 (2000) 235–248

Fig. 1. Cycle generated by Algorithm A for (n; m) = (6; 3).

1: { u := 1;
2: while u6 Length(�) do
3: { if L(�u) = k + 1 then

// Insert ∧+�u between �u and �u+1.
4: { � := Insert(∧+�u;�; u); u := u+ 1; }
5: u := u+ 1; } }
procedure ∨ insertion(k);

// � = (�1; �2; : : :) is the current sequence.
1: { u := 1;
2: while u6 Length(�) do
3: { if L(�u) = k + 1 then

// Insert ∨+�u between �u and �u+1.
4: { increment := Length (∨+�u);
5: � := Insert(∨+�u;�; u);
6: u := u+ increment; }
7: u := u+ 1; } }

Fig. 1 Illustrates Algorithm A. The initial sequence (cycle) is described with solid
edges. ∧+� is inserted with dashed edges. ∨+� is inserted with dotted edges. Each ar-
row with the value of k at the right margin indicates the direction of the initial sequence
or the current sequence during the execution of ∧ insertion(k) and ∨ insertion(k). The
elements such that L(�) = k created by these procedures are arranged at the same
horizontal level as the arrow.

De�nition 2.7. For � ∈ �n;m such that L(�)=k and g1g2 · · · gj such that k+j−16m and
k6g1¡g2¡ · · ·¡gj ¡�k+j, the representation obtained by substituting g1g2 · · · gj

T. Ueda /Discrete Mathematics 219 (2000) 235–248 239

for �k · · · �k+j−1 in � is denoted by �[g1 · · · gj]:
�[g1 · · · gj] = �1 · · · �k−1g1 · · · gj�k+j�k+j+1 · · · �m:

For example, if � = 123689, then �[5; 7] = 123579. Note that if L(�) = k then
L(�[k]) = k + 1.

Theorem 2.8. Algorithm A is well de�ned and generates a Hamiltonian cycle
in G(Cn;m).

Proof. The initial sequence consisting of all elements � ∈ �n;m such that L(�)=m+1 or
L(�)=m represents a cycle in G(Cn;m), and 12 · · · (m−1)(i+1) succeeds 12 · · · (m−1)i
for every i such that m6i6n − 1. By downward induction on k, the following facts
are clear in the following order for every k such that k = m − 1; m − 2; : : : ; 1. (1)
Every element � ∈ �n;m such that L(�) = k and �k + 1 = �k+1 is inserted as ∧+(�[k])
between �[k] and �[k; �k] in ∧ insertion(k). (2) Every element � ∈ �n;m such that
L(�) = k and �k + 1¡�k+1 is inserted as an element of ∨+(�[k]) between �[k] and
∧+(�[k]) = �[�k+1 − 1] in ∨ insertion(k). (3) At the end of ∨ insertion(k), each �
such that L(�) = k is preceded by �[�k − 1]. These facts su�ce for the proof of this
theorem.

Let �(n; m) denote the sequence obtained by Algorithm A. �(n; m) can be divided
into two parts: the �rst part �1(n; m) consists of elements � with �m¡n, and the
second part �2(n; m) consists of � with �m = n. We have �1(n; m) =�(n− 1; m) and
�2(n; m) =�−1(n− 1; m− 1) · n. Therefore, we obtain

�(n; m) =�(n− 1; m) ◦�−1(n− 1; m− 1) · n;

�(j; j) = 1 · 2 · · · j; �(j; 0) = ∅;
where ◦ denotes the concatenation of two sequences. This is exactly the same recursive
equation given by Bitner, Ehrlich and Reingold [1] for a Gray code for combinations,
which is a subsequence of the so-called binary-reected Gray code for Qn given in [6].
If Algorithm A is stopped immediately after insertion of any single element, assuming

the elements of ∨+�u are inserted one by one, then the resultant sequence represents
a cycle in G(Cn;m). Therefore, Algorithm A can produce a cycle of any given length
s such that 36s6

(n
m

)
in G(Cn;m). In other words, it shows G(Cn;m) is pan-cyclic.

3. Gray code for prime necklaces

The well-known lexicographic order ¿LEX and colexicographic order ¿COLEX are
de�ned on �n;m as follows. Let � and � be elements of �n;m. �¿LEX � if there exists
some h such that �i = �i for i6h − 1, and �h¿�h. �¿COLEX � if there exists some
h such that �i = �i for i¿h+ 1, and �h¿�h.

240 T. Ueda /Discrete Mathematics 219 (2000) 235–248

In order to generate a kind of Gray code for prime necklaces, we have �rst to
de�ne a set Pn;m of representatives of all prime necklaces, each representative being
the least element in its necklace with respect to an order relation ≺ on �n;m. Next, in
our approach, we try to modify Algorithm A to produce a Hamiltonian cycle in the
graph G(Pn;m) de�ned by edge-set (1.1). The more the introduced relation ≺ agreed
with the order in which elements of �n;m are produced by Algorithm A, the smaller
the modi�cations would be necessary. According to Algorithm A, if L(�)¿L(�) then
clearly � cannot be created before � is created, and any element of ∨+� cannot be
created before ∧+� is created. These facts show that neither the simple order ¿LEX

nor ¿COLEX is compatible with the order in which the elements of �n;m are produced
in Algorithm A, and the following relations (3.1) and (3.2) are rather naturally derived.
Further, we have to de�ne ≺ in the case not covered by (3.1) or (3.2) for � and �.
In this case, I de�ne � ≺ �, if �¿COLEX �, simply because if �¿COLEX � and j is the
greatest number such that �j 6= �j, then there are more elements � such that �i = �i
for i¿j than elements � such that �i= �i for i¿j. Therefore, (3.3) is also introduced.
This de�nition of ≺ looks complicated, but it was the only one that worked in my
several di�erent trials.

De�nition 3.1. Let � and � be elements of �n;m. Then � ≺ �, if
L(�)¿L(�); (3.1)

or if

L(�) = L(�) = k; �k+1 = �k + 1 and �k+1¿�k + 1 for some k6m− 1;
(3.2)

or if

L(�) = L(�) = k;

{k = m or {�k+1 = �k + 1; �k+1 = �k + 1} or {�k+1¿�k + 1; �k+1¿�k + 1}};

and �¿COLEX �: (3.3)

Further � 4 �, if � ≺ � or � = �. For, example, in �8;4; 1236 ≺ 1267 ≺ 1256 ≺
1257 ≺ 1247.

A rotation �jp of a vertex p of Cn;m can be represented in terms of p’s representation
�. Speci�cally, the representation of �jp is �j� de�ned by

�j�= C((�1 − j) · (�2 − j) · · · (�m − j)); (3.4)

where �i−j is the element of {1; : : : ; n} representing its congruence class modulo n and
C is a rotation of the integral m-string such that the resultant �rst element is the least
of the string. We call an element � of �n;m minimal, if � 4 �i� for every 0¡i¡n.
For each element � of �n;m, there exists some k such that �k� is minimal. We call
an element � of �n;m strictly minimal, if � ≺ �i� for every 0¡i¡n. If p ∈ Cn;m is

T. Ueda /Discrete Mathematics 219 (2000) 235–248 241

Fig. 2. Cycle generated by Algorithm B for (n; m) = (8; 4).

aperiodic, then there exists a unique k such that 06 k ¡n and �k� is strictly minimal
for p’s representation �. If p is periodic, then there exists some 06k ¡n and a
unique � such that � = �k� is minimal. Therefore, each n-bit necklace of density m
is uniquely represented by a vertex whose representation is minimal, and each n-bit
prime necklace of density m is uniquely represented by a vertex whose representation
is strictly minimal. Let Nn;m denote the set of all vertices p of Cn;m such that p’s
representation is minimal, and Pn;m denote the set of all vertices p of Cn;m such that
p’s representation is strictly minimal. The graph G(Nn;m) consists of the vertex-set
Nn;m and the edge-set de�ned by (1.2). The graph G(Pn;m) consists of the vertex-set
Pn;m and the edge-set de�ned by (1.1).

De�nition 3.2. If � is a sequence in �n;m, then Min(�) denotes the subsequence of
� consisting of all its minimal elements, and Smin(�) denotes the subsequence of �
consisting of all its strictly minimal elements.

The introduction of the order relation ≺ and the sets Pn;m and Nn;m of representatives
of necklaces is not su�cient to generate a Hamiltonian cycle in G(Pn;m) or G(Nn;m) by
modifying Algorithm A. For example, referring to Fig. 2, 1246 is an element of ∨+1236
in �8;4, and strictly minimal, but ∧+1236=1256 is not strictly minimal, so that we can
not generate 1246 between 1236 and ∧+1236. Fortunately however, d(1246; 1267)=2,
and 1267 = ∧+1237 is strictly minimal, so that we can generate 1246 between 1236
and 1267 by the ∨ insertion procedure of the modi�ed algorithm.
Further, referring to Fig. 3, 1 ·2 ·4 ·8 ·9 ·11 is an element of ∨+1 ·2 ·3 ·8 ·9 ·11 in �12;6

and minimal, but ∧+1 · 2 · 3 · 8 · 9 · 11 = 1 · 2 · 7 · 8 · 9 · 11 is not minimal. This case
poses a more serious problem than the above example. To solve this problem, we
�rst generate 1 · 2 · 4 · 8 · 9 · 11, which was generated between 1 · 2 · 3 · 8 · 9 · 11 and
∧+1 ·2 ·3 ·8 ·9 ·11 by the ∨ insertion procedure in Algorithm A, between 1 ·2 ·3 ·8 ·9 ·11
and 1 · 2 · 3 · 4 · 8 · 11 by the ∧ insertion procedure in the modi�ed algorithm. After
that, we generate 1 · 2 · 6 · 8 · 9 · 11 between 1 · 2 · 3 · 8 · 9 · 11 and 1 · 2 · 4 · 8 · 9 ·
11 by the ∨ insertion procedure. Therefore, we de�ne the following unary operations
∧− and ∨− in addition to already introduced ∧+ and ∨+.

242 T. Ueda /Discrete Mathematics 219 (2000) 235–248

Fig. 3. Part of cycle generated by Algorithm B for (n; m) = (12; 6).

De�nition 3.3. If � is an element of �n;m such that L(�)= k+1, then, ∧−� is de�ned
as the element of �n;m such that

(∧−�)k = k + 1 and (∧−�)i = �i for every i 6= k:
For example, ∧−12378 = 12478. Clearly d(∧−�; �) = 2 and L(∧−�) = L(�)− 1. Note
that ∧+12378 = 12678.

De�nition 3.4. Let � be an element of �n;m such that L(�) = k + 1. If m¿k + 2 and
�k+2 = �k+1 + 1, then ∨−� is de�ned as the sequence obtained by discarding the �rst
term of ∨+�. Otherwise, ∨−� is de�ned as ∨−�=(∨+�)−1. For example, ∨+12389=
(12489; 12589; 12689), so that ∨−12389 = (12589; 12689). ∨+12379 = (12479; 12579),
so that ∨−12379=(12579; 12479). Clearly we have L(�u)=k and d(�u; �)=d(�u; �v)=2
for every �u and �v such that u 6= v.

With the above preparations, we obtain the following Algorithm B that generates
a Hamiltonian cycle in G(Pn;m). Algorithm B requires n¿7 and n − 2¿m¿n=2, or
n=6 and m=3. If n¿7 and n=2¿m¿2, then the complementation of all elements of
the Hamiltonian cycle in G(Pn;n−m) generated by Algorithm B produces a Hamiltonian
cycle in G(Pn;m).

Algorithm B: program Grayprimenecklace (n; m);
{ // Initial sequence is � = (�1; �2; : : : ; �n−m), where �j = �j1�j2 · · · �jm.

1: for j := 1 to n− m do
2: { for i := 1 to m− 1 do �ji := i; �jm := m− 1 + j; }

// Repeat {reverse �;∧ insertion (k); ∨ insertion (k); }.
3: for k := m− 1 downto 3 do
4: { � := �−1;∧ insertion (k); ∨ insertion (k); } }
procedure ∧ insertion (k);

// � = (�1; �2; : : :) is the current sequence.
1: { u := 1;
2: while u6Length(�) do

T. Ueda /Discrete Mathematics 219 (2000) 235–248 243

3: { if L(�u) = k + 1 then
4: { if ∧+�u is strictly minimal then

// Insert ∧+�u between �u and �u+1.
5: {� := Insert(∧+�u;�; u); u := u+ 1; }
6: else if L(�u−1) = k + 2 and ∧−�u is strictly minimal then

// Insert ∧−�u between �u and �u−1.
7: { � := Insert(∧−�u;�; u− 1); u := u+ 1; }}
8: u := u+ 1; } }
procedure ∨ insertion (k);

// � = (�1; �2; : : :) is the current sequence.
1: { u := 1;
2: while u6Length(�) do
3: { if L(�u) = k + 1 then
4: { if L(�u+1) = k then

// Insert Smin(∨+�u) between �u and �u + 1.
5: { increment := Length(Smin(∨+�u));
6: � := Insert(Smin(∨+�u); �; u);
7: u := u+ increment; }
8: else if L(�u−1) = k then

// Insert Smin(∨−�u) between �u and �u−1.
9: { increment := Length(Smin(∨−�u));
10: � := Insert(Smin(∨−�u); �; u− 1);
11: u := u+ increment; } }
12: u := u+ 1; } }

Di�erences between Algorithms A and B are observed in Figs. 2 and 3. In
Fig. 2, 1246 is inserted as an element of Smin(∨−1236) between 1236 and 1267,
since ∧+1236 = 1256 is not strictly minimal. In fact, in ∨ insertion(3), 1256 not ap-
pearing in the current sequence is found by con�rming the if condition in line 4 is not
satis�ed, and 1267 appearing in the current sequence is found by con�rming the else if
condition in line 8 is satis�ed. In Fig. 3, ∧−1 ·2 ·3 ·8 ·9 ·11=1 ·2 ·4 ·8 ·9 ·11 is inserted
between 1 ·2 ·3 ·8 ·9 ·11 and 1 ·2 ·3 ·4 ·8 ·11, since ∧+1 ·2 ·3 ·8 ·9 ·11=1 ·2 ·7 ·8 ·9 ·11
is not strictly minimal. In fact, in ∧ insertion(3), ∧+1 · 2 · 3 · 8 · 9 · 11 not being strictly
minimal is found in line 4, and 1 · 2 · 3 · 8 · 9 · 11 being succeeded by 1 · 2 · 3 · 4 · 8 · 11 is
found by con�rming the �rst term of the else if condition in line 6 is satis�ed. Further,
Smin(∨−1 · 2 · 3 · 8 · 9 · 11) = (1 · 2 · 5 · 8 · 9 · 11; 1 · 2 · 6 · 8 · 9 · 11) is inserted between
1 · 2 · 3 · 8 · 9 · 11 and 1 · 2 · 4 · 8 · 9 · 11 like the above 1246.
In the following, the notation for substitution �[g1; g2; : : : ; gj] de�ned by

De�nition 2.7 is used throughout. With a rotation �i; �i(�[g1; g2; : : : ; gj]) is written as
�i�[g1; g2; · · · ; gj].

De�nition 3.5. An element � of �n;m such that L(�) = k6m is called strictly normal,
if �[g] is strictly minimal for every g such that k6 g6 �k+1 − 1, where �m+1 = n.

244 T. Ueda /Discrete Mathematics 219 (2000) 235–248

Similarly, � of �n;m such that L(�) = k6m is called normal, if �[g] is minimal for
every g such that k6g6�k+1 − 1. For example, referring to Fig. 3, 1 · 2 · 5 · 8 · 9 · 11
is not strictly normal, since 1 · 2 · 7 · 8 · 9 · 11 is not strictly minimal.

Lemma 3.6. If � is a strictly minimal element of �n;m; and L(�) = k6m − 1; then
�[k] is strictly normal.

Proof. Let � be strictly minimal and L(�) = k. Clearly L(�[k]) = k + 1. Suppose
�[k] is not normal. Then �[k; g]; where g = �k+2 − 1; is not strictly minimal, and
�g−1�[k; g] 4 �[k; g]. Since L(�[k; g])=k+1 and �[k; g]k+1+1=�[k; g]k+2, we must have
L(�g−1�[k; g])k+1 = k + 1; (�g−1�[k; g])k+1 + 1= (�g−1�[k; g])k+2 and (�g−1�[k; g])m¿
�[k; g]m. Therefore, in terms of �; L(�

g�)=k and (�g�)k+1=(�g�)k+1. Since � ≺ �g�
and L(�) = k, we must have �k + 1 = �k+1 and �m¿(�g�)m. Since (�[k; g])m = �m, it
follows that (�g−1�[k; g])m¿(�g�)m, which means by (3.4), k − (g− 1) + n¿�k+1 −
g + n, that is, �k+16k + 1, which is a contradiction. Therefore �[k; g] is strictly
minimal.

The following Lemma 3.7 guarantees that if � is strictly minimal, m¿n=2, and
L(�) = k, but ∧+(�[k]) is not strictly minimal, then ∧−(�[k]) is strictly minimal.

Lemma 3.7. If � is a strictly minimal element of �n;m; m¿n=2; L(�) = k; and
�k + 1¡�k+1; then ∧−(�[k]) = �[k + 1] is strictly minimal.

Proof. Let m¿n=2; � be strictly minimal, L(�)=k; �k+1¡�k+1, and �k ¿k+1. For
any j such that 0 ¡j¡n; j 6= �k −2; (�j�[�k −1])m 6= n, and (�j�[�k −1])1 =1, we
have �j� ≺ �j�[�k − 1]. Since � is strictly minimal, � ≺ �j�. Therefore, � ≺ [�k − 1].
Since there exists no � such that �≺ �≺ �[�k − 1]; �[�k − 1]≺ �j�[�k − 1].
Since m¿n=2, and � is strictly minimal, we have L(�[�k − 1]) = L(�)¿3, while
L(��k−2�[�k−1])=2; hence, �[�k−1] ≺ ��k−2�[�k−1]. Therefore, �[�k−1] is strictly
minimal. By induction, �[�k − 1]; �[�k − 2]; : : : ; �[k + 1] are all strictly minimal.

Lemma 3.8. If � is a strictly minimal element of �n;m; m¿n=2; L(�) = k; and �k +
1¡�k+1; then �= �[k; �k+2 − 2; �k+2 − 1] is strictly minimal.

Proof. Let m¿n=2; � be strictly minimal, L(�) = k, and �k + 1¡�k+1. We have
L(�) = k¿3; L(�) = L(�) + 1¿4, and

L(�i�)¡L(�) for 0¡i6 �k − 1 = k − 1;

L(�i�)63 for k6 i¡�k+3 − 1;

L(�i�) = L(�i�) for �k+3 − 16 i¡n:

Since � is strictly minimal, L(�i�)6L(�) for every 0¡i¡n. Therefore, L(�i�)¡L(�)
for every 0¡i¡n. Therefore, � is strictly minimal.

T. Ueda /Discrete Mathematics 219 (2000) 235–248 245

The following Lemma 3.9 describes the case in which 1246 of Fig. 2 is created.

Lemma 3.9. Let m¿n=2 and � be an element of �n;m such that L(�)= k and �k+1 +
1¡�k+2 or k=m−1. If � is strictly minimal but ∧+(�[k])=�[�k+1−1] is not strictly
minimal; then k = 3; and ∧+(�[k; �k+1 + 1]) = �[�k+1; �k+1 + 1] is strictly minimal.

Proof. Let m¿n=2; � be strictly minimal, L(�) = k; and �[�k+1 − 1] be not strictly
minimal. Then, clearly k¿3 and �k + 1¡�k+1. Therefore, � being strictly minimal
implies that L(�i�)6L(�) = k for every 0¡i¡n; and that if L(�i�) = k for some i,
then (�i�)k + 1¡ (�i�)k+1. Therefore, �[�k+1 − 1] not being strictly minimal implies

��k+1−2�[�k+1 − 1] 4 �[�k+1 − 1]: (3.5)

On the other hand, L(��k+1−2�[�k+1−1])=3 by the condition �k+1+1¡�k+2. Therefore
L(�[�k+1 − 1]) = k63; so that k = 3; and we obtain either
(1)

�[�4 − 1] = 1 · 2 · (�4 − 1) · �4 · �5 · (�5 + 1)�7 · · · �m;
where �4 + 1¡�5, or
(2)

�[�4 − 1] = 1 · 2 · (�4 − 1)�4:
Therefore, 3¡�3¡�4 − 1; so that �4¿6: Therefore, by (3.5), �m6�2 − (�4 − 2) +
n6n−2. Therefore, in case (1), since � is strictly minimal, if �i+1=�i+1 for some i;
then �i+1+1¡�i+2; �i+2+1¡�i+3, and �i−�i−1¿3; where each su�x is an element
of {1; 2; : : : ; m} representing its congruence class modulo m. In particular, �m = n− 2
since m¿n=2: Therefore, since �4 − �2¿ 4; �[�4; �4 + 1] is strictly minimal. In case
(2); n68 by m¿n=2: Since �4¿6; it follows that n=8; �[�4−1]=1·2·5·6; �=1·2·4·6;
and �[�4; �4 + 1] = 1 · 2 · 6 · 7 is strictly minimal.

Theorem 3.10. Algorithm B is well de�ned; and if n¿7 and n− 2¿m¿n=2; or n=6
and m= 3; then it generates a Hamiltonian cycle in G(Pn;m).

Proof. Inductively assume that every strictly minimal element � such that L(�)
= k + 1 appears in the current sequence produced by Algorithm A at the end of
∨ insertion(k + 1) and that the current sequence represents a cycle in G(Pn;m). As-
sume further that, if such � is strictly normal, � is preceded by �[�k+1 − 1]:
Let � be strictly minimal and L(�) = k6m − 1: By Lemma 3.6, �[k] is strictly

normal, so that �[k] is succeeded by �[k; �k+1 − 1] immediately before ∧ insertion(k)
is executed.
(1) If �[�k+1−1]=∧+(�[k]) is strictly minimal, then it is inserted between �[k] and

�[k; �k+1 − 1] in ∧ insertion(k). Hence � = ∧+(�[k]); else � is inserted between �[k]
and ∧+(�[k]) as an element of Smin(∨+(�[k])) in ∨ insertion(k), and the resultant
sequence represents a walk in G(Pn;m).

246 T. Ueda /Discrete Mathematics 219 (2000) 235–248

(2) Suppose that �[�k+1 − 1] = ∧+(�[k]) is not strictly minimal and that �k+2 =
�k+1 + 1. Then �[k + 1] is strictly minimal by Lemma 3.7. Further, since �[k; �k+1 −
1; �k+1] is strictly minimal by Lemma 3.8, Smin(∨−(�[k; k+1; �k+1])) was not inserted
between �[k; k + 1; �k+1] and �[k] = �[k; �k+1; �k+2] in ∨ insertion(k + 1), so that
no element is between them in the current sequence at the end of ∨ insertion(k +
1). Therefore, in ∧ insertion(k); the else if condition in line 6 is satis�ed, so that
∧−(�[k]) = �[k + 1] is inserted between them, and the resultant sequence represents
a walk in G(Pn;m). Hence, � = ∧−(�[k]), else, in ∨ insertion(k), the if condition
in line 4 is not satis�ed and the else if condition in line 8 is satis�ed, so that �
is inserted between �[k] and ∧−(�[k]) as an element of Smin(∨−(�[k])); and the
resultant sequence represents a walk in G(Pn;m).
(3) Suppose �[�k+1 − 1] = ∧+(�[k]) is not strictly minimal, and k = m − 1 or

�k+1 + 1¡�k+2, so that, in ∨ procedure(k); the if condition in line 4 is not satis�ed.
Then ∧+(�[k; �k+1 + 1]) = �[�k+1; �k+1 + 1] is strictly minimal by Lemma 3.9 and
hence has been inserted between �[k; �k+1 +1] and �[k]=�[k; �k+1] in ∧ insertion(k).
Therefore, in ∨ procedure(k); the else if condition in line 8 is satis�ed, so that � is
inserted between �[k] and ∧+(�[k; �k+1 + 1]) as an element of Smin(∨−(�[k])), and
the resultant sequence represents a walk in G(Cn;m).
The above three cases (1) – (3) are mutually exclusive, so that � is created only

once; hence, each resultant sequence represents a cycle in G(Cn;m). In particular, if � is
strictly normal, so that �[�k+1−1]=∧+(�[k]) is strictly minimal and Smin(∨+(�[k]))=
∨+(�[k]), then, by the order of terms in ∨+(�[k]); � is preceded by �[�k − 1] in the
current sequence at the end of ∨ insertion(k).

As Algorithm A, if Algorithm B is stopped immediately after insertion of any single
element, assuming the elements of Smin(∨+�u) and Smin(∨−�u) are inserted one
by one, then the resultant sequence is a cycle. Therefore, we obtained the following
theorem.

Theorem 3.11. The graph G(Pn;m) is pan-cyclic for every (m; n) such that n ¿7 and
n− 2¿m¿2; or n= 6 and m= 3.

4. Gray code for general necklaces

The following lemmas for general necklaces can be obtained in parallel with those
in Section 3. They can be proved almost the same as Lemmas 3.6–3.9.

Lemma 4.1. If � is a minimal element of �n;m; and L(�) = k ¡m − 1; then �[k] is
normal.

Lemma 4.2. If � is a minimal element of �n;m; m¿n=2; L(�)= k; and �k +1¡�k+1;
then ∧−(�[k]) = �[k + 1] is minimal.

T. Ueda /Discrete Mathematics 219 (2000) 235–248 247

Fig. 4. Cycle generated by Algorithm C for (n; m) = (8; 4). Note that 1257 and 1247 are interchanged to
insert 1357.

Lemma 4.3. If � is a minimal element of �n;m; m¿n=2; L(�)= k; and �k +1¡�k+1;
then �= �[k; �k+2 − 2; �k+2 − 1] is minimal.

Lemma 4.4. If � is a minimal element of �n;m; m¿n=2; L(�) = k¿3; ∧+(�[k]) =
�[�k+1 − 1] is not minimal; and �k+1 + 1¡�k+2 or k = m − 1; then k = 3; and
∧+(�[k; �k+1 + 1]) = �[�k+1; �k+1 + 1] is minimal.

Remark. There is no element � that satis�es the condition of Lemma 4.4, if k=m−1:

Using the above lemmas, we can modify Algorithm B to obtain the following
Algorithm C that generates a Gray code for general n-bit necklaces of density m.
Algorithm C requires n¿6 and n − 2¿m¿n=2. If n¿6 and n=2¿m¿2; then
complementation of all elements of the Hamiltonian cycle in G(Nn;n−m) generated by
Algorithm B produces a Hamiltonian cycle in G(Nn;m). As in the last section, We
can also prove the following Theorems 4.5 and 4.6.

Algorithm C. Algorithm C is di�erent from Algorithm B only in the following two
minor changes. First, testing of strict minimality is replaced with testing of minimality,
and the function Smin is replaced with the function Min. Secondly, if m=n=2¿4; then,
as a �nal amendment, 1 ·2 ·5 ·7 ·9 ·11 ·13 · · · (n−1) and 1 ·2 ·4 ·7 ·9 ·11 · · · (n−1) are
interchanged, and 1 ·3 ·5 ·7 ·9 · · · (n−1) is inserted between 1 ·2 ·5 ·7 ·9 ·11 ·13 · · · (n−1)
and 1 · 2 · 3 · 7 · 9 · 11 · 13 · · · (n− 1) (Fig. 4).

Theorem 4.5. If n¿6 and n−2¿m¿n=2 then Algorithm C generates a Hamiltonian
cycle in G(Nn;m).

Proof. The argument of the proof of Theorem 3.10 is valid with replacement of ‘strictly
minimal’ with ‘minimal’, ‘Smin’ with ‘Min’, and ‘Lemma 3:i’ with ‘Lemma 4.(i-5)’
for k¿3: If m¿n=2, there is no minimal element of level 2; therefore the proof is

248 T. Ueda /Discrete Mathematics 219 (2000) 235–248

complete. If m= n=2¿4; then 1 · 2 · 6 · 7 · 9 · 11 · · · (n− 1); 1 · 2 · 5 · 7 · 9 · 11 · · · (n− 1); 1 ·
2 · 4 · 7 · 9 · 11 · · · (n− 1); 1 · 2 · 3 · 7 · 9 · 11 · · · (n− 1) are consecutive normal elements
at the end of ∨ insertion(3). Therefore, the only minimal element 1 · 2 · 4 · · · (n − 2)
of level less than 3 is inserted by the amendment. If (n; m) = (6; 3), then the minimal
element of level 2 is inserted without the amendment.

Theorem 4.6. The graph G(Nn;m) is pan-cyclic for every (n; m) such that n¿6 and
n− 2¿m¿2.

Acknowledgements

The author thanks the referees for various comments that greatly helped him to
improve the present paper.

References

[1] J.R. Bitner, G. Ehrlich, E.M. Reingold, E�cient generation of the binary reected Gray code and its
applications, Comm. ACM 19 (1976) 517–521.

[2] P.J. Chase, Combination generation and Graylex ordering, Congr. Numer. 69 (1989) 215–242.
[3] L.J. Cummings, Gray paths of Lyndon words in the N-cube, Congr. Numer. 69 (1989) 199–206.
[4] J-P. Duval, G�en�eration d’une section des classes de conjugaison et arbre des mots de Lyndon de longueur

born�ee, Theoret. Comput. Sci. 60 (1988) 255–283.
[5] H. Fredricksen, I.J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math.

61 (1986) 181–188.
[6] F. Gray, Pulse code communication, U.S. Patent 2 632 058, March 17, 1953.
[7] E.M. Reingold, J. Nievergelt, D.N. Deo, Combinatorial Algorithms, Prentice-Hall, Englewood Cli�s, NJ,

1977.
[8] F. Ruskey, C. Savage, T.M.Y. Wang, Generating necklaces, J. Algorithms 13 (1992) 414–430.
[9] D.T. Tang, C.N. Liu, Distance-2 cyclic chaining of constant-weight codes, IEEE Trans. Comput. 22

(1973) 176–180.

