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Several studies have stressed the importance of dialysis time

in the removal of uremic retention solutes. To further

investigate this, nine stable chronic hemodialysis patients

were dialyzed for 4, 6, or 8 h processing the same total blood

and dialysate volume by the Genius system and high-flux

FX80 dialyzers. Inlet blood and outlet dialysate were analyzed

for urea, creatinine, phosphorus, and b2-microglobulin at

various times. Total solute removal, dialyzer extraction ratios,

and total cleared volumes were significantly larger during

prolonged dialysis for urea, creatinine, phosphorus, and

b2-microglobulin. Reduction ratios increased progressively,

except for phosphate and b2-microglobulin, where the ratios

remained constant after 2 h. In contrast, no significant

difference was found for the reduction ratios of all solutes

and Kt/Vurea between the three different sessions. With

longer dialyses, solutes are efficiently removed from the

deeper compartments of the patient’s body. Our study shows

that care must be taken when using Kt/Vurea or reduction

ratios as the only parameters to quantify dialysis adequacy.

Kidney International (2008) 73, 765–770; doi:10.1038/sj.ki.5002750;

published online 26 December 2007

KEYWORDS: hemodialysis adequacy; chronic renal disease; dialysis duration;

solute removal

One of the major aims of renal replacement therapy is to
remove uremic waste products. The quantification of this
removal is an important parameter in the assessment of
adequacy of renal replacement therapy. Urea is currently used
as the standard marker for dialysis adequacy, by the
calculation of the clearance index Kt/Vurea or RR (reduction
ratio).1 Kt/Vurea depends, however, on two separately
modifiable factors: dialyzer clearance ‘K’ and dialysis time
‘t.’ As both factors might not have the same impact on solute
removal, it is difficult to give a straightforward interpretation
to the quantification of Kt/Vurea.

Urea kinetics significantly differ from the kinetic behavior
of other molecules, such as middle molecules, protein bound
solutes, and even other small and water-solutes.2,3 Several
studies stress the importance of time and/or clearance in the
removal of difficult-to-remove uremic retention solutes.
Dialyzer clearance K is a significant contributor to the
removal of middle molecules such as b2-microglobulin, at
least if pore size is sufficiently large.4,5 The factor time plays
an even more important role in the removal of middle
molecules and phosphorus.3–12 b2-Microglobulin removal is
enhanced by increasing dialysis duration,4–6 whereas phos-
phorus removal has been linked to dialysis duration3,7,9,11,12

as well as to dialysis frequency.8–10 In all these studies,
however, the factor time is not the only modified parameter
with potential impact on adequacy. In general, in this type of
studies, dialysate and blood flows are kept constant, so that it
is impossible to assign changes in removal to time only, as
prolonging or shortening will result in an increase or decrease
of the global blood and dialysate volumes displaced.

The Genius single-pass batch dialysis system (Fresenius
Medical Care, Bad Homburg, Germany)13 uses a double-
sided roller pump that generates equal blood and dialysate
flows up to 350 ml min�1 (Figure 1—point 1). In general,
dialysis is ended when the entire volume of dialysate present
in this system has crossed the dialyzer. As a consequence,
dialysis sessions in spite of markedly different duration still
will apply an identical blood and dialysate volume, hence
offering the opportunity to evaluate the impact of time as the
sole variable. The system consists of a closed dialysate tank of
90 l (Figure 1—point 4) and, although fresh and spent
dialysate are stored together,13–15 dialysis may last up to 10 h
when using a blood and dialysate flow of 150 ml min�1,
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without mixing of fresh and spent dialysate.16,17 The excess
body water that is ultrafiltered out of the patient’s plasma is
collected in a filtrate recipient (Figure 1—point 3).

In this study, we investigated the isolated effect of the
factor time on the removal and kinetic behavior of
different molecules such as urea, creatinine, phosphorus,

and b2-microglobulin. The same patients were submitted to
three different dialysis sessions with the Genius system lasting
4, 6, or 8 h, respectively, whereas blood flow rates were
adapted so that the total processed volumes were matched at
the end of all sessions.

RESULTS

For the different time schedules, total solute removal (TSR)
(panel a), total cleared volume (TCV) (b), dialyzer extraction
ratio (c), and reduction ratio (d) are shown in Figure 2 for
urea, creatinine, phosphorus, and b2-microglobulin. TSR was
significantly larger with protracted dialysis for urea
(P¼ 0.006), creatinine (P¼ 0.001), phosphorus (Po0.001),
and b2-microglobulin (P¼ 0.006) (Figure 2). Paired differ-
ences were found between the 4 and 8 h dialysis for all
studied solutes (P¼ 0.008 for urea, Po0.001 for creatinine,
and P¼ 0.004 for phosphorus and b2-microglobulin),
whereas differences between the 4 and 6 h dialysis were
found for creatinine (P¼ 0.001) and phosphorus (P¼ 0.008),
and between the 6 and 8 h dialysis for urea (P¼ 0.008) and
phosphorus (P¼ 0.027).

Furthermore, TCV as well as dialyzer extraction ratio,
which is a measure for global elimination in the dialyzer
irrespective of flow, were significantly higher with a
prolonged dialysis session for urea (both P¼ 0.008),
creatinine (both Po0.001), phosphorus (both Po0.001),
and b2-microglobulin (P¼ 0.029 and P¼ 0.012) (Figure 2).

No significant differences, however, were found between
the different dialysis time schedules for the post-dialysis
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Figure 1 | Flow chart of the Genius dialysis system. (1) Double-
sided roller pump, (2) dialyzer, (3) ultrafiltrate recipient, (4) closed
container with 90 l dialysate, (5) spent dialysate, (6) fresh dialysate,
(7) arterial blood line, and (8) venous blood line.
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Figure 2 | Removal parameters. (a) Total solute removal (mg, except for urea in 0.1 g), (b) total cleared volume (ml), (c) dialyzer extraction
ratio, (d) and reduction ratio (%) of urea, creatinine, phosphorus, and b2-microglobulin for the 4, 6, and 8 h dialysis session.

766 Kidney International (2008) 73, 765–770

o r i g i n a l a r t i c l e S Eloot et al.: Impact on solute removal of hemodialysis duration



reduction ratio for all solutes under study. Furthermore,
Kt/Vurea values were 1.39±0.28, 1.60±0.59, and 1.51±0.49 for
the 4, 6, and 8 h dialysis (not significant). Figure 3 illustrates
the reduction ratio at different time points during the 4, 6,
and 8 h dialysis sessions for urea, creatinine, phosphorus,
and b2-microglobulin. The reduction ratio is progressively
increasing for urea, creatinine, and b2-microglobulin, and a
difference in post-dialysis reduction ratio compared to the
value at 120 min was found during the 4, 6, and 8 h dialysis,
respectively, for urea (all P¼ 0.008), CTN (creatinine)
(all P¼ 0.008), and during the 4 h dialysis for b2-micro-
globulin (P¼ 0.031). For phosphorus (all sessions) and
b2-microglobulin (6 and 8 h dialysis), however, RR remains
constant from the 120th minute on for all sessions, and in
individual patients, even an intradialytic rebound of
phosphorus was observed.

The percentage increase of TSR, TCV, dialyzer extraction
ratio, and reduction ratio during a dialysis session of 6 and
8 h compared to 4 h dialysis is given in Table 1. Significant
differences were found between the percentage increases
during 8 h dialysis compared to the increases during 6 h
dialysis for TSR of urea (P¼ 0.012) and phosphorus
(P¼ 0.039), for TCV of urea (P¼ 0.016), creatinine
(P¼ 0.008), and phosphorus (P¼ 0.012), and for the dialyzer
extraction ratio of urea (P¼ 0.016), creatinine (P¼ 0.008),
and phosphorus (P¼ 0.012). No differences were found for
the reduction ratio, although it should be considered that
standard deviations on the percentages were substantial,
resulting in a low power at statistical testing.

Finally, as the urea dialyzer clearances at the end of dialysis
were not significantly different from those at 5 min, and

variations were even inconsistent, efficient Genius operation
without recirculation of spent dialysate was obtained for all
applied dialysis time schedules over the entire observation
period.

DISCUSSION

Although most studies evaluate the impact of dialysis time on
solute removal by varying more than one parameter affecting
dialysis adequacy, we investigated the isolated effect of time
on the removal of urea, creatinine, phosphorus, and
b2-microglobulin, and this using different modalities to
express dialysis adequacy. Patients were undergoing three
different dialysis sessions with the Genius system, lasting for
4, 6, and 8 h, respectively, whereas total volume of processed
blood and dialysate remained the same.

The most striking result of this study is that protracting
dialysis time results in a higher total amount of solute
removed from the patient’s body, whereas Kt/Vurea is not able
to detect this difference.

Although previous studies illustrated the positive impact
of longer dialysis only for the removal of solutes such as
b2-microglobulin4–6 and phosphorus,3,7,9,11,12 we found that
prolonged dialysis is also effective for small and water-soluble
solutes such as urea and creatinine. This result is remarkable,
as we were dealing with an equal amount of processed blood
in all sessions. The significant larger TSR and TCV for longer
dialysis, however, conform with the fact that the dialyzer
extraction ratio, which is a relative clearance, also was higher.
This can be attributed to a higher driving force for mass
transfer in the dialyzer, as dialyzer inlet concentrations
remain higher for slower and longer dialysis due to more
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Figure 3 | Reduction ratio. Reduction ratios at different time points during the 4, 6, and 8 h dialysis sessions for (a) urea, (b) creatinine,
(c) phosphorus, and (d) b2-microglobulin.
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pronounced concentration shifts during dialysis from the
tissue toward the blood and plasma compartment. Further-
more, as a decreased dialysate flow, as the only changed
parameter, results in a smaller extraction ratio,18,19 whereas a
decreased blood flow is known to barely improve extraction
from the dialyzer in case of pure diffusive transport, our
study clearly indicates that the time factor plays the major
role compared to the changes in applied flow rates. However,
it should be remarked that total solute removed during two
successive 4 h dialysis sessions at high flow rates might be
higher than that during a single prolonged dialysis session of
8 h at decreased flow rates.

Although urea reduction ratio and Kt/Vurea are often used
to estimate dialysis adequacy, this study did not find any
differences in these values, in spite of the significantly larger
TSR during prolonged dialysis. As slowing down dialysis
flows allows more shifts of solute out of the extraplasmatic
compartments, compartmental behavior of the different
solutes will be different when dialysis duration is extended,
allowing a higher absolute amount of solute removal in spite
of no differences in RR and Kt/Vurea. Quantifying the
adequacy of different dialysis strategies only with the use of
Kt/Vurea or urea reduction ratios will thus lead to erroneous
conclusions, if the time frame of the tested modalities is
different. This finding is not surprising for phosphorus, as
the removal of phosphorus has previously been described by
a four-compartmental kinetic model,20 where the third and
fourth compartment release phosphorus in the extracellular
and intracellular compartment, respectively, after the in-
tracellular concentration drops below a threshold concentra-
tion. This phenomenon is reflected by the stabilization of
phosphorus concentration during the course of dialysis
(Figure 3). However, the impact of long and slow dialysis
on solutes such as urea, creatinine, and b2-microglobulin,
which are rather following a two-pool model,4,21–25 was also
significant.

This finding conforms to the results of a theoretical study
based on kinetic modeling of different small and water-
soluble compounds.2,26 It was revealed that solutes that are
distributed in a small total volume and behave like one-
compartmental solutes take most advantage of short daily
dialysis sessions, whereas solutes characterized by a large total
distribution volume divided into at least two compartments
take more advantage of a prolonged dialysis treatment, three
times a week. The major clinical impact of such a prolonged

dialysis is the attenuated post-dialysis rebound phenomenon
and the lower mean solute concentration in the patient.
Thus, overall uremic toxicity is lower resulting in less adverse
uremic effects and improved patient well-being. Further-
more, accounting for the present results as well as for the
native kidney function, it is obvious that the lowest mean
patient concentrations are registered for a daily prolonged
dialysis.

Hence, our data underscore the importance of improving
dialytic removal by modifying relevant parameters inducing
beneficial kinetic shifts and enhancing removal out of second
or even more distal compartments.

Finally, it should be remarked that the presented data is
based on the results of a single dialysis session of each
investigated time schedule with a limited number of patients.
Nevertheless, our study clearly indicates that a prolonged
dialysis session is favorable compared to standard 4 h dialysis,
due to the larger amount of solute removal and a decreased
solute content in the patient in the interdialytic period.

Conclusion

Although several studies have already reported about the
importance of time in the removal of difficult-to-remove
uremic retention solutes, the factor time was not the only
parameter with a potential impact on adequacy that was
modified in those studies. Therefore, we investigated the
isolated effect of the time factor on the removal and kinetic
behavior of different molecules such as urea, creatinine,
phosphorus, and b2-microglobulin. For the different sessions
lasting 4, 6, and 8 h, reduction ratios were not significantly
different, whereas TSRs, dialyzer extraction ratios, and TCVs
were higher for prolonged dialysis.

Hence, while applying Kt/Vurea or reduction ratio as
parameters to indicate dialysis adequacy, important errors
can be made when comparing dialysis sessions of different
time durations.

MATERIALS AND METHODS
Patients and dialysis strategies
Nine stable chronic hemodialysis patients (five women and four
men) with a mean age of 71±10 years and a mean weight of
79±12 kg were studied. The study was approved by the local ethics
committee and written informed consent was obtained.

Before the experiments, patients were regularly dialyzed during
19±12 months on Genius hemodialysis (n¼ 6) or standard
hemodialysis (n¼ 3) for a mean duration of 243±10 min per

Table 1 | Percentage increase of TSR, TCV, dialyzer ER, and RR during a dialysis session of 6 and 8 h compared to 4 h dialysis

TSR TCV ER RR

6 vs 4 h 8 vs 4 h 6 vs 4 h 8 vs 4 h 6 vs 4 h 8 vs 4 h 6 vs 4 h 8 vs 4 h

Urea 6.1 26.1w 0.7 33.3w 1.0 33.2w 4.1 1.1
CTN 21.7 35.5 16.7 32.1w 17.1 32.0w �2.9 �0.3
P 26.7 48.9w 22.4 32.5w 22.7 32.4w 2.1 �5.8
b2M 42.5 81.2 48.5 94.4 48.9 94.3 5.2 9.3

b2M, b2-microglobulin; CTN, creatinine; ER, extraction ratio; RR, reduction ratio; P, phosphorus; TSR, total solute removal; TCV, total cleared volume.
wPo0.05 percentages ‘8 vs 4 h’ vs ‘6 vs 4 h.’
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session with an FX80 (n¼ 5), FX60 (n¼ 1), or F8HPS (n¼ 3)
dialyzer. In this pre-experimental phase, blood flows were set at
350 ml min�1; dialysate flow was 350 ml min�1 in the case of Genius
dialysis and 500 ml min�1 with standard dialysis.

In this study, each patient was dialyzed on three different
occasions using the Genius single pass batch system (Fresenius
Medical Care, Bad Homburg, Germany) with high-flux Fresenius
FX80 dialyzers. The characteristics of the dialyzer are detailed in
Table 2. Dialysis sessions were each time performed on the same day
of the week, whereas a washout period of 2 weeks was applied in
between the experimental dialysis sessions. Each patient served as
his/her own control and no alterations in diet or dosing of
phosphate binders and vitamin D analogues were allowed during the
test period.

The experimental sessions lasted 4, 6, or 8 h and were assigned in
random order. Blood flows were set at 350, 250, and 180 ml min�1

with the 4, 6, and 8 h dialysis session, respectively, to obtain a similar
amount of waste dialysate volume. Ultrafiltration rates were
set to the needs of the patients and were equal to 0.36±0.19 l h�1

(4 h session), 0.24±0.16 l h�1 (6 h session), and 0.21±0.11 l h�1 (8 h
session). The composition of the dialysate was 35 mmol l�1

bicarbonate, 140 mmol l�1 sodium, 111.5 mmol l�1 chloride,
5.5 mmol l�1 glucose, 0.084 mmol l�1 citrate, 1.25 mmol l�1 calcium,
0.5 mmol l�1 magnesium, 2.252 mmol l�1 hydrogen; potassium
concentration was adapted following the needs of the patient. Total
volume of waste dialysate, including the ultrafiltrate volume, was
read from the Genius monitor.

Blood and dialysate sampling
For each patient, blood samples were taken from the inlet blood
lines immediately before the onset of dialysis, and at 5, 15, 30, 60,
120, 240 min during the 4, 6, and 8 h sessions. An additional sample
was taken at 360 min during the 6 and 8 h session and at 480 min
during the 8 h session. Blood samples were immediately centrifuged
during 10 min at 1900 g (CR 412; Jouan, Saint-Herblain, France),
after which the plasma was stored at �80 1C until analysis for urea,
creatinine, phosphorus, and b2-microglobulin. From the outlet
dialysate line, dialysate was sampled at 5, 15, 30, 60, 120, 240 min
(4, 6, and 8 h session), 360 min (6 and 8 h session), and at 480 min
(8 h session). Furthermore, at the end of dialysis, a sample was
taken from the ultrafiltrate recipient (Figure 1—point 3) after
thorough mixing to quantify solute concentration in total spent
dialysate.

Analyses
Urea concentrations were determined by a kinetic UV assay for urea/
urea nitrogen (Roche Diagnostics GmbH, Mannheim, Germany) and
were measured photometrically at 340 nm (Genesys 10vis; Spectronic
Unicam, Rochester, NY, USA). Creatinine was analyzed by the Jaffé
reaction using Roche reagents that are Isotope Dilution Measurement
Standardized (IDMS) and measured photometrically at 540 nm with
the Creatinine Analyzer 2 (Beckman Instruments, Fullerton, CA,
USA). Phosphorus concentrations were determined with a Modular
analyzer (Roche Diagnostics GmbH) and measured photometrically
at 340 nm. Quantitative determination of b2-microglobulin in serum
and dialysate samples was performed using an Elisa kit (Orgentec
Diagnostika, Mainz, Germany) according to the manufacturer’s
guidelines, except for an additional 1:3 dilution of the samples,
because of the higher concentrations due to renal failure. Photo-
metrical reading was performed at 450 nm with a reference at 630 nm
(EL 808; Bio-Tek Instruments, Winooski, VT, USA).

Calculation of total solute removal
From the total spent dialysate concentration at the end of dialysis
(CD,end) and accounting for the total waste dialysate volume
(VD,end), total solute removal (TSR) (mg) was calculated as

TSR ¼ CD;endVD;end ð1Þ
Per patient, the obtained TSR values for the 6 and 8 h session were

normalized for the total waste dialysate volume, VD,end, as recorded
during the 4 h dialysis. This procedure was needed to account for
small differences in VD,end during 4 h dialysis compared with the 6
and 8 h sessions.

Calculation of clearance in the dialyzer
From the mass balance in a dialyzer, clearance K (ml min�1) can be
written as a function of blood flow rate QB (ml min�1) and
geometrical dialyzer characteristics:27

K ¼ 1 � exp �bLFð Þ
1 � a exp �bLFð ÞQB ð2Þ

with LF (m) the fiber length, a (dimensionless) the ratio of blood
and dialysate flow rate, and parameter b (1/m) defined as a function
of overall mass transfer coefficient K0 (m s�1), and the summation
of the perimeters of all fibers PF (m):

b ¼K0PF

QB
1 � að Þ ð3Þ

in which the overall mass transfer coefficient K0 is derived from the
mass balance in between the dialysate outlet concentration, CDo, and
the blood inlet concentration, CBi, accounting for a parameter a
approaching unity:27

K0¼
CDo

aLFPF CBi � CDoð ÞQB ð4Þ

Calculation of total cleared volume
Total cleared volume (TCV) (ml) was calculated as a function of
dialyzer clearance K (ml min�1) and dialysis duration t (min):

TCV ¼ Kt ð5Þ
To compare results for the same amount of processed blood, the

results for the 6 and 8 h sessions were normalized for the processed
blood volume as recorded during the 4 h dialysis.

Table 2 | Characteristics of the FX80 high-flux dialyzer

Inner lumen mm 185
Wall thickness mm 35
Surface area m2 1.8
Ultrafiltration coefficient ml per h per mm Hg 59

Sieving coefficient (–) (QB 300 ml min�1; QUF 60 ml min�1)
Inulin 1
b2-Microglobulin 0.8
Albumin 0.001

Clearances (ml min�1) (QB 300 ml min�1)
Urea 276
Creatinine 250
Phosphorus 239
Vitamin B12 175
Inulin 125

QB, function of blood flow rate; QUF, function of ultrafiltration.
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Calculation of dialyzer extraction ratio
To obtain an idea about the removal capacity of the dialyzer
irrespective of blood flow rate QB, we considered the dialyzer
extraction ratio (ER) (dimensionless) as well, defined as dialyzer
clearance K normalized by blood flow QB:28

ER ¼ K

QB
ð6Þ

Calculation of reduction ratio
In analogy with the definition for the urea reduction ratio, URR,
reduction ratio (RR) (%) of creatinine, phosphorus, and b2-
microglobulin were defined as a function of pre-dialysis concentra-
tion (Cpre) and concentration at different time points during dialysis
(Ctx) of samples taken at the dialyzer inlet:

RR ¼Cpre � Ctx

Cpre
100 ð7Þ

Calculation of Kt/Vurea

Single pool Kt/Vurea was computed using the Daugirdas equation:29

sp
Kt

Vurea
¼� ln

Cpost

Cpre
� 0:008t

� �

þ 4 � 3:5
Cpost

Cpre

� �
UF

BWpost

� �� � ð8Þ

with Cpost and Cpre post- and pre-dialysis urea concentrations,
t dialysis duration (h), UF (ultrafiltration) volume (kg), and BWpost

post-dialysis body weight of the patient (kg).

Calculation of percentage increase
The percentage increase of TSR, TCV, dialyzer extraction ratio, and
reduction ratio during a dialysis session of 6 and 8 h dialysis
compared to 4 h dialysis was calculated.

Statistical analysis
Data were analyzed using SigmaStat software (Jandel Scientific, San
Rafael, CA, USA). Data are expressed as mean±s.d. Statistical
analyses were carried out using the non-parametric Wilcoxon signed
rank test for paired samples and Friedman repeated measures
analysis of variance on ranks. A P-value of o0.05 was taken the limit
of significant difference.
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