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Abstract By co-expression of heme oxygenase and various bilin
reductase(s) in a single operon in conjunction with apophyto-
chrome using two compatible plasmids, we developed a system
to produce phytochromes with various chromophores in Esche-
richia coli. Through the selection of different bilin reductases,
apophytochromes were assembled with phytochromobilin, phyco-
cyanobilin, and phycoerythrobilin. The blue-shifted difference
spectra of truncated phytochromes were observed with a phyco-
cyanobilin chromophore compared to a phytochromobilin chro-
mophore. When the phycoerythrobilin biosynthetic enzymes
were co-expressed, E. coli cells accumulated orange-fluorescent
phytochrome. The metabolic engineering of bacteria for the pro-
duction of various bilins for assembly into phytochromes will
facilitate the molecular analysis of photoreceptors.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Photosynthetic organisms utilize light both as an energy

source for photosynthesis and as source of signals for photo-

morphogenesis, and have developed highly sophisticated sys-

tems for photoperception, energy transfer, and signal

transduction. The presence of chromophores in photorecep-

tors is essential for photobiological reactions. Tetrapyrrole

molecules including chlorophylls and phytobilins are the pros-

thetic groups for light perception proteins in plants and algae.

Phycocyanobilin (PCB) and phycoerythrobilin (PEB) are

linked to light harvesting phycobiliproteins in algae. PCB also

functions as a chromophore precursor for phytochrome-like

proteins in cyanobacteria, although some cyanobacterial and
Abbreviations: BV, biliverdin; CBD, chitin binding domain; Cph1,
cyanobacterial phytochrome 1; PCB, phycocyanobilin; PEB, phyco-
erythrobilin; PUB, phytochromobilin; Pfr, far-red-absorbing form of
phytochrome; phyB, phytochrome B; Pr, red-absorbing form of phy-
tochrome; SDS–PAGE, sodium dodecyl sulfate-polyacrylamide gel
electrophoresis
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bacterial phytochromes use biliverdin (BV) as the chromo-

phore. Plants possess phytochromobilin (PUB) as a chromo-

phore precursor for phytochromes, which are a major class

of photoreceptors for regulating numerous responses to

changes in wavelength, fluence, duration, and direction of light

in plants.

The enzymes and genes for phytobilin biosynthesis have

been identified from several photosynthetic organisms [1,2].

Heme is cleaved to BV by a ferredoxin-dependent heme oxy-

genase, and then further reduced by a family of bilin reduc-

tases. The gene for heme oxygenase from higher plants was

first identified by positional cloning of the Arabidopsis HY1

gene [3,4] and subsequently an enzymatic assay was performed

with recombinant HY1 protein [4,5]. A cyanobacterial gene for

heme oxygenase (ho1) from Synechocystis PCC6803 was also

identified by genetic complementation of the Arabidopsis hy1

mutant [6]. These enzymes are soluble and ferredoxin-depen-

dent with weak structural similarity to microsomal heme oxy-

genase in animals. A gene for bilin reductase was also

identified by map-based cloning of HY2 in Arabidopsis. The

Arabidopsis HY2 gene was novel, and enzymatic analysis per-

formed with recombinant protein demonstrated that it en-

coded PUB synthase (PUB:ferredoxin oxidoreductase) [7].

PUB synthase is a ferredoxin-dependent enzyme that catalyzes

the reduction from BV to PUB. By comparative genomics and

biochemical assays, genes for other bilin reductases with differ-

ent substrate and double-bond specificities involved in phyco-

bilin biosynthesis have been identified in cyanobacteria [8].

PCB is synthesized from BV by 4-electron reduction by PcyA

(PCB:ferredoxin oxidoreductase). PEB is also synthesized

from BV via two successive 2-electron reductions by PebA

(dihydrobiliverdin:ferredoxin oxidoreductase) and by PebB

(PEB:ferredoxin oxidoreductase) [8].

The gene identification of heme oxygenases and bilin reduc-

tases has now enabled to genetic engineering of bilin bio-

synthesis and photoreceptor reconstitution in model

microorganisms. Phytochromes, which have autocatalytic

lyase activity, can assemble with open linear tetrapyrroles with

a ethylidene group at C3 in the A-ring as chromophores. As

Escherichia coli cells naturally synthesize heme, it is possible

to produce bilins in E. coli by adding two subsequent steps

by genetic transformation; ring cleavage of heme by a heme

oxygenase to produce BV and further reduction by bilin reduc-

tases. Co-expression of Ho1 and PcyA with cyanobacterial

apophytochrome 1 (Cph1) resulted in production of holo-

Cph1 in E. coli [9,10]. The entire pathway for a subunit for
blished by Elsevier B.V. All rights reserved.
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phycocyanin was also reconstituted with PCB in E. coli by the

similar method although the genes for the heterodimeric lyase

for chromophore attachment were also included to the expres-

sion system [11].

Here, we have developed a system to produce PUB, PCB,
and PEB by using the genes for bilin reductases, HY2, pcyA,

and pebA; pebB, respectively. Co-expression of a truncated

plant phytochrome with natural chromophore PUB and struc-

turally related PCB will facilitate further molecular studies of

plant phytochromes. Our system to express phytochrome with

PEB chromophore in E. coli will be potentially applicable for

the development of fluorescent probes known as phytofluors

[12].
2. Materials and methods

2.1. Plasmid construction
The expression vectors for bilin biosynthesis were first constructed in

pQE30 (Qiagen GmbH, Hilden, Germany) to provide an inducible T5
promoter, then the expression cassettes with the promoters and bilin
biosynthetic genes were subcloned into pACYC184 [13], which is com-
patible with ColE1 plasmids. DNA fragments containing ORFs for
bilin metabolic enzymes and appropriate flanking-sequences contain-
ing ribosome binding sites and restriction sites (underlined) were ob-
tained by polymerase chain reaction (PCR) with KOD DNA
polymerase (Toyobo, Osaka, Japan). The structures of the constructs
for bilin biosynthesis and phytochrome expression were illustrated in
Fig. 1. Outline of the constructs is as follows. The ho1 gene (sll1184)
for heme oxygenase [6] was PCR-amplified from genomic DNA of
Synechocystis sp. PCC6803 with the ho1 primer set, 5 0-GGAG-
GAATTCTTAAGAAGGAGATATACATATGAGTGTCAACTTA
GCT-3 0 and 5 0-GCGCTCGAGGATAAGTTGTCACGCTAGGTA-
3 0, and subcloned into pQE30 to give pKT210. The pcyA gene
(slr0116) for PCB:ferredoxin oxidoreductase [8] was PCR-amplified
from Synechocystis genomic DNA with the pcyA primer set, 5 0-
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Fig. 1. Plasmid constructs for the expression of phytochrome apo-
proteins and biosynthesis of various chromophores in E. coli. Plas-
mids, pKT214, pKT306, and pKT307 are high-copy-number vectors
for apophytochrome expression of His-tagged Cph1, chitin-binding-
domain (CBD)-tagged PHYA (N617), and CBD-tagged PHYB
(N651), respectively. Plasmids, pKT270, pKT271, pKT272, and
pKT278 are low-copy-number vectors for the biosynthesis of BV,
PCB, PUB, and PEB, respectively. T5 lac, chimeric promoter for T5
RNA polymerase with the lac operator; T7 lac, T7 promoter with lac
operator; ApR and CmR, resistance genes for ampicillin and chloram-
phenicol, respectively; ori (pMB1) and ori (p15A), replication origins
from pMB1 and p15A, respectively.
GCGCTCGAGTATTCCCATTGCTTTGCCCTA-30 and 5 0-CGG
CTCGAGGCTAAACAACCTACGATTAGT-3 0, and subcloned into
pKT210 to give pKT211, in which ho1 and pcyA were in tandem array.
The HY2 cDNA for PUB synthase lacking a transit peptide (mHY2)
was PCR-amplified from HY2 cDNA [7] with the HY2 primer set,
5 0-GGAGCTCGAGAAGAAGGAGATATACATATGAGAGTCTC-
TGCTGTGTCGTAT-30 and 50-GGAGGTCGACCTGAGAGACTC-
CTCATGCTG-3 0, and subcloned into pQE30 to give pKT217. The
insert for the ho1 gene from pKT210 was subcloned into pKT217 to
give pKT218, in which ho1 and mHY2 were in tandem array. The syn-
thetic operons of biosynthetic genes for BV, PCB, and PUB under the
control of T5 promoters in plasmids pKT210, pKT211, and pKT218,
were PCR-amplified with the T5-ho1 primer set, 5 0-GTCTGCTAG-
CAAATCATAAAAAATTTATTTGC-3 0 (T5ProNhe) and 5 0-
GCGGTCGACGATAAGTTGTCACGCTAGGTA-3 0, the T5-ho1-
pcyA primer set, T5ProNhe and 5 0-CGGGTCGACGCTAAA-
CAACCTACGATTAGT-3 0, the T5-ho1-HY2 primer set, T5ProNhe
and 5 0-GGAGGTCGACCTGAGAGACTCCTCATGCTG-3 0, and
replaced the tetracyclin-resistance gene at the XbaI and SalI sites in
pACYC184 to give pKT270, pKT271, and pKT272, respectively
(Fig. 1). The genes pebA and pebB for dihydrobiliverdin:ferredoxin
oxidoreductase and PEB:ferredoxin oxidoreductase, respectively, in
Synechococcus sp. W8020 were PCR-amplified with the pebA primer
set, 5 0-GGAGCTCGAGGAGAAATTAACTATGATCTTTGATT-
CATTTCTC-3 0 and 5 0-GGAGGTCGACTCATTTGTGAGAG-
GAGGAGG-3 0 and the pebB primer set, 5 0-GGAGCTCGAGGAGA-
AATTAACTATGATCACAAATCAAAGATTC-3 0 and 5 0-GGAG-
GTCGACTTATAGATCAAAAAGCACAG-3 0 from expression plas-
mids originally used in enzymatic assays [8], and cloned into pKT270
to give pKT278 (Fig. 1). The DNA fragment for cph1 [14] was PCR-
amplified from Synechocystis genomic DNA with the cph1 primer
set, 5 0-CGCGGATCCATGGCCACCACCGTACA-3 0 and 5 0-TC-
CCCGGGTTAGTTGCCAATGGGGAT-3 0, and inserted into of the
BamHI and SmaI sites of pQE30 to give pKT214. The DNA fragments
for the amino-terminal region of Arabidopsis PHYA (N617) and
PHYB (N651), were PCR-amplified by from PHYA and PHYB
cDNAs [15] with the PHYA primer set, 5 0-GGAATTCCATATG-
TCAGGCTCTAGGCCG-3 0 and 5 0-CCGCTCGAGAGCTTCTAG-
TTCTTGTATACC-3 0, and the PHYB primer set, 5 0-GGA-
ATTCCATATGGTTTCCGGATGCGG-3 0 and 5 0-CCGGAATTCT-
GCACCTAACTCATCAATCCC-3 0, and inserted into the NdeI–XhoI
sites and NdeI–EcoRI sites of pTXB1 (New England Biolabs, Ipswich,
MA, USA) to give pKT306 and pKT307, respectively (Fig. 1).

2.2. Expression and purification of phyA (N617) and phyB (N651) with

PUB or PCB chromophore
E. coli cells ER2566 were transformed with a combination of one

plasmid for bilin biosynthesis (pKT271 or pKT272) that provides resis-
tance to chloramphenicol and a second plasmid for PHYA (N617)
(pKT 306) or PHYB (N651) (pKT307) expression that provides resis-
tance to ampicillin. Transformants selected with both antibiotics were
used for the small scale primary cultures (�10 ml). Aliquots of the pri-
mary cultures were stored in the presence of 7% dimethylsulfoxide at
�70 �C. The E. coli cells harboring both expression plasmids were
grown at 37 �C with shaking at 250 rpm to an OD600nm of 0.5 in
1500 ml of LB media containing 2% glucose, 50 mg/L ampicillin, and
30 mg/L chloramphenicol. The culture was cooled to 18 �C. Isopropyl
b-DD-thiogalactoside (IPTG) was added to a final concentration of
1 mM to induce protein expression. The cells were further cultured
overnight at 18 �C in the dark. The cells were collected by centrifuga-
tion and resuspended in 50 ml of lysis buffer containing 50 mM
Na-PO4 pH 7.0, 100 mM NaCl, 0.1% Triton X-100, 1 mM 2-mer-
captoethanol, and protease inhibitor cocktail (Roche Diagnostics,
Basel, Switzerland), and disrupted by sonication (Model UR-20P; Tomy
Seiko Co., Tokyo, Japan) at 4 �C. Crude soluble extract was prepared by
centrifugation at 12000 · g for 10 min. The expressed phytochrome
protein fused to chitin binding domain (CBD) was purified by chitin
affinity chromatography using 3 ml bed volume of Chitin Beads
(New England Biolabs) according to the manufacturer’s instruction.
The bound protein was washed and self-cleaved by incubating with
the cleavage buffer containing 20 mM Tris–HCl pH 7.8, 500 mM
NaCl, 0.1 mM EDTA, 50 mM DTT for 2 days at 4 �C. Further puri-
fication was performed by gel filtration chromatography (HiLoad 16/
60 Superdex 200 pg, ÄKTA, Amersham Bioscience, Piscataway, NJ,
USA). The incubation experiment with PCB in vitro was performed



K. Mukougawa et al. / FEBS Letters 580 (2006) 1333–1338 1335
as described previously [16] before purifying by gel filtration chroma-
tography. PCB was prepared from Spirulina as described previously
[17].

2.3. Expression of Cph1 with PEB chromophore in E. coli
E. coli cells JM109 harboring both pKT214 and pKT278 were se-

lected by resistance to ampicillin and chloramphenicol. The E. coli cells
were precultured at 37 �C with shaking at 230 rpm in the dark to an
OD600nm of 0.6 in 300 ml LB medium, and then IPTG was added to
a final concentration of 1 mM. The culture was further incubated over-
night at 25 �C with shaking at 100 rpm in the dark. Cells were collected
by centrifugation and resuspended in 10 ml of lysis buffer containing
20 mM Tris–HCl pH 7.0, 200 mM NaCl, 1 mM EDTA, and protease
inhibitor cocktail (Roche), and disrupted by sonication on ice. Crude
soluble extract was prepared by centrifugation at 12000 · g for
10 min. The resulting supernatant was loaded onto a nickel column
containing 1 ml bed volume of HisÆBind� Resin (Novagen, Madison,
USA), and Cph1 protein was purified at 4 �C according to the manu-
facturer’s instruction. Fluorescence images of the purified protein was
recorded by digital camera (Fine Pix 4900Z, Fuji film, Tokyo, Japan),
using appropriate filters for fluorescence microscopy (excitation
546 nm, beam splitter 560 nm, and emission 575–640 nm; Filter set
No. 20; Carl Zeiss, Göttingen, Germany). Spectra of fluorescence
and absorption of purified Cph1 protein with PEB adduct was ob-
tained using a fluorescence spectrophotometer (F-3010, Hitachi
High-Technologies, Tokyo, Japan). Monochrometers were adjusted
to 2.5 nm bandpass for all measurements. Fluorescence emission spec-
tra were obtained by excitation at 546 nm.

2.4. Fluorescence microscopy
The fluorescence emission spectrum of the E. coli cells was observed

by fluorescence microscope (Axiophoto, Carl Zeiss) using appropriate
filters (Carl Zeiss, No. 20) and images were captured with a cooled
CCD camera head system (ZVS-3C75DE, Carl Zeiss).

2.5. Phytochrome detection by zinc blot and difference spectrum
For zinc blot analysis, proteins separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS–PAGE) were incubated in
buffer containing 100 mM zinc acetate and 150 mM Tris–HCl pH 7.0
for 10 min. Fluorescence was detected using FM-BIO II (Hitachi
High-Technologies). Absorbance and difference spectra of phyto-
chrome were obtained with a spectrophotometer (HP8453 UV–Visible
system, Hewlett Packard GmbH, Waldbronn, Germany) essentially as
described previously [18].
3. Results

3.1. Biosynthesis of bilins in E. coli

To express phytochrome proteins with chromophores in

E. coli, we firstly introduced genes to biosynthesize bilins from

heme into the cells. We prepared the inducible synthetic oper-

on composed of a heme oxygenase and a bilin reductase(s) in a

plasmid pACYC184, which contains the p15A origin that is

compatible with ColE1 vectors and is commonly used for re-

combinant protein expression in E. coli. For the heme oxygen-

ase, we used ho1 (Cyanobase ID. sll1184) from Synechocystis

since it is a prokaryotic gene with no coding region for a transit

peptide and the heme oxygenase activity from Ho1 has been

demonstrated in E. coli previously [9,10]. E. coli cells harboring

the ho1 plasmid (pKT270) turned green when heme oxygenase

expression was induced, indicating accumulation of BV (data

not shown). To produce various phytobilin in E. coli, the genes

for bilins reductases with different specificities were combined

with ho1 (Fig. 1). To produce PUB, which is a natural precur-

sor of the chromophore for plant phytochromes, the Arabidop-

sis HY2 gene that encodes PUB synthase [7] was used after

removal of the region for the transit peptide (mHY2). The

E. coli cells harboring the plasmid containing the ho1-mHY2
operon (pKT272) showed a pale green color when expression

was induced. We detected accumulation of PUB in cells by re-

verse phase HPLC analysis (data not shown). The pcyA gene

(Cyanobase ID. slr0116) from Synechocystis sp. PCC6803

was used to produce PCB by the expression of PCB:ferredoxin

oxidoreductase [8]. However, the E. coli cells harboring the

plasmid containing ho1 and pcyA (pKT271) did not show a

strong color change when expression was induced. Instead,

we observed that significant levels of PCB were detectable in

the culture medium (data not shown).

3.2. PUB biosynthesis and recombinant phytochrome with PUB
adduct in bacteria

Expression systems for recombinant phytochrome in E. coli

have been reported with the combination of a cyanobacterial

phytochrome gene cph1 with PCB biosynthesis genes ho1 and

pcyA [9,10]. As PUB is a natural precursor of the chromophore

for plant phytochromes, the truncated Arabidopsis PHYA

(N617) and PHYB (N651) were co-expressed in E. coli with

two genes, ho1 and mHY2, from the synthetic PUB biosynthe-

sis operon in pKT272. We also prepared cells co-expressing

truncated phytochromes with the operon for PCB biosynthesis

for comparison. We used a photosensory domain of PHYB,

PHYB (N651), as a phytochrome apoprotein since it acts as

functional phytochrome B (phyB) in the nucleus in plants

[19]. PHYA (N617) was also used to express a domain compa-

rable to PHYB (N651). We induced gene expression in E. coli

and checked for color change of the cells. The PHYA (N617)

and PHYB (N651)-expressing cells co-transformed with the

PUB biosynthesis enzymes turned blue-green after induction

of gene expression while those with the PCB biosynthesis

enzymes turned blue (Fig. 2A).

Attachment of the bilin prosthetic group covalently to the

proteins can be specifically detected by zinc blot analysis

[20]. Crude protein extracts, supernatant, insoluble fraction,

and affinity purified proteins from E. coli cultures of PHYB

(N651) were analyzed by (SDS–PAGE)/Coomassie staining

and zinc blot assays (Fig. 2B). Fluorescent bands in the zinc

blot that corresponded to PHYB (N651) were observed only

in the extracts prepared from the E. coli co-expressing bilins

and phytochrome proteins (Fig. 2B, right). No fluorescent sig-

nals were observed in apo-PHYB (N651) expressing cells.

These results indicated that PHYB (N651) expressed with bilin

biosynthesis genes were covalently assembled with bilin.

As phyB (N651) proteins with bilin adducts were expressed

as fusion proteins with an intein and a CBD, phyB (N651)

was purified by affinity column chromatography with chitin

beads and cleaved by the intein activity. Further purification

was performed by gel filtration chromatography to apparent

homogeneity (Fig. 2C). The absorption spectra of holo phyB

(N651) after saturating illumination of red light and far-red

light are shown (Fig. 2D). The difference spectrum between

far-red-irradiated Pr form and red-irradiated Pfr form was de-

tected with maxima and minima at 662 and 724 nm, respec-

tively, in the extract from cells harboring the plasmid

pKT272 for PUB biosynthesis, and at 650 and 715 nm, respec-

tively, in the extract from cells with the plasmid pKT271 for

PCB biosynthesis (Fig. 2D and E, Table 1). The latter values

were in good agreement with those for the reconstituted phyB

(N651) with PCB in vitro [21]. We also analyzed spectrophoto-

metric properties of phyA (N617), and observed photore-

versibility of red-absorbing form of phytochrome (Pr) and
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far-red-absorbing form of phytochrome (Pfr) forms for phyA

(N617) (Table 1). Although the expression levels of phyA

(N617) were lower than those of phyB (N651), the extent of

chromophorylation of the recombinant proteins was as effi-

cient as that of phyB (N651) as determined from zinc blot fluo-

rescence levels (data not shown). The blue-shifted spectra of

the PCB adduct compared with that of the PUB adduct were

reasonable from structural basis of the number of conjugate

double bonds, and consistent with previous studies by

in vitro reconstitution [22] and from plant extracts [18]. These

results indicated that photoactive phytochromes with PUB or

PCB chromophore were synthesized in E. coli.
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The specific absorption ratio (SAR), defined as the ratio of

absorbance maxima around 655 nm and absorbance at

280 nm for the Pr form, is used to evaluate purification and

chromophore binding efficiency of phytochromes [e.g. [23]].

The SAR values for Pr form of phyB (N651) proteins of

PUB and PCB adducts purified from E. coli were 0.96 and

1.05, respectively. Further incubation with PCB did not in-

crease the zinc blot signals (Fig. 2C) or the SAR values (Table

1), indicating that the chromophore binding was saturated in

E. coli.

3.3. Co-expression of phytochrome with PEB

PEB, which is a natural precursor of the phycoerythrin chro-

mophore, has a structure similar to PUB but lacks the C15

double bond. As a consequence, apophytochrome can bind

PEB as a chromophore and gives intense orange fluorescence

called phytofluor when excited [12]. To reconstitute phytofluor

in vivo, we simultaneously introduced two plasmids, pKT214

to express Cph1 and pKT278 to produce PEB, into E. coli.

The E. coli cells harboring both plasmids showed orange fluo-

rescence under a fluorescence microscope after induction by

IPTG (Fig. 3A). The fluorescence from E. coli cells was signif-

icantly stronger in the cells cultured with slow shaking

(�100 rpm) than with vigorous shaking (�250 rpm) (data

not shown), although we have not determined the underlying

mechanism. Ubiquitous fluorescence with intense spots proba-

bly from inclusion bodies, was observed only in the co-trans-

formed E. coli cells. The E. coli pellet was pink after

centrifugation, indicating the accumulation of Cph1 protein

with PEB chromophore (data not shown). In contrast,

E. coli cells transformed with either pKT214 or pKT278 did

not show any visible color change or fluorescence (data not

shown). Covalent association of PEB with Cph1 was examined

by zinc blot analysis. Total crude extracts from the induced

E. coli cells were separated by SDS–PAGE. An 84-kDa band

corresponding to Cph1 in the extract from the cells harboring

both pKT214 and pKT278 showed a fluorescence signal in zinc

blot analysis (Fig. 3B).

The Cph1 protein was affinity-purified by nickel column

chromatography, as the protein was His-tagged at its amino-

terminus. The purified Cph1 protein from E. coli was also pink
Fig. 2. Expression of truncated Arabidopsis phytochromes with PCB
or PUB adduct in E. coli. (A) E. coli cell cultures induced by IPTG.
Photograph of microwell plates with cells harboring plasmids shown in
the respective columns and rows. (B) Expression analysis of phyB
(N651). SDS–PAGE/Coomassie staining (left) and zinc blot (right).
Soluble and insoluble fractions were the supernatant and pellet,
respectively, of the crude extracts after centrifugation. Total protein,
fractionated proteins, and chitin-beads affinity-purified protein were
analyzed by SDS–PAGE (7.5%). Strains harboring pKT307,
pKT272 + pKT307, and pKT271 + pKT307 are indicated as Apo,
PUB, and PCB, respectively. Molecular masses of the protein standard
are shown (left). An arrow indicates the position of PHYB (N651). (C)
Purification of phyB (N651) with PUB or PCB adduct by gel-filtration
chromatography. SDS–PAGE/Coomassie staining (left) and zinc blot
(right). Affinity-purified protein shown in (B) was digested in the
presence of dithiothreitol, and eluted from chitin-beads. The eluted
samples were incubated in the presence (+PCB) or absence (�PCB) of
PCB, then further purified by gel filtration chromatography. (D)
Absorption spectra of purified phyB (N651) with PUB or PCB adduct
after saturating irradiation with red light (Pfr) of far-red light (Pr). (E)
Difference spectra of phyB (N651) purified from E. coli. Difference
spectra of absorption spectra in (D) are shown.

b



Table 1
Comparison of spectroscopic and quantitative data for phyA (N617)
and phyB (N651) purified from E. coli

Sample Adduct kDAmax

(nm)
kDAmin

(nm)
Yielda

(mg)
SARb

�PCB +PCB

phyA (N617) PUB 662 728 1.8 ND ND
phyA (N617) PCB 652 717 1.8 ND ND
phyB (N651) PUB 662 724 3.3 0.96 0.98
phyB (N651) PCB 650 715 2.6 1.05 1.03

ND, not determined.
aYield was calculated for the expected amount of phytochrome protein
in 1 L cultures of E. coli from the protein concentrations determined by
Bradford assay [29].
bThe specific absorbance ratio (SAR) is defined in the text, and the
values in +PCB samples were those obtained after further incubation
of �PCB samples with PCB in vitro.

Fig. 3. Expression of Cph1 with PEB adduct in E. coli. (A)
Micrographs of E. coli cells harboring both PEB biosynthesis plasmid
(pKT278) and Cph1 expression plasmid (pKT214) are shown in the
upper panels. As a control, those harboring only the PEB biosynthesis
plasmid (pKT278) are also shown in the lower panels. Cells were
observed after overnight induction by IPTG. Left, differential inter-
ference microscopy; right, fluorescence microscopy. (B) SDS–PAGE/
Coomassie (left) and zinc blot analysis (right) of Cph1 with PEB
adduct. Crude extracts from the host E. coli cells (JM109) and the cells
harboring pKT214 and pKT278 after induction by IPTG were
separated by SDS–PAGE (10%). (C) Affinity-purified His-tagged
Cph1 protein from the cells harboring pKT214 and pKT278. The
pictures were taken by flash photography (left) and fluorescence
photography irradiated by excitation light. (D) Spectrophotometric
analysis of Cph1 purified from cells harboring pKT214 and pKT278.
Fluorescence spectrum and absorption spectrum of Cph1 protein were
plotted in black and red, respectively. The scattering at 546 nm was
derived from excitation light.
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in solution and showed orange fluorescence when irradiated

with light of 546 nm (Fig. 3C). The spectrophotometric prop-

erties of Cph1 with PEB adduct expressed in E. coli were mea-

sured by fluorescence spectrophotometry (Fig. 3D). The

wavelength of the excitation maximum was 580 nm and that

of the emission maximum was 587 nm. The values obtained
with Cph1 phytofluor produced in E. coli were comparable

to those of the phytofluors constituted in vitro [12]. These re-

sults indicated that the expressed bilin reductases from cyano-

bacterial pebA and pebB were functional in E. coli, and that the

E. coli cells co-expressing the PEB biosynthesis operon and

apo-Cph1 protein produced the holo-Cph1 protein covalently

associated with PEB in the cells.
4. Discussion

Expression of recombinant plant apophytochrome has long

been reported in model microorganisms such as E. coli and

yeast [24,25], but it has been a difficult task due to low expres-

sion levels and insolubility, especially for full length phyto-

chromes. In a previous study, it was suggested PCB binding

to apo-Cph1 increased the total yield of Cph1 in E. coli [9].

To see the effect of formation of chromophore adducts on

the amount and quality of plant phytochrome expression in

E. coli, the level of PHYB (N651) fused to the chitin-binding

domain were compared in the presence or absence of bilin bio-

synthetic genes. The total amounts of PHYB (N651) protein

with PUB and PCB adducts were considerably higher than that

of apo-PHYB (N651). However, recovery in the soluble frac-

tion did not improve by co-expression of chromophores in

the conditions tested here (Fig. 2B, left). The insoluble frac-

tions of PHYB (N651) from the cells co-expressing bilins con-

tain chromophore since the protein were quantitatively

detectable by zinc blot assay (Fig. 2B, right). This may be

interpreted as inclusion bodies forming after chromophore

attachment to PHYB (N651) simply due to over-expression.

We evaluated the assembly of chromophore into phyto-

chrome in E. coli by measuring SAR. The values for PCB

and PUB adducts in E. coli were �1.0 after purification by

gel filtration chromatography. The values did not change after

additional incubation of the purified protein with PCB, and

the quantitative binding was also confirmed by zinc blot anal-

ysis (Fig. 2C). These results suggested the binding of chromo-

phore in the co-expression system in E. coli was efficient. In the

system reported here, both phytochrome protein and the en-

zymes for bilin biosynthesis were simultaneously induced by

IPTG. Gambetta and Lagarias reported that PCB biosynthesis

before the induction of apoproteins was important for the effi-

cient assembly of apo-Cph1 with the chromophore [9]. The dis-

agreement between these observations might be derived from

differences in apophytochromes or constructs for bilin biosyn-

thesis, although detailed analysis of the expression conditions

may be needed to reach a clear conclusion.

This production system for phytochrome with PUB chromo-

phore in E. coli will accelerate phytochrome research on

photoperception and signaling. Due to the low level of accu-

mulation of phytochromes except for phyA in plants, recombi-

nant phytochromes were used for biochemical assays after

assembly with chromophore in vitro. PUB has been prepared

by methanolysis of solvent extracts from rhodophyte and cya-

nobacteria that contain phycobiliproteins [26], or by enzymatic

reduction reaction of BV by PUB synthase in vitro. PCB has

been used as a substitute compound to assemble with apo-

phytochromes in vitro. In this report, we developed a system

for the production of large amounts of holophytochrome with

PUB chromophore in E. coli. As holoproteins with chromo-

phore are dominant in the culture conditions, the system will
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be applicable not only to the biochemical and genetic charac-

terization but also to the tertiary structure analysis of phyto-

chromes.

Protein-based fluorescent probes are a powerful tool to visu-

alize protein localization and behavior in cells. Intense fluores-

cence from protein–PEB complex including phytofluor [12]

and phycobiliprotein known as phycofluor [27] also have po-

tential probes for sensitive detection under fluorescence

microscopy. However, exogenous application of chromophore

was required for these probes and fluorescence reflected not

only protein localization but also the availability of chromo-

phore. A system that produces PEB by transgenic expression

of bilin reductases in the cells is potentially advantageous,

and applicable to other organisms. Indeed PEB biosynthesis

in plants by introducing pebA and pebB genes has lead to

the production of fluorescent phytochrome in plants (Muram-

oto et al., in preparation).

Recently another engineering application of PCB in E. coli

was reported to produce light imaging by ‘‘bacteria photo-

graph’’ [28]. The metabolic engineering of bilin biosynthesis re-

ported here will also be applicable for bilin-based technology

in synthetic biology researches.
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