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1. Introduction

One can associate many geometric and physical constants with a bounded domain in the plane, such as volume, perime-
ter, transfinite diameter or capacity, torsional rigidity, and principal frequency. In this note we consider the sharp constant
in the Sobolev inequality for a bounded domain D ⊂ R

n , which we view as interpolating between torsional rigidity and
principal frequency. We hope that this point of view will lead to estimates for torsional rigidity arising from estimates for
principal frequency and the continuity method, or vice versa. In this regard, Theorem 3 is particularly useful. In the re-
mainder of this introduction, we briefly describe the interpolating problem and the relevant physical quantities, state some
results, and outline the remainder of the paper.

Here and below, we let D ⊂ R
n , for n � 2, be a bounded domain with a piecewise Lipschitz boundary ∂ D which satisfies

a uniform cone condition both on its interior and exterior. We denote the volume element of the usual Lebesque measure
on R

n by dμ, and if Σ ⊂ R
n is a hypersurface we denote the induced volume element on Σ by dσ .

Definition 1. For each p � 1, let C p(D) be defined by

C p(D) = inf

{
Φp(u) =

∫
D |∇u|2 dμ

(
∫

D updμ)2/p
: u ∈ Lp(D) ∩ W 1,2

0 (D), u �≡ 0

}
. (1)

To place C p in context, notice that we recover the torsional rigidity P (D) with p = 1 and the principal frequency (or,
more generally, the bottom of the spectrum of the Laplacian) λ(D) with p = 2:

4

P (D)
= C1(D), λ(D) = C2(D).
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Furthermore, C p(D) gives the sharp constant in the Sobolev embedding: if n = 2 and p � 1, or if n � 3 and 1 � p � 2n
n−2 ,

then

W 1,2
0 (D) ⊂ Lp(D), ‖u‖L p(D) � S p‖∇u‖L2(D) ∀u ∈ W 1,2

0 (D), (2)

so that

C p(D) = S −2
p (D).

This classical quantity is still the subject of much current research. For instance, Dai, He, and Hu [3] examine the varia-
tional problem of minimizing Φp ; their results nicely complement the contents of this note. Additionally, M. van den Berg
[2] has recently derived asymptotic expansions for C p(D) as p → 2n

n−2 .
In Section 2 we derive the corresponding Euler–Lagrange equation.

Theorem 1. Let D ⊂ R
n be a bounded domain, and suppose ∂ D is piecewise Lipschitz and satisfies a uniform cone condition. Let p � 1.

The critical points of the functional

Φp(u) =
∫

D |∇u|2 dμ

(
∫

D up dμ)2/p

in L p(D) ∩ W 1,2
0 (D) satisfy the PDE

�u + Λup−1 = 0, u|∂ D = 0 (3)

for some constant Λ.

Notice that, by (2), if n = 2 or (for n � 3) p � 2n
n−2 then it suffices to search for critical points over u ∈ W 1,2

0 (D).
After verifying that this is the correct Euler–Lagrange equation, we discuss solvability of the PDE, borrowing some clas-

sical results of Pohozaev [14], and some basic properties of solutions. In particular, (3) has a unique positive solution if
1 � p < 2, which is precisely the range of p interpolating between torsional rigidity and principal frequency. See Section 2
for a more thorough discussion.

We also discuss scaling laws for the solutions u. A change of variables shows that the scaling law for C p is

C p(rD) = rn−2− 2n
p C p(D), r > 0. (4)

In contrast to the functional Φp , the differential equation (3) is not scale-invariant unless p = 2. If u solves (3) for some
constant Λ and k > 0 is a constant, then v = ku satisfies

�v + k2−pΛv p−1 = 0.

Conversely, given a solution u to (3) and a constant α > 0, we see that

v =
(

α

Λ

) 1
2−p

u solves �v + αv p−1 = 0.

Thus, if p �= 2, by rescaling we obtain solutions to the equation �u + Λup−1 = 0 for all Λ > 0. We summarise the scaling
law for solutions of (3) with the following lemma.

Lemma 2. Let u be a positive solution to (3) for some Λ > 0. Then

Φp(u) = Λ

(∫
D

up dμ

)(p−2)/p

. (5)

Notice that the right-hand side of (5) is invariant under scaling, and it recovers P (D) for p = 1 and λ(D) for p = 2.
Next, we prove comparison results for C p(D) in Section 3, varying either the domain D or p. In particular, we prove the

following theorem.

Theorem 3. Let D ⊂ R
n be a bounded domain with volume V (D), and let 1 � p < q. Then

V (D)2/p C p(D) > V (D)2/q Cq(D). (6)
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In dimension 2, the case p = 1 and q = 2 of the inequality (6) becomes λ(D) < 4A(D)/P (D) and relates the fundamental
frequency of a domain to its area and its torsional rigidity. Theorem 3 is a good illustration of the point of view advocated
in this note as it embeds the above well-known result, to be found on p. 91 of [16], into a family of inequalities. Theorem 3
also draws attention to the natural quantity V (D)2/p C p(D): indeed, the scaling law (4) shows that

V (rD)2/p C p(rD) = rn−2 V (D)2/p C p(D), p � 1, (7)

which agrees with the classical scaling laws for torsional rigidity and principal frequency.
In Section 4 we characterize extremal domains for C p under the geometric conditions of fixed volume and of fixed

inradius. In particular, we prove an inequality of Faber–Krahn type.

Theorem 4. Let p � 1, let D ⊂ R
n be a bounded domain with piecewise Lipschitz boundary which satisfies a uniform cone condition,

and let B ⊂ R
n be the round ball, centered at the origin, with the same volume as D. Then C p(D) � C p(B). Moreover, equality only

occurs if D is a translate of B almost everywhere.

The inradius R(D) of a domain is the supremum of the radius of a ball contained in D . In the case of a simply connected
planar domain, it is the finiteness of the inradius that determines whether the bottom of the spectrum of the Laplacian on
D is positive or whether the expected exit time of Brownian motion from the domain is uniformly bounded over all starting
points. For these reasons, extremising relative to fixed inradius, rather than fixed volume, is even more natural.

Theorem 5. Let p � 1. Let D be a convex domain D ⊂ R
n with piecewise Lipschitz boundary which satisfies a uniform cone condition,

and let R be the inradius of D. Let u > 0 solve (3) on D and let uM = max{u(x): x ∈ D}. Then

u2−p
M � 2ΛR2

p A2
p

, (8)

where

Ap =
1∫

0

dt√
1 − t p

= √
π

Γ (1 + 1
p )

Γ ( 1
2 + 1

p )
.

Moreover, (8) is an equality in the case of a slab.

The maximum uM is well defined by the preceding discussion.
Each of Theorem 4 and Theorem 5 both generalises well-known classical results and embeds these into a family of

results with a common proof. See [4,10] for the classical Faber–Krahn inequality for principal frequency (the case p =
2) and see [15] or Appendix A of [16] for Pólya’s proof of the Saint-Venant Theorem that among all simply connected
domains of given area the disk has the largest torsional rigidity. In the case of convex domains of fixed inradius, Hersch [7,
Théorème 8.1] proved λ(D) � π2/(4R2) for the bottom of the spectrum of the Laplacian while Sperb [17] proved uM � R2

for the maximum value of the torsion function. More refined results are known in the cases p = 1 and p = 2 (see [13], for
example).

We conclude this note with a short list of open questions in Section 5.

2. The variational problem and its Euler–Lagrange equation

We take p � 1 and a bounded domain D ⊂ R
n with a piecewise Lipschitz boundary satisfying a uniform cone condition,

and for u ∈ L p(D) ∩ W 1,2
0 (D) not identically zero define the functional

Φp(u) =
∫

D |∇u|2 dμ

(
∫

D up dμ)2/p
=

‖∇u‖2
L2(D)

‖u‖2
L p(D)

.

Our first task is to derive the Euler–Lagrange equation (3).

Proof of Theorem 1. Observe that Φp is scale-invariant; that is, if k > 0 then Φp(ku) = Φp(u). Thus, we can reformulate
the condition that u is a critical point of Φp as a constrained critical point problem: find the critical points of

∫
D |∇u|2 dμ

subject to the constraint
∫

D up dμ = 1. Any constrained critical point must satisfy

d

dε

∣∣∣∣
ε=0

∫ ∣∣∇(u + εv)
∣∣2

dμ = Λ
d

dε

∣∣∣∣
ε=0

∫
(u + εv)p dμ
D D
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for all v ∈ L p(D) ∩ W 1,2
0 (D), where Λ is the Lagrange multiplier. Next recall that C∞

0 (D) is dense in both L p(D) and

W 1,2
0 (D) (see, for example, Section 7.6 of [6]), so without loss of generality we can take u, v ∈ C∞

0 (D). Thus we can freely
differentiate underneath the integral sign, and a quick computation shows that the equation above is equivalent to

0 =
∫
D

[−〈∇u,∇v〉 + Λup−1 v
]

dμ =
∫
D

v
(
�u + Λup−1)dμ. (9)

Here we have absorbed a factor of 2 and a factor of p into the Lagrange multiplier Λ. If Eq. (9) is to hold for all compactly
supported v in D , then u must satisfy the PDE

�u + Λup−1 = 0

for some constant Λ as claimed. �
Remark 1. This is a familiar differential equation, often called the Lane–Emden equation or the Fowler equation.

Remark 2. One can equally well study the functional

u �→ (
∫

D |∇u|q dμ)2/q

(
∫

D up dμ)2/p
.

In this case, the Euler–Lagrange equation is

0 = �qu + Λup−1 = div
(|∇u|q−2∇u

) + Λup−1.

This differential equation is either singular (for q < 2) or degenerate (for q > 2) at the critical points of u. Thus, we do not
expect to have as well-developed a theory attached to the more general variational problem.

To examine the solvability of Eq. (3), we first recall the following classical theorem of Pohozaev [14].

Theorem (Pohozaev). Let D ⊂ R
n be a bounded domain with smooth boundary, and let f be a Lipschitz function. If n = 2 and f

satisfies the estimate∣∣ f (u)
∣∣ � A + B|u|ec|u|a , a < 2,

then one can find eigenfunctions of the PDE

�u + λ f (u) = 0, u|∂ D = 0.

If n � 3 and f satisfies the estimate

∣∣ f (u)
∣∣ � A + B|u|m, m <

n + 2

n − 2
,

then again one can find eigenfunctions of the PDE

�u + λ f (u) = 0, u|∂ D = 0.

Conversely, if D is star-shaped with respect to the origin and u � 0, not identically zero, solves

�u + um = 0, u|∂ D = 0

then m < n+2
n−2 .

Applying Pohozaev’s theorem, we immediately obtain the following corollary.

Corollary 6. There is a positive solution to the Euler–Lagrange equation (3) if either n = 2, or n � 3 and p < 2n
n−2 . On the other hand,

if n � 3, p > 2n
n−2 , and D ⊂ R

n is star-shaped, then Eq. (3) does not have a positive solution.

It is well known that for the critical value p = 2n
n−2 a minimizing sequence for the function Φp will typically become

unbounded, reflecting the loss of compactness in the Sobolev embedding (2). However, a blow-up analysis such as [18,5]
concludes that the infimum is independent of the domain, depending only on the dimension. See also Section 4 of [11].

There is a large literature attached to the eigenvalue problem (3); see, for instance, the survey article by Lions [12] and
references therein, particularly [1,8], for more information about this nonlinear eigenvalue problem. For instance, it is known
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that for a given Λ > 0, (3) admits a unique positive solution if p < 2 (see, for instance, Proposition 2.9 of [3]). However, if
2 < p < 2n

n−2 then (3) will typically have multiple positive solutions [1].
If D is a convex domain, we can in fact say more. A theorem of Korevaar (see Theorem 2.5 of [9] and the remark

immediately following it) implies

Corollary 7. If D ⊂ R
n is a bounded, strictly convex domain and u > 0 solves the boundary value problem (3) then v = − log(u) is

convex.

We complete this section by proving Lemma 2.

Proof of Lemma 2. We integrate by parts and use (3):∫
D

|∇u|2 dμ =
∫
D

〈∇u,∇u〉dμ = −
∫
D

u�u dμ = Λ

∫
D

up dμ = Λ

(∫
D

up dμ

)2/p(∫
D

up dμ

)(p−2)/p

.

Rearranging yields

Φp(u) =
∫

D |∇u|2 dμ

(
∫

D up dμ)2/p
= Λ

(∫
D

up dμ

)(p−2)/p

. �

3. Comparisons

In this section we prove some basic comparison principles for minimizers of Φp . The first such comparison is domain
monotonicity.

Proposition 8. If D1 ⊂ D2 ⊂ R
n are bounded domains and p � 1 then C p(D1) � C p(D2).

Proof. This follows from the fact that L p(D1) ∩ W 1,2
0 (D1) ⊂ L p(D2) ∩ W 1,2

0 (D2). �
Next we fix the domain D and vary p.

Proposition 9. Fix a bounded domain D ⊂ R
n, and let C p(D) be given by (1) for p � 1. Then the function p �→ C p(D) is continuous.

Proof. Again, we use the fact that C∞
0 (D) is dense in L p(D) ∩ W 1,2

0 (D) and take u to be a smooth function. In this case,
the function

p �→
(∫

D

up dμ

)2/p

is smooth, so Φp(u) is a smooth function of p for fixed u ∈ C∞
0 (D). The proposition follows from the definition of C p . �

Our main result in this section is Theorem 3, which reads

V (D)2/p C p(D) > V (D)2/q Cq(D)

for 1 � p < q, where V (D) is the volume of D .

Proof of Theorem 3. Recall that C∞
0 (D) is dense in both L p(D) ∩ W 1,2

0 (D) and Lq(D) ∩ W 1,2
0 (D), so for the purposes of our

comparison it will suffice to take u ∈ C∞
0 (D). In particular, u ∈ L p(D) ∩ Lq(D). Use Hölder’s inequality on the functions up

and 1, with exponents q/p and q/(q − p), to obtain(∫
D

up dμ

)2/p

�
[

V (D)
q−p

q

(∫
D

(
up)q/p

dμ

)p/q]2/p

= V (D)
2(q−p)

qp

(∫
D

uq dμ

)2/q

.

Then, by the variational character of C p and Cq , we have

C p(D) = inf

{ ∫
D |∇u|2 dμ

(
∫

D up dμ)2/p

}
� V (D)

2(p−q)
pq inf

{ ∫
D |∇u|2 dμ

(
∫

D uq dμ)2/q

}
= V (D)

2(p−q)
pq Cq(D),

which gives the desired inequality. Finally, we can only have equality in Hölder’s inequality if u is constant, which (by the
boundary conditions) would force u to be identically zero. This is impossible, and the inequality above must be strict. �
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In dimension two one may take the limit as p → ∞, to obtain

C∞(D) = inf

{∫
D |∇u|2 dμ

‖u‖2
L∞(D)

: u ∈ L∞(D) ∩ W 1,2
0 (D), u �≡ 0

}
= lim

p→∞ C p(D).

By the monotonicity of V (D)2/p C p(D), this limit exists and is finite. Taking the limit as p → ∞ in the scaling law (7) with
n = 2 shows that C∞(rD) = C∞(D) for each positive r. For a fixed domain D , one can find disks rD and RD such that
rD ⊆ D ⊆ RD, so that C∞(RD) � C∞(D) � C∞(rD) by domain monotonicity. On the other hand, C∞(rD) = C∞(RD) by scale
invariance. We see that C∞(D) does not depend on the domain at all, and write C∞ for its common value for all planar
domains.

Proposition 10. C∞ = 0.

This is equivalent to the well-known fact that in two dimensions

lim
p→∞ S p(D) = ∞.

One can find more precise asymptotics in [3,2].

Proof. We may take D to be the disk of radius 1 centered at 0. For any positive δ < 1, define the radial function

u(r) =
{

log(δ), r < δ,

log(r), δ � r � 1.

Then ‖u‖L∞(D) = − log(δ) and

∫
D

|∇u|2 dμ = 2π

1∫
δ

1

r2
r dr = −2π log(δ),

so that

C∞ � 2π

− log(δ)
→ 0

as δ → 0. �
4. Extremal domains

In this section we characterize the domains which are maxima or minima for C p under various constraints. We begin
with a proof of Theorem 4, that the ball uniquely minimizes C p(D) among all domains with a fixed volume. The proof
follows the standard proof of the Faber–Krahn inequality by symmetrization.

Proof of Theorem 4. Let u be a test function for Φp . Without loss of generality, we can take u ∈ C∞
0 (D) and let

m = min
x∈D

{
u(x)

}
, M = max

x∈D

{
u(x)

}
.

For m � t � M let Dt = {u > t}.
Now we define a comparison function u∗ : B → [m, M] as follows. First let Bt be the ball centered at the origin with

Vol(Bt) = Vol(Dt). Then let u∗ be the radially symmetric function such that Bt = {u∗ > t}. By the co-area formula,

M∫
t

∫
∂ Dτ

dσ

|∇u| dτ = Vol(Dt) = Vol(Bt) =
M∫

t

∫
∂ Bτ

dσ

|∇u∗| dτ .

Differentiating with respect to t gives∫
∂ Dt

dσ

|∇u| =
∫

∂ Bt

dσ

|∇u∗| (10)

for all t . Then

∫
D

up dμ =
M∫

m

∫
∂ Dt

updσ

|∇u| dt =
M∫

m

t p
∫

∂ Dt

dσ

|∇u| dt =
M∫

m

t p
∫

∂ Bt

dσ

|∇u∗| dt =
∫
B

up∗ dμ. (11)
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Now, for m � t � M let

ψ(t) =
∫
Dt

|∇u|2 dμ, ψ∗(t) =
∫
Bt

|∇u∗|2 dμ.

By the co-area formula

ψ ′ = −
∫

∂ Dt

|∇u|dσ , ψ ′∗ = −
∫

∂ Bt

|∇u∗|dσ .

We use the Cauchy–Schwarz inequality, the isoperimetric inequality, and the fact that the normal derivative of u∗ is constant
on ∂ Bt to see( ∫

∂ Dt

|∇u|dσ

)( ∫
∂ Dt

dσ

|∇u∗|
)

�
( ∫

∂ Dt

dσ

)2

= (
Area(∂ Dt)

)2 �
(
Area(∂ Bt)

)2 =
( ∫

∂ Bt

|∇u∗|dσ

)( ∫
∂ Bt

dσ

|∇u∗|
)

.

We use Eq. (10) to cancel the common factor of∫
∂ Dt

dσ

|∇u| =
∫

∂ Bt

dσ

|∇u∗| ,

and so

−ψ ′ =
∫

∂ Dt

|∇u|dσ �
∫

∂ Bt

|∇u∗|dσ = −ψ ′∗.

Integrating this last differential inequality and using ψ(M) = 0 = ψ∗(M) we see that∫
D

|∇u|2 dμ = ψ(0) � ψ∗(0) =
∫
B

|∇u∗|2 dμ.

This inequality, combined with (11) and (1), give the desired inequality on the eigenvalues:

C p(D) � C p(B).

Moreover, equality of the eigenvalues forces all level sets ∂ Dt to be spheres centered at the origin. Also, the equality case
of the Cauchy–Schwarz inequality forces |∇u| to be constant on the level set ∂ Dt . Thus u must be radially symmetric, and
so in this case u = u∗ . �

Next we fix the inradius R(D) of the domain rather than the volume, where R(D) is the supremum radius of all balls
contained in D . Before proving Theorem 5, we make the following observation in the opposite direction.

Lemma 11. Among all bounded domains D ⊂ R
n with a fixed inradius, the ball maximizes C p for all p � 1.

Proof. If the inradius of D is R , then D contains a ball of radius r for each r < R . The result now follows from domain
monotonicity. �
Proof of Theorem 5. We begin this proof with a computation of C p for a slab

S = {
(x1, . . . , xn): −1 < xn < 1

}
.

In order that the variational problem makes sense, one can truncate to obtain S as a limit of D R as R → ∞, where

D R = {
(x1, . . . , xn): −1 < xn < 1,−R < x j < R

}
,

and in the limit we recover the same Euler–Lagrange equation �u +Λup−1 = 0. We look for a solution which depends only
on xn , which will solve the following boundary value problem for an ordinary differential equation (ODE):

u′′ + Λup−1 = 0, u(−1) = 0 = u(1). (12)

A quick computation shows
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d

dt

((
u′)2 + 2

p
Λup

)
= 2u′(u′′ + Λup−1) = 0,

so in phase space solutions to (12) will lie on level sets of the energy function

E = (
u′)2 + 2Λ

p
up . (13)

Equivalently, for any solution u to (12) there is a constant E such that

u′ =
√

E − 2Λ

p
up .

One can use this last equation to write down all the solutions to (12) up to quadrature, or in terms of hypergeometric
functions.

Indeed, we can compute C p(S) for the slab using just the knowledge that a positive solution to (3) depends only on xn .
On the truncated domain D R , we have

∫
D R

|∇u|2 dμ = (2R)n−1

1∫
−1

(∂xn u)2 dxn = C1 Rn−1,

while

(∫
D R

up dμ

)2/p

= (2R)
2
p (n−1)

( 1∫
−1

up(xn)dxn

)2/p

= C2 R
2
p (n−1)

.

Taking a ratio we see that Φp(u) = O(R(n−1)(1− 2
p )

), and so

C p(S) =
⎧⎨
⎩

0, 1 � p < 2,

π2

4 , p = 2,

∞, p > 2,

where in the p = 2 case we have listed the (well-known) value of the bottom of the spectrum of the Laplacian of a slab of
width 2.

Following Section 6.2.2 of [17], we define the P -function

v(x) = ∣∣∇u(x)
∣∣2 + 2Λ

p
up(x).

Introduced by Payne, v assumes its maximum at the point where u assumes its maximum. Thus

∣∣∇u(x)
∣∣2 + 2Λ

p
up(x) � 2Λ

p
up

M ,

which we can rearrange to read

∣∣∇u(x)
∣∣ �

√
2Λ

p

√
up

M − up(x). (14)

Let δD(P ) be the distance from the point P where u assumes its maximum to the boundary of D and integrate (14) along
a line segment which starts at P and terminates at a point on ∂ D closest to P . Then

R(D) � δD(P ) �
√

p

2Λ
u(2−p)/2

M Ap where Ap =
1∫

0

dt√
1 − t p

.

The inequality (8) follows. Moreover, if D is a slab then (13) implies (14) is actually an equality, and so (8) is also an
equality. �
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5. Open questions

In this final section we collect a small sample of interesting, related questions.
In the present paper, we have restricted our attention to the minimizer of the functional Φp , which corresponds to the

bottom of the spectrum of the eigenvalue equation

�u + λup−1 = 0.

This functional should have other critical points above the minimizer. What can one say about these higher order eigenval-
ues? If n � 3 and p < 2n

n−2 (or if n = 2) is the spectrum discrete? Is there a sequence of eigenvalues λp, j , with j = 1,2,3, . . . ,
such that

0 < λp,1 < λp,2 � λp,3 � · · · → ∞?

We return to the minimum C p(D) = inf{Φp(u)}. In dimension n � 3 the limit

lim
p→ 2n

n−2
− C p(D)

exists, and is independent of the domain. Moreover, Flucher and Wei [5] and van den Berg [2] find asymptotic expansions for
C p(D) as p → 2n

n−2 . Can one find a higher order expansion? In this context, the location of the maximum of the minimizing
function, called the hot spot, is also an interesting, yet still mysterious, piece of data. We showed in Proposition 9 that the
eigenvalue C p is a continuous function of p. Is the same true of the eigenfunction? We proved the inequality (8) is realized
in the case of a slab. Are there any other domains for which (8) is an equality?
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