
Physics Letters B 747 (2015) 305–309

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Forward Compton scattering with weak neutral current: Constraints 

from sum rules

Mikhail Gorchtein a,∗, Xilin Zhang b,c,d

a PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz, Germany
b Department of Physics, University of Washington, Seattle, WA, USA
c Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH, USA
d Fermi National Accelerator Laboratory, Batavia, IL, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 January 2015
Received in revised form 1 June 2015
Accepted 3 June 2015
Available online 9 June 2015
Editor: W. Haxton

We generalize forward real Compton amplitude to the case of the interference of the electromagnetic 
and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference 
structure functions and obtain a new set of sum rules. We address a possible new sum rule that relates 
the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure 
function g5(ν, 0). For the dispersive γ Z-box correction to the proton’s weak charge, the application of 
the GDH sum rule allows us to reduce the uncertainty due to resonance contributions by a factor of two. 
The finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality 
violations.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The study of Compton scattering within dispersion relation for-
malism has led to a derivation of the celebrated sum rules that 
model-independently relate low-energy properties of the nucleon 
to its excitation spectrum. Forward Compton amplitude that con-
tains parity-conserving (PC) and parity-violating (PV) interactions 
is expressed in terms of scalar PC amplitudes f , g and PV ampli-
tudes f̃ , ̃g , see e.g. Refs. [1,2],

T (ν) = f (ν)(�ε′ ∗ · �ε) + g(ν)i �σ · [�ε′ ∗ × �ε] + f̃ (ν)iq̂ · [�ε′ ∗ × �ε]
+ g̃(ν)(�σ q̂)(�ε′ ∗ · �ε), (1)

with M the nucleon mass, �σ the nucleon spin, q̂ the unit vector 
pointing in the direction of the photon three momentum, and �ε′, �ε
the final (initial) photon polarization vectors. We define the elec-
tromagnetic forward Compton amplitude as

Tγ γ = i

8π Me2

∫
d4xeiqx〈p|T jμEM(x) jνEM(0)|p〉εμε ′ ∗

ν , (2)

with M the nucleon mass and e related to the fine structure con-
stant αem = e2/(4π) ≈ 1/137. Only PC amplitudes f , g are present 
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in the electromagnetic case. The γ Z -interference forward Compton 
amplitude is normalized as

T γ Z = i sin 2θW

4π Me2

∫
d4xeiqx〈p|T jμNC (x) jνEM(0)|p〉εμε ′ ∗

ν , (3)

with θW the weak mixing angle. We focus on transverse Z 0 here, 
whereas the longitudinal component may be related to pion photo 
production through PCAC. The vector coupling of the Z 0 con-
tributes to the amplitudes f , g that already appeared in the elec-
tromagnetic case. To disambiguate we will use the superscript γ Z
for the interference case. The PV amplitudes f̃ , ̃g arise from an 
interference of the electromagnetic current with the axial vector 
current, and correspond to nucleon spin-independent and nucleon 
spin-dependent contributions, respectively. Under crossing ν → −ν
the amplitudes f , ̃g are even, while the amplitudes f̃ , g are odd.

We wish to emphasize that although we consider a Z 0 boson 
in the final or initial state, the kinematics of the Compton process 
that we study here is such that the on-shell Z 0 cannot be pro-
duced since q2 = 0. PV sum rules have been considered either in 
the Compton process γ + N → γ + N with hadronic PV effects [3,4]
or Compton-like process γ +ν → W + +e− , γ +e− → Z 0 +e− and 
such, with an on-shell weak boson produced in the final state [5,6]. 
In the process that we consider, the Z 0 may originate, e.g., from 
neutrino or charged lepton scattering off the nucleon accompanied 
with a radiation of a real photon in the final state, as, e.g., virtual 
Compton scattering is accessed in a process e− + N → e− + N +γ . 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82439326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.06.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:gorshtey@kph.uni-mainz.de
mailto:xilinz@uw.edu
http://dx.doi.org/10.1016/j.physletb.2015.06.009
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.06.009&domain=pdf


306 M. Gorchtein, X. Zhang / Physics Letters B 747 (2015) 305–309
In the context of, e.g., MiniBooNE [7] and other neutrino oscillation 
experiments, ν + N → ν + N + γ is an important background that 
has been addressed in phenomenological calculations [8–12]. For-
ward γ Z interference Compton amplitude enters the calculation of 
some electroweak corrections, in particular the dispersion γ Z -box 
correction to the weak charge of the proton [13–17] for the kine-
matics of the Q-Weak experiment currently under analysis [18]. At 
present, the theory of uncertainty is dominated by that due to the 
γ Z -box [16]. PV and PC γ Z -interference structure functions are 
not constrained by experimental data, especially at low Q 2, and to 
perform calculations they have to be modeled applying symmetry 
and isospin structure assumptions to the electromagnetic data. The 
estimates for the theory of uncertainty due to the γ Z -correction 
for the Q-Weak vary between 0.5% [17] and 2.8% [16] of the Stan-
dard Model value of the proton’s weak charge, and we investigate 
here, to what extent the sum rules for the interference Compton 
process constrain this calculation.

The low energy limit of the Compton amplitudes is obtained 
by considering the ground state contribution, and it depends only 
on the nucleon mass M , charge (electric eN , weak Q N

W and ax-
ial gN

A ) and magnetic moment (electromagnetic κN or weak κ Z
N ). 

Parametrizing the next-to-leading order in the photon energy ν
in terms of polarizabilities, one obtains the low-energy expansion 
(LEX) up to order ν2: the well-known result for the electromag-
netic case [19,20],

f (ν) = − e2
N

4π M
+ 1

e2
(α + β)γ γ ν2 + . . . ,

g(ν) = −ν
(κ

γ
N )2

8π M2
+ . . . , (4)

and the new results for the γ Z -interference,

f γ Z (ν) = −eN Q N
W

4π M
+ 1

e2
(α + β)γ Zν2 + . . . ,

gγ Z (ν) = −ν
κ

γ
N κ Z

N

8π M2
+ . . . ,

f̃ (ν) = 0 + 1

e2
δ
γ Z
1 ν + . . . ,

g̃(ν) = − gN
A μN

4π M
+ 1

e2
δ
γ Z
2 ν2 + . . . (5)

Above, according to the definition of the interference Compton 
amplitude, we use Q p

W = 1 − 4 sin2 θW , Q n
W = −1, g p

A = −gn
A =

1.2701(25), κ Z
p = (1 − 4 sin2 θW )κ

γ
p − κ

γ
n − μs , and κ Z

n = (1 −
4 sin2 θW )κ

γ
n − κ

γ
p − μs . The strangeness contribution to the mag-

netic moment μs , according to a recent global analysis of Ref. [21], 
is μs = 0.37 ± 0.27. A recent lattice calculation of Ref. [22] obtains 
a significantly lower value, μs = 0.20 ± 0.08. In what follows, the 
strange quark contribution is only used to assess the uncertainties, 
and the nucleon axial charge is taken without radiative correc-
tions. Above, the nucleon magnetic moment was defined as μN =
eN + κ

γ
N , and two new polarizabilities δγ Z

1,2 were introduced. The 
optical theorem relates the imaginary parts of the forward ampli-
tudes to the inelastic structure functions F1,3(ν, Q 2), g1,5(ν, Q 2)

taken in the limit Q 2 = 0:

Im f = 1

4M
F1, Im g = 1

4M
g1,

Im f̃ = 1

8M
F γ Z

3 , Im g̃ = − 1

2M
gγ Z

5 . (6)

The amplitudes f , g, f̃ , ̃g are analytic functions of complex energy 
and obey dispersion relations
Re f (ν) = f (0) + ν2

4π M

∞∫
νπ

dν ′ 2

ν ′ 2(ν ′ 2 − ν2)
F1(ν

′,0)

Re g(ν) = ν

2π M

∞∫
νπ

dν ′

ν ′ 2 − ν2
g1(ν

′,0),

Re f̃ (ν) = ν

4π M

∞∫
νπ

dν ′

ν ′ 2 − ν2
F γ Z

3 (ν ′,0)

Re g̃(ν) = g̃(0) − ν2

2π M

∞∫
νπ

dν ′ 2

ν ′ 2(ν ′ 2 − ν2)
gγ Z

5 (ν ′,0), (7)

where νπ = mπ + m2
π/2M is the first inelastic threshold due to 

pion production. The high-energy behavior of F1, g5 requires sub-
tractions for f , ̃g .

These dispersion relations can now be evaluated for low ener-
gies ν 
 νπ . Taylor-expanding the dispersion integrals in powers 
of ν2 and equating the coefficients in this expansion to the LEX of 
Eq. (5) the sum rules follow,

(α + β)γ γ ,γ Z = 2αem

M

∞∫
νπ

dν

ν3
F γ γ ,γ Z

1 (ν,0) (8)

κ
γ
N κ

γ ,Z
N = −4M

∞∫
νπ

dν

ν2
gγ γ ,γ Z

1 (ν,0), (9)

δ
γ Z
1 = αem

M

∞∫
νπ

dν

ν2
F γ Z

3 (ν,0), (10)

δ
γ Z
2 = −4αem

M

∞∫
νπ

dν

ν3
gγ Z

5 (ν,0). (11)

Eqs. (8), (9) are Baldin [23] and Gerasimov–Drell–Hearn [24] sum 
rules, respectively, and their straightforward generalization to the 
case of the γ Z interference. Both sum rules were checked exper-
imentally for the electromagnetic case [25,26] and the agreement 
was found to be better than 4% for Baldin sum rule, and to be 
within 10% for the GDH sum rule. The GDH sum rule was checked 
perturbatively in electroweak theory [5,6,28]. Note that a GDH-
like sum rule for PV Compton scattering was considered, e.g., in 
Refs. [3,4] but in the context of hadronic parity violation, and not 
due to γ − Z 0 interference. The other two sum rules equate the PV 
polarizabilities δ1 and δ2 to the 1st moment of the structure func-
tion F3 and 2nd moment of g5, respectively, and both integrals are 
certainly convergent.

Finally, the finite energy sum rule (FESR) for the amplitudes f
and g̃ results from extracting Regge-behaved part f R(g̃ R) of the 
amplitude f (g̃) explicitly, and writing a dispersion relation for the 
difference f − f R and g̃ − g̃ R . At the asymptotically high energy 
such an amplitude can be at most a constant that is denoted by 
C∞(C̃∞), and one obtains a dispersion representation for this con-
stant (the J = 0 pole) [27],

C∞ = − e2
N

4π M
− 1

2π M

N∫
νthr

dν

ν
[F1(ν,0) − F R

1 (ν,0)]. (12)

Above, F R
1 = ∑

i ciν
αi with αi strictly positive. The leading high-

energy behavior is described by the Pomeron with αP ≈ 1.09 and 
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the f2-trajectory exchange with α f2 ≈ 0.5, and was obtained from 
a Regge fit at ν ≥ N ≈ 2 GeV [29]. Note that due to different nor-
malization of the Compton amplitude, C∞ in Eq. (12) differs from 
that in [27,29] by a factor (4παem)−1. Quite analogously we obtain 
for the interference PC amplitude,

Cγ Z
∞ = −eN Q N

W

4π M
− 1

2π M

N∫
νπ

dν

ν
[F γ Z

1 (ν,0) − F γ Z ,R
1 (ν,0)], (13)

and for the interference PV amplitude,

C̃γ Z
∞ = − gN

A μN

4π M
+ 1

π M

N∫
νthr

dν

ν
[gγ Z

5 (ν,0) − gγ Z ,R
5 (ν,0)]. (14)

It is necessary to stress that the FESR of Eq. (14) is based on 
the assumption that at asymptotically high energy ν → ∞, gγ Z ,R

5
grows as να with α > 0. Should this assumption not hold, and the 
structure function g5 decrease at high energies, then an unsub-
tracted sum rule would have to be postulated,

gN
A μN = 4

∞∫
νthr

dν

ν
gγ Z

5 (ν,0). (15)

To assess these options, we examine the high-energy asymp-
totics of g5 more closely. At high energy and in the Regge frame-
work, the structure accompanying g5 may come about due to an 
exchange of an axial vector meson. Possible lowest mass candi-
dates are h1(1170), b1(1235), and a1(1260). Due to lack of suf-
ficient higher spin states for these channels the Chew–Frautschi 
plot for these trajectories is not fully constrained, and we will 
give a range for the intercept of these trajectories. The upper limit 
stems from relating an axial vector to the pion trajectory, thus 
α0 ≈ −α′m2

π ≈ −0.02. The lower limit results from a linear ex-
trapolation αM

0 = 1 − α′m2
M that range from −0.1 to −0.4 for the 

three candidates. We refer to two recent studies of the properties 
of Regge trajectories in [30] and [31]. The latter reference includes 
an analysis of polarized N N data up to high energy. Our simple es-
timate is in line with these two studies. Other works, e.g. [32], use 
αb1(0) ≈ 0.5 which would require a much smaller Regge slope or 
a substantial nonlinearity of the respective trajectory. Apart from 
nucleon and meson scattering, the high-energy behavior of g5 en-
ters parametrizations of the polarized quark PDFs. Ref. [33] ob-
tains for the two lightest flavors, gu

5 ∼ (�u − �ū)(x → 0) ∼ x−0.308

and gd
5 ∼ (�d − �d̄)(x → 0) ∼ x−0.836. In terms of possible Regge 

exchanges, this may suggest, upon assuming a universal Regge 
slope, an existence of two degenerate axial vector meson trajec-
tories (isoscalar and isovector) realized as particles with masses 
below ρ(770). No such states have been observed or predicted. 
On the other hand, the most recent analysis of polarized DIS data 
performed in Ref. [34] obtains the low-x behavior of the polar-
ized valence PDF’s for which an unsubtracted dispersion integral 
converges. Finally, PDF fits are driven by large Q 2-data that may 
exhibit quite different asymptotic energy behavior than real pho-
ton data, as is the case for the “soft” and “hard” Pomerons [35]. 
The situation remains inconclusive, as existing polarized DIS data 
do not constrain the high-energy asymptotics of g5(ν, 0).

As an informative check, we consider the contribution of the 
�(1232) resonance to the isoscalar (in the isovector combination 
it drops out) sum rule of Eq. (15). Accounting for the dominant 
magnetic γ N� coupling c1� and the axial Z 0 N� coupling hA (we 
refer the reader to Refs. [36,37] and references therein for details), 
we obtain,
g A(μp − μn) = −32

9
hAc1�

(
M + M� + M2

� − M2

2M�

)
1

π

×
∞∫

νπ

dν Im

[
1

W 2 − M2
� + iM���(W )

]
, (16)

with W 2 = M2 + 2Mν the invariant mass of the intermedi-
ate hadronic state. Using the values for the � parameters from 
Refs. [36,37], hA = 1.40, c1� = 1.21 and treating the �(1232) as 
a narrow resonance leads to r.h.s. ≈ 16/9hAc1�(1 + M�/M +
[M2

� − M2]/2MM�) ≈ 7.79; using the experimental width and ac-
counting for its energy dependence reduces the result to 5.93, 
to be compared to the l.h.s. g A(μp − μn) = 5.96. The agreement 
is remarkable. The only viable Regge exchange, h1(1170) seems 
to be consistent with negative intercept in all analyses known to 
us, while a1, b1 do not contribute being isovectors. Further con-
tributions to the sum rule still have to be incorporated, such as 
non-resonant π N contributions, and higher resonance states. One 
may notice a similarity to the Fubini–Furlan–Rossetti sum rule [38]
expressing g AκN as an integral over a forward pion photoproduc-
tion amplitude, related by PCAC to the γ Z -interference Compton 
amplitude with the longitudinal Z . We consider the transverse 
part.

Sum rule for δγ Z
2

Our numerical estimate in the model with the narrow �(1232)

leads to δ
γ Z ,p
2 = δ

γ Z ,n
2 ≈ −2.0 × 10−3 fm3. For comparison, the 

proton’s electric polarizability is about half that size, αp
E = (1.12 ±

0.04) × 10−3 fm3 [40]. A more realistic estimate of the polarizabil-
ity should include, e.g. the threshold pion production mechanism 
that is expected to be important numerically due to 1/ν3 weight-
ing under the integral.

Sum rule for δγ Z
1

The low-energy limit of the amplitude f̃ has been estimated in 
Ref. [8] upon introducing an anomalous γ Z 0ω vertex, and in 
Ref. [9] with the �(1232) isobar. The latter mechanism turns out 
to be numerically more important. Our numerical estimate in the 
model with the narrow �(1232), δγ Z ,p

1 = δ
γ Z ,n
1 ≈ 4.5 × 10−3 fm2, 

is consistent with that of Ref. [9]. It has been argued [8] that this 
polarizability can induce an effective γ νν̄ interaction that may 
provide an additional channel for energy loss from neutron stars.

GDH sum rule and the parametrization of resonance data
A parametrization of the inelastic structure functions F γ γ

1,2 on the 
proton target in the resonance region has been proposed by Christy 
and Bosted in Ref. [39]. This parametrization was used to predict 
the interference structure functions F γ Z

1,2 entering the calculation of 
the dispersive γ Z -box correction to the weak charge of the proton 
in the kinematics of the QWEAK experiment [18]. The procedure 
involves a rotation of the transition helicity amplitudes for indi-
vidual resonances in the weak isospin space [16]. It is based on 
the conservation of the vector current (CVC) and on the identi-
fication of quantum numbers of the resonances. The latter was 
taken from the original parametrization of Ref. [39]. We will as-
sess this identification with the use of the GDH sum rule. The 
parametrization of Ref. [39] features two close resonances in the 
second resonance region, S11(1535) and D13(1520), of which the 
former dominates carrying ≈ 90% of the strength in the sum of the 
two in the total cross section. The commonly accepted picture [40]
is nearly opposite, and this difference can be disentangled with 
the GDH sum rule: S11(1535) being a J = 1/2 resonance can-
not be excited in the A3/2 channel, thus its contribution to the 
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Table 1
Values of the parameter AT for the 5 of 7 resonances used in the fit of Ref. [39]. 
AI

T (0) stands for the original values and is referred to as Model I in the text. AII
T (0)

shows the values modified in accord with the PDG as described in the text and 
referred to as Model II.

S11(1535) D13(1520) F15(1680) S11(1650) P11(1440)

AI
T (0) 6.335 0.603 2.330 1.979 0.0225

AII
T (0) 3.3 3.5 3.1 2.0 2.422

GDH sum rule is strictly negative (the spin structure function g1

is related to the helicity-dependent photo absorption cross section 
as g1(ν, 0) = Mν

2πe2 [σ1/2 − σ3/2]). Similarly, we consider P11(1440), 
S11(1650) and F15(1680). We display in Table 1 how resonance 
parameters should be changed to be in agreement with the helicity 
difference cross section σ3/2 − σ1/2 without affecting the descrip-
tion of the data for the total cross section, see Fig. 1. The curves 
are compared to the data from Ref. [25] that with certainty exclude 
the blue dashed curve (Model I). The red solid curve (Model II) 
compares favorably to the data. Each curve can be used to eval-
uate the r.h.s. of the GDH sum rule. Model I leads to κ2

p ≈ 0.9, 
whereas Model II leads to κ2

p ≈ 3.28, a result close to the sum rule 
value, κ2

p = 1.7932 ≈ 3.215. Note that for this evaluation we sup-
plemented the threshold region with the non-resonant background 
contribution from MAID [41] that gives a sizable negative contri-
bution. This contribution, being the helicity-difference cannot be 
directly obtained from the parametrization of Ref. [39] which only 
deals with the total cross section.

We evaluate the PV analogue of the GDH sum rule with the 
isospin-rotated cross sections, and compare it to κγ

p κ Z
p . The eval-

uation with Model I parametrization leads to κγ
p κ Z

p ≈ 2.247, and 
that with Model II gives κγ

p κ Z
p ≈ 3.615, to be compared to the 

l.h.s. κγ
p κ Z

p = (1 − 4s2
w)(κ

γ
p )2 −κ

γ
n κ

γ
p ≈ 3.666. The Model II is con-

sistent with both sum rules. In this evaluation we neglected the 
strangeness contribution, and we did consistently so both in the 
l.h.s. low-energy coefficient κγ

p κ Z
p and in the r.h.s. integral. Strange 

magnetic moment μs = 0.20 ± 0.08 [22] can be used to assess the 
uncertainty of the l.h.s. of the GDH sum rule as μsκp ∼ 0.36, sig-
nificantly smaller than the deviation of the evaluation with Model I 
from the sum rule value.

Now, we are in a position to update the value and the un-
certainty of the dispersion evaluation of the resonance contribu-
tion to the Re�V

γ Z correction to the QWEAK measurement [16].
The sum of the resonance contributions to Re �γ Z V with the res-
onance parametrization of Model I amounted to Re�Mod. I

γ Z , Res. =

V

2.24+0.53
−0.43 · 10−3. After the modification described above we arrive 

at Re�Mod. II
γ Z V , Res. = 2.23+0.28

−0.23 · 10−3, with the uncertainty halved.

Assessing duality violation with FESR
Historically, FESR of Eq. (12) has been used to address duality: van-
ishing of the (duality) integral implies the equality of the J = 0
pole and the Thomson term [27]. Thomson term describes an 
effective two-photon coupling to an “elementary” proton, while 
J = 0 pole – that to elementary charged constituents, quarks. Then, 
this equality may be naïvely understood as the equality between 
charges, (

∑
q∈p eq)

2 = ∑
q∈p e2

q = 1. Note the similarity to the nu-
clear Thomas–Reiche–Kuhn sum rule in this interpretation [29,42]. 
Using this reasoning, we may compare the interference Thomson 
term (

∑
q∈p eq) · (∑q∈p gq

V ) ≈ 0.07 and the respective quantity on 
quarks, 

∑
q∈p eq gq

V = 5/3 − 4 sin2 θW ≈ 0.72. This indicates that 
the duality violation for the interference case may be more pro-
nounced.

The numerical evaluation of Eq. (12) with resonance contri-
butions from Model II and the background parametrization from 
[16,29] leads to C∞ = −12.2 μb GeV, which agrees reasonably 
well with the extraction of the J = 0 pole in [16], C∞ = −8.2 ±
3.8 μb GeV. To summarize the two evaluations,

C∞ = −10.2 ± 3.8(stat.) ± 2.0(syst.) μb GeV, (17)

where we estimate the systematical uncertainty by averaging over 
the two evaluations. The parametrization of Model I gives a larger 
result, C∞ = −18.3 μb GeV. Next we evaluate the γ Z -interference 
analog of the J = 0 pole, Eq. (13) using the isospin rotation as 
described in [16]. Model II leads to

Cγ Z
∞ = 28.5 ± 22.0(back.)+10.1

−8.5 (res.) μb GeV, (18)

where the first uncertainty is due to the isospin structure of the 
background, and the second one due to that of the resonances. It 
is seen that the Model II evaluation may in principle be used to 
constrain the background contribution since the uncertainty of the 
latter dominates over that due to resonances. To do that, the infor-
mation about the l.h.s. of Eq. (18) is necessary. It has been argued 
in the literature that the J = 0 pole, if exists, should be due to 
an effective two-photon-quark coupling. Then, knowing the J = 0
pole for Compton scattering, Eq. (17) we can try to model the 
γ Z -interference J = 0 pole. Varying the dominant physical picture 
between the pure valence quarks and a symmetric SU(6) quark 
collection one would expect Cγ Z

∞ ∼ (0.85 − 0.72)C∞ , whereas the 
exact duality limit would correspond to the J = 0 pole being equal 
to the interference Thomson term. These estimates indicate that 
the γ Z -interference J = 0 pole is likely to be somewhat smaller 
Fig. 1. Left panel: helicity difference σ3/2 −σ1/2 photoabsorption cross section from the original parametrization of Ref. [39] (dashed blue line) and the modified one adjusted 
in accord with the PDG [40] (solid red line) in comparison with data by GDH collaboration [25]. Right panel: the same for the total photo absorption cross section. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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than the electromagnetic one, and to have the same sign. We can 
then assume that, conservatively,

Cγ Z
∞ = −5.1 ± 5.1 μb GeV. (19)

A comparison with the evaluation of Eq. (18) suggests that for 
the two to agree, the background contribution should be taken at 
its lower range, suggesting that the model of Ref. [16] is likely to 
overestimate the interference structure functions F γ Z

1,2 at Q 2 = 0. 
The recent measurement of the PV asymmetry in the resonance 
region on the deuteron [43] observed that models tend to over-
shoot the data in the �(1232) region by up to 25–30%, although 
the disagreement is not striking because of large uncertainties. Our 
analysis implies that this discrepancy may need to be taken se-
riously, since another physical constraint from FESR suggests the 
same behavior.

In summary, we derived a set of sum rules for forward Compton 
scattering generalized to the case of electromagnetic-weak neutral 
current interference. Along with a straightforward generalization of 
the GDH, Baldin and finite energy sum rules, we proposed a new 
sum rule that relates the product of the nucleon’s axial charge and 
magnetic moment to an integral over the parity-violating structure 
function g5. We analyzed the Regge asymptotics of that amplitude 
and found that currently, no solid statement about the conver-
gence of this sum rule can be made. A model calculation for the 
isoscalar sum rule (its convergence is more reliable from the Regge 
stand point) with the �(1232) resonance leads to a very good 
agreement. This sum rule deserves further study: if confirmed 
it may give a constraint on the low-x behavior of the polarized 
PDF’s parametrizations. We showed that accounting for GDH and 
finite energy sum rules for electromagnetic and electroweak Comp-
ton amplitudes can help constraining parametrizations of inclusive 
electromagnetic and interference structure functions. The latter are 
important for calculating nucleon structure-dependent electroweak 
corrections to precision low-energy tests, e.g., the proton’s weak 
charge measurement. Analysis of the electroweak GDH sum rule 
allowed for reducing the uncertainty in that calculation due to nu-
cleon resonance contributions by a factor of 2. The analysis of FESR 
indicated that duality violation in the γ − Z interference Compton 
process may be significantly larger than in the pure electromag-
netic case.
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