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Abstract

The gonihedric Ising model is a particular case of the class of models defined by Savvidy and Wegner intended as discrete
versions of string theories on cubic lattices. In this Letter we perform a high statistics analysis of the phase transition exhibited
by the 3d gonihedric Ising model with= 0 in the light of a set of recently stated scaling laws applicable to first order phase
transitions with fixed boundary conditions. Even though qualitative evidence was presented in a previous paper to support the
existence of a first order phase transitiort at 0, only now are we capable of pinpointing the transition inverse temperature at
Be =0.5475763) and of checking the scaling of standard observables.
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1. Introduction Medved [2], imply a major change in the critical be-
havior analysis.
The MC simulation of a system with fixed bound-
In a recent paper [1] we have studied the ef- ary conditions (FBC) instead of the standard periodic
fects of freezing the boundaries in a Monte Carlo ones (PBC) is more than a simple academic exercise.
simulation near a first order phase transition. More |ndeed, the numerical analysis of the 3d gonihedric
specifically, we checked (and postulated one of) the |sing model requires fixing the spins of some internal
scaling laws governing the critical regime of the tran- planes. If periodic boundary conditions are adopted,
sition by means of a Monte Carlo simulation of the the fixing of these internal planes is just equivalent to
2d, 8-state spin Potts model. These new scaling laws, the simulation of the system in a box with fixed bound-
theoretically analyzed by Borgs and Kotecky and by ary conditions. For this reason, the gonihedric Ising
model withx = 0, which manifests a first order phase
transition [3], needs to be reanalyzed in the light of the
E-mail address: ramon.villanova@upf.edu (R. Villanova). appropriate scaling laws. Moreover, in our recent pa-
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per [1], the new scaling laws were checked for a two
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to the gonihedric string model, this new action was

dimensional system, so the 3d gonihedric Ising model named the gonihedric Ising model. In what follows

offers the opportunity to extend their verification to 3d
lattices.

In the present Letter we perform a high statis-
tics study of the 3d gonihedric Ising model with=
0 at the transition point on lattices up to 20ur

analysis of the scaling behavior of some standard ther- = 2« ZUin -
modynamical magnitudes (specific heat, susceptibility
and energetic Binder cumulant) confirms the above-
mentioned scaling laws and shows the importance of

applying the correct scaling forms when fixed bound-
ary conditions are present.

This Letter is divided as follows. A brief summary
of the gonihedric Ising model is contained in Sec-
tion 2. The scaling laws for first order phase transitions
are stated in Section 3, comparing the laws for fixed
boundary conditions with their periodic counterparts.

we shall consider the three-dimensional version of this
model, whose Hamiltonian contains nearest neighbour
((i, j)), next to nearest neighbouti( j)) and round a
plaquette i, j, k, []) terms
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For generic couplings the spin clusters in the above
Hamiltonian generate a gas of surfaces with energy
contributions from area, extrinsic curvature and self-
intersections [8]. A noteworthy feature of the particu-
lar ratio of couplings in Eq. (2) is the flip symmetry
which is not present in the generic case. It is possi-

Sections 4 and 5 are devoted to the numerical simula- ble to flip any plane of spins at zero energy cost when
tion and analysis of results and Section 6 summarizes T = 0, so the zero temperature ground state is degen-
the conclusions of our work. erate, with any layered configuration being equivalent
to the ferromagnetic state. A low temperature expan-
sion shows that this symmetry is lost whEn# 0 and
k # 0 [7]. « = 0 however constitutes a special case—
the flip symmetry remains even at finite temperature.
Adding extended range interactions, particularly  There is agreement on the phase structure of the
with different sign couplings, to the standard Ising Hamiltonian in Eq. (2) from both Monte Carlo sim-
model in two and three dimensions gives a very ulations and cluster-variational (CVPAM) methods:
rich [4] phase structure. One particular class of models when« > 0 there is a single continuous transition from
with such extended interactions, the so-called goni- g paramagnetic high temperature phase to (with appro-
hedric Ising models, have recently aroused interest priate boundary conditions in the Monte Carlo case)
because of their putative connection with random a ferromagnetic phase. The simulations of Ref. [9]
surface models and strings. The original discretized used fixed boundary conditions in order to define a
random surface model was developed by Savvidy et magnetic order parameter; the reason was that it was
al. [5] with the action found that with the use of standard periodic boundary
1 L conditions flipped spin layers, with arbitrary interlayer
§=3 D 1Xi — X160 (), spacings, made it unfeasible.

(@ The nature of the transition far ~ 0 was then
where the sum is over the edges of some triangulatedinvestigated in Ref. [3]. A zero temperature analy-
surface,f(w;;) = |r — «;;|°, ¢ is some exponent,  sis[9] shows that there is a further “antiferromagnetic”
and «;; is the dihedral angle between neighbouring symmetry in the ground state when= 0, which is
triangles with common linkij). It was christened the  already apparent from the Hamiltonian itself. This ex-
Gonihedric string model. tra symmetry, and the persistence of flip symmetries

The above action was translated giaquette sur- at non-zerdl' suggest that = 0 is a special point in

2. Thegonihedriclsingmodel at k =0

1)

faces by Savvidy and Wegner [6,7] who rewrote the
resulting theory as a generalized Ising model by us-
ing the geometrical spin cluster boundaries to de-
fine the plaquette surfaces. In view of its relation

the space of Hamiltonians Eq. (2). Even though the re-
sults of Ref. [3] suggested the presence of a first order
phase transition at = 0, a complete finite size analy-
sis of the transition was not performed at that time for
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Table 1
Scaling laws for periodieersus fixed boundary conditions

PBC FBC
B = o)+ L+ 0(hy) el + P +0(h)
Cmax(L) = Yo+ v2L? + O(L_ld) co+coLld + 0oL
xmax(L) = So+62L+0()  eo+erld+od™h
Bmin(L) = P+ 73+ 0(h7) Bo+ %+ 0(%)

want of a better knowledge of the scaling laws applica-
ble with fixed boundary conditions.

3. Thenew scaling laws for frozen boundaries

As mentioned in the introduction, the scaling laws
applicable to systems simulated with fixed boundary
conditions were deduced and studied in Refs. [1,2].
The numerical analysis of Ref. [1] was performed
on the 2d 8-state Potts model. Since the difference
between the corresponding scaling laws for fixed
and periodic boundary conditions are highly volume-
dependent, in addition to its intrinsic interest the
simulation of the 3d gonihedric Ising model is a good
testing ground for the new scaling laws on a 3d lattice.

A main feature of the FBC simulations is the shift
of the infinite volume inverse temperature by AL1
correction term, caused by surface effects, instead of
the 1/L¢ correction term due to volume effects seen
in the periodic case. The same change in the shift is
also observed for the energetic Binder parameter with
fixed boundary conditions.

Moreover, the surface corrections to the volume
scaling of the specific heat and the susceptibility
become of ordeL4~1 in the fixed case instead of the
almost negligible 129.

Table 1 summarizes the scaling laws for a first order
phase transition for both periodic and fixed boundary
conditions.

4. Numerical smulation

As we have already noted, the flip symmetry poses
something of a problem when carrying out simulations
since it means that a simple ferromagnetic order
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parameter

~{i )

will be zero, because of the observed layered nature
of the ordered state. Staggered magnetizations are of
no use since the inter layer spacing can be arbitrary.
On a finite lattice it is possible, however, to force the
model into the ferromagnetic ground state by fixing
sufficient perpendicular spin planes, either internally
if PBC are used or on the boundaries of the lattice:
both possibilities being exactly equivalent.

As in our previous work [3], we choose to fix in-
ternal planes of spins in the lattice, while retaining the
periodic boundary conditions. This has the desired ef-
fect of picking out the ferromagnetic ground state. We
can therefore still employ the simple order parameter
of Eq. (3). Fork = 0 the Hamiltonian we simulatelis

1
E Z 0;0j0k0].
[i.j.k. 11

Table 2 summarizes the details of the simulations
that have been performed froh = 10 up toL =

20. The lattice updating used a simple Metropolis
algorithm. The number of production Monte Carlo
sweeps varies fromprog = 20000000 forL = 10,

t0 nprod = 200000000 forL = 20. We took mea-
surements of the energy and the magnetization only
everyngip = 4 Or ngip = 8 sweeps, and, consequently,
the number of total measurements per rungjgas=
nprod/ nfiip. We left at least 2dgipre thermalization
sweeps before taking measurements [10]. To estimate
the autocorrelation time of energy measuremesis
we use the fact thate enters the error estimatgk =

A/ 2Te/l’lmeas€naive for the mean enel’gY(E) of Nmeas
correlated energy measurements of variance

©)

H= 4)

Nmeas

3" ((E) — Ej)?/(tmeas— D).

j=1

®)

€naive =

The “true” error estimatesjk is obtained splitting
the energy time-series into 50 bins, which were in

1itis perhaps worth emphasizing that spins live on the vertices
of the cubic lattice rather than on the links, so the model of Eq. (4) is
not the three-dimensiona, gauge model that is dual to the three-
dimensional Ising model.
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Table 2

Monte Carlo parameters of the simulatidr? is the lattice Sizenthermthe number of Monte Carlo sweeps during thermalization (in thousands),
andnprog the number of production runs (in millions). Measurements were taken eygyy= 4 Monte Carlo sweeps for all the simulations,
except the latest; the number of bins was 50

Rtherny I'fli n / 1

L Bmc Ntherm Nprod nflip Te 7therre Mip Zprod *ip prosz; fip
10 0.4580 500 20 4 25 5000 100000
12 0.4748 500 20 4 45 2778 55556
14 0.4864 500 20 4 278 450 8993
15 0.4910 500 20 4 1011 124 2473
18 0.5013 2500 22 4 24871 25 111
20 0.5064 36500 200 8 216098 21 58
Table 3

Extrema for the (finite lattice) specific heafmayx, the susceptibility,xmax, and the energetic Binder paramets,iy, together with their
respective pseudo-critical inverse temperatures

L Bax Cmax Bhhax Xmax ﬂrﬁin Bmin

10 0.457919(21) 5945(79) 0.456842(22) 042(12) 0.455064(21) b3853747)
12 0.474753(16) 122001) 0.474470(15) 1805@1) 0.473468(16) 63565661
14 0.486349(21) 28372@5) 0.486275(21) 3@64(73) 0.485647(21) 2843085)
15 0.490922(30) 3800(76) 0.490884(30) 5B1(13) 0.490374(30) $52432(12)
18 0.501280(72) 789(38) 0.501273(72) 1280(69) 0.500979(72) 5124636)
20 0.506366(69) 1257(52) 0.506364(69) 2061(99) 0.506149(69) 5062036)
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Fig. 1. Energy time series and corresponding energy histograi 20 andgyc = 0.5064.
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their turn jackknived [11] to decrease the bias in the
analysis.

In Fig. 1 we present the energy time-series for
the L = 20 andBmc = 0.5064 simulation run. The
expected characteristic behaviour of a first order phase
transition can be clearly seen. The system remains in
one of the two coexisting phases for a long period of
time. The energy histogram for the full series is also
presented in the figure. The similar height of the two
peaks confirms that the simulation was performed very
near the pseudo-critical inverse temperature.

In addition to the qualitative analysis of the his-
tograms, we have computed the specific heat, mag-
netic susceptibility and the energetic Binder parame-
ter at nearby values oByc by means of standard
reweighting techniques [12]. These observables are
defined as

CB)= ﬁ—2(<E2) —(E)?) (6)
== ,
2
x(B) = %((MZ) —(M)?), @)
B (E%)
B(p)=1—- m (8)

In Table 3 we show the extrema of the magnitudes de-
fined above, together with their pseudo-critical inverse
temperatures. The error bars of these quantities have
been estimated splitting the time-series data into 50
bins, which were then jackknived to decrease the bias
in the analysis of reweighted data.

5. Analysisof results

Once we have the results from the numerical
simulation on finite lattices, we can proceed to analyze
the data by fitting to the scaling laws of Table 1.

In Table 4 we show the results of fitting the pseudo-
critical 8’s of Cax, xmax and Bmin to the ansatz

az
73 (9)
suggested by the finite-size scaling laws presented
in Table 1. Forymax and Bmin the fits were rather
poor if L = 10 was included, so it was discarded. For
Cmax both setd. = 10-20 and. = 12—-20 were fitted.
Focusing on thd. = 12-20 fits, we can discern only
very minor differences in the estimatgd depending

Bmax(L) = B + % +

Table 4

Pseudo-critical inverse temperature figsis the goodness-of-fit

BEBax(L) = Be +e1/L +ep/L?

Blhax(L) = Be +dy/L + do/ L2

BEax(L) = Be + a1/ L + ap/L2

RangeL’s

€2

€1

Be

dy dp

Be

az
—1.22961)
~1.2312)

ai

Be
0.54868(34) —0.7848@84)

0.89
0.73

10-20
12-20

-0.71118) —2.02(12)

0.54674(63)

0.86

—0.736(18) —1.65(12)

0.54730(63)

0.85

0.54867(63) —0.785(18)
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on the observable used to extract it. These are so small
that we can safely average to obtain

B = 0.54757+ 0.00063. (10)

Since theg.’s extracted from the three observables
were not independent, we have kept the error bar
common to them all. In Fig. 2 we depict the fit for
BSax(L) in the rangel. = 10-20. The error bars in the
figure are so small that they show up only as horizontal
dashes.

The results of the fits to the specific heat and sus-
ceptibility maxima,Cmax and xmax, together with the
energetic Binder parameter minimum are summarized
in Table 5. The goodness-of-fif}, is excellent for the
three observables.

Note that the surface correction coefficientsand
b1 are, in absolute value, from one to two orders
of magnitude larger than the coefficients and b»
of the dominant contributio’v = L3. It is precisely
this fact which makes it necessary to use the scaling
ansatZlmax(L) = ag+ a1L? + a» L3, and allows us to
estimate the corrections to the leading term.

6. Conclusions

We have performed a numerical simulation of
the 3d gonihedric Ising model at = 0 in order
to determine the thermodynamic characteristics of
its phase transition. Previous analysis suggested the
existence of a first order phase transition, but a
complete finite size analysis of the transition was not
carried out. The special features of this model, which
requires a simulation where three perpendicular spin
planes need to be fixed during the simulation, do
not allow a direct application of the standard finite
size scaling laws for periodic boundary conditions at
a first order transition. In fact, to keep these planes
fixed is equivalent to performing a simulation with
fixed boundary conditions (FBC), giving rise to the
need for a different set of scaling laws. They were
reviewed in Section 3. Our numerical analysis of the
thermodynamic quantities has shown that the critical
behavior of the 3d gonihedric Ising model is perfectly
described in terms of FBC scaling laws. As a result of
this work, we have been able to accurately determine
the inverse critical temperature of the model, i.e.,
Be = 0.54757(63) Furthermore, our simulation has

Table 5

Fits on the extrema adf'max, xmax and Bmin

Bo+ B1/L + By/L?

Bmin(L)

xmax(L) = bo + b L2 + by L3

Cmax(L) = ap + a1 L? + apL3

RangeL’s

By

By
2.851(35) —1457(21)

Bo
0.4992(15)

0.5065(30)

by by

bo

a
0.03561(20)
0.03587(40)

ai
—0.4434@36)
—0.449183)

ap
14.43(17)
14.79(52)

0.014

016

10-20
12-20

2.643(84) —1312(57)

@1

0.07257(73)

39.92(92) —1.035(15)

0.62

0098

185
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0.55 1 0.54868
05 r
C
Bmax
0.45
range of the fit: L=10-20
0.4 : : ‘
5 15 25

L

Fig. 2. Finite-size scaling analysis of the pseudo-critjg@k, in the rangel. = 10-20 by means of the ans@fax(L) = fc + a1/L + az/L.
The infinite volume critical point obtained from the fitgs = 0.5486834), with a goodness-of-fip = 0.89.
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